

 Cite this: *RSC Adv.*, 2021, **11**, 14178

Oxidative cross-dehydrogenative coupling (CDC) via $C_{(sp^2)}-H$ bond functionalization: *tert*-butyl peroxybenzoate (TBPB)-promoted regioselective direct C-3 acylation/benzoylation of 2*H*-indazoles with aldehydes/benzyl alcohols/styrenes†

 Richa Sharma, Lalit Yadav, Ravi Kant Yadav and Sandeep Chaudhary *

An efficient, cost-effective, transition-metal-free, oxidative $C_{(sp^2)}-H/C_{(sp^2)}-H$ cross-dehydrogenative coupling *via* a $C_{(sp^2)}-H$ bond functionalization protocol for the regioselective direct C-3 acylation/benzoylation of substituted 2*H*-Indazoles **1a–m** with substituted aldehydes **2a–q**/benzyl alcohols **5a–e**/styrenes **6a–e** is reported. The operationally simple protocol proceeds in the presence of *tert*-butyl peroxybenzoate (TBPB) as an oxidant in chlorobenzene (PhCl) as a solvent at 110 °C for 24 h under an inert atmosphere, which furnished a diverse variety of substituted 3-(acyl/benzoyl)-2*H*-indazoles **3a–q**/**4a–l** in up to 87% yields. The reaction involves a free-radical mechanism and proceeds *via* the addition of an *in situ* generated acyl radical (from aldehydes/benzyl alcohols/styrenes) on 2*H*-indazoles. The functional group tolerance, broad substrate scope, control/competitive experiments and gram-scale synthesis and its application to the synthesis of anti-inflammatory agent **11** and novel indazole-fused diazepine **13** further signify the versatile nature of the developed methodology.

 Received 20th March 2021
 Accepted 26th March 2021

 DOI: 10.1039/d1ra02225c
rsc.li/rsc-advances

Introduction

During the last two decades, oxidative cross-dehydrogenative coupling, often abbreviated to “oxidative CDC reaction”, between two C-H bonds has been recognized as a greener fundamental synthetic approach in C-C bond forming reactions due to its association with several advantages such as being metal-free, high yields, cost effectiveness, operational simplicity, high selectivity, step/atom-economy, product selectivity, no pre-functionalization of starting materials, reduced waste, energy and resource competence, *etc.*¹ Indazoles are renowned bioactive heterocyclic scaffolds which are found abundantly in several pharmaceutically privileged bioactive natural products/therapeutics/drugs molecules² and are bestowed with a wide array of biological activities such as antimicrobial, anticancer, antitumor, HIV-protease inhibition, antiplatelet, anti-depressant, and anti-inflammatory actions.³

Indazole functionalization has achieved emerging demand in the fields of organic and medicinal chemistry as the functionalization of indazoles can be rendered into advantageous

structural motifs for various medications.⁴ Therefore, the development of a new synthetic pathway to introduce various functional groups on 2*H*-indazoles leading to an increase in the molecular abundance and the formation of new bioactive molecules, will always be of the utmost importance to medicinal chemistry and drug discovery.

In particular, acylated 2*H*-indazoles have received tremendous attention as a pharmaceutically important class of structural motifs in a large number of bioactive skeletons/therapeutic molecules. Noticeably, C3-acylated-(2*H*)-indazoles **I–V** are endowed with several biological activities, such as antiemetic and anti-inflammatory properties (Fig. 1).⁵ Therefore, the development of a direct synthetic strategy *via* an oxidative cross-dehydrogenative coupling pathway for the C-3 acylation of 2*H*-indazoles is a highly desirable and challenging area of investigation. It becomes more appealing if it proceeds through a transition-metal-free approach. A few transition-metal-catalyzed (Ag, Ni) synthetic approaches *via* $C_{(sp^2)}-H$ bond activation/functionalization have been reported for the direct, regioselective, C-3 acylation of (2*H*)-indazoles with either Ag-catalyzed decarboxylative cross-coupling of α -keto acids⁶ or with an Ni-catalyzed reaction on substituted aldehydes⁷ and with an Ag-catalyzed reaction with substituted Hantzsch esters as acyl radical sources⁸ (Scheme 1). However, these strategies are associated with several drawbacks such as the use of costly metals, the use of additives/ligands, and limited substrate scope. In addition, the separate synthesis of

Laboratory of Organic and Medicinal Chemistry (OMC Lab), Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur-302017, India. E-mail: schaudhary.chy@mnit.ac.in; Fax: +911412529029; Tel: +911412713319

† Electronic supplementary information (ESI) available: Characterization data, ¹H NMR and ¹³C NMR spectra. See DOI: 10.1039/d1ra02225c

Fig. 1 Representative examples of various bioactive molecules/drugs/therapeutics with a 2*H*-indazole moiety.

Scheme 1 Previous methodologies and present work: TBPP-promoted approach to regioselective direct C-3 acylation/benzoylation of 2-aryl-2H-indazoles with substituted aldehydes/benzyl alcohols/styrenes

an acylation/benzoylation source further amplifies its limitations and increases the tediousness of these methodologies. However, there has been no report of the direct C-3 acylation of 2-aryl-2*H*-indazoles with metal-free and ligand-/additive-free catalysis.

Herein, we report a cost-effective, highly efficient, *tert*-butyl peroxybenzoate (TBPB)-promoted, regioselective, direct C-3 acylation/benzoylation of 2-aryl-2*H*-indazoles **1a–m** with different aldehydes **2a–q**/benzyl alcohols **5a–e**/styrenes **6a–e** via $C_{(sp^2)}-H/C_{(sp^2)}-H$ cross-dehydrogenative coupling at 110 °C for 24 h under N_2 atmosphere which furnished 3-(acylated/benzoylated)-2-aryl-2*H*-indazoles **3a–q/4a–l** in excellent (87%) yields, with a broad range of functional group tolerances and varied substrate compatibilities [Scheme 1]. Succinctly, this is the first detailed investigation of an oxidant-promoted $C_{(sp^2)}-H/C_{(sp^2)}-H$ cross-dehydrogenative coupling method for the regioselective direct C-3 acylation/benzoylation of 2-aryl-2*H*-indazoles.

Results and discussion

We initiated our optimization study by investigating direct $C(sp^2)-C(sp^2)$ coupling by taking 2-(4-methoxyphenyl)-2*H*-indazole **1a** and 4-methylbenzaldehyde **2a** as the starting substrate (Table 1).

It has been noted that TBHP, either alone or in combination, has been utilized in several oxidative cross-dehydrogenative coupling reactions;⁹ we had chosen *tert*-butyl hydroperoxide (TBHP) as an oxidant and *N*-chlorosuccinimide (NCS) as a catalyst for the beginning of our study. Therefore, using the procedure in the literature,⁹ we carried out a reaction of **1a** with **2a** in the presence of TBHP (0.53 mmol, 4 equiv.) and NCS (30 mol%) in dichloroethane (DCE) at 110 °C for 24 h under an inert atmosphere. However, the desired product **3a** was not found at all and several spots appeared on TLC (Table 1, entry 1). Then, keeping all other reaction parameters the same, we carried out the same reaction as shown in entry no. 1 with reduced equivalents of both TBHP and NCS catalyst. Intriguingly, **3a** was obtained, albeit in low (30%) yield (Table 1, entry 2). Subsequently, we examined the screening of some other well-known reagents which had previously been utilized extensively in CDC reactions (Table 1, entries 3–7). While the reaction performed in TFA furnished **3a** in 40% yield, iodine-based catalysts were found ineffective in improving the yield of the reaction. Furthermore, keeping all the reaction conditions the same, the reaction was performed without a catalyst, which furnished **3a** in 65% yield (Table 1, entry 8). This observation instructed us to stop further use of any additives as a catalyst. However, the reaction performed with less equivalents of **2a** (1 equiv.) drastically reduced the yield of **3a** (Table 1, entry 9). It has been reported in the literature that chlorobenzene has been utilized as an effective solvent for cross-dehydrogenative coupling reactions.¹⁰ Therefore, we conducted the same reaction in chlorobenzene instead of DCE and **3a** was obtained in 68% yield (Table 1, entry 10).

Then, we carried out the screening of several organic as well as inorganic oxidants, such as di-*tert*-butyl peroxide (DTBP), *tert*-butyl peroxybenzoate (TBPB), dicumyl peroxide (DCP), lauroyl peroxide, H₂O₂, cumene hydroperoxide, K₂S₂O₈, oxone, (NH₄)₂S₂O₈, (diacetoxyiodo)benzene (PIDA), and oxygen gas, while keeping all the other reaction parameters the same (Table 1, entries 11–21). It was found that while DTBP, TBPB and DCP furnished **3a** in 70%, 82% and 51% yields, respectively; the reaction performed using lauroyl peroxide gave **3a** in only 18% yield (Table 1, entries 11–14). The rest of the oxidants either did not furnish **3a** at all or afforded **3a** in only trace amounts (Table 1, entries 15–21).

Sequentially, the screening of several polar/non-polar solvents was also carried out (Table 1, entries 22–30). It should be noted that none of the solvents were found to be effective except for chlorobenzene. Afterwards, keeping all reaction parameters the same, the effect of variation in temperature and time was studied. It was observed that increasing or decreasing the temperature and time did not have a beneficial effect on the yield of the reaction (Table 1, entries

Table 1 Optimization study^a

S. no.	Oxidant (2.5 equiv.)	Catalyst (20 mol%)	Solvent	Temp. (°C)	Yield (%)
1	TBHP ^b	NCS	DCE	110	NR ^c
2	TBHP	NCS	DCE	110	30
3	TBHP	TFA	DCE	110	40 ^d
4	TBHP	TBAI	DCE	110	NR
5	TBHP	Nai	—	110	NR
6	TBHP	KI	DCE	110	NR
7	TBHP	I ₂	DCE	110	NR
8	TBHP	—	DCE	110	65
9	TBHP	—	DCE	110	10 ^e
10	TBHP	—	PhCl	110	68
11	DTBP	—	PhCl	110	70
12	TBPB	—	PhCl	110	82
13	DCP	—	PhCl	110	51
14	Lauroyl peroxide	—	PhCl	110	18
15	H ₂ O ₂	—	PhCl	110	NR
16	Cumene hydroperoxide	—	PhCl	110	Trace
17	K ₂ S ₂ O ₈	—	PhCl	110	NR
18	Oxone	—	PhCl	110	NR
19	(NH ₄) ₂ S ₂ O ₈	—	PhCl	110	NR
20	PIDA	—	PhCl	110	Trace
21	O ₂	—	PhCl	110	NR
22	TBPB	—	ACN	110	71
23	TBPB	—	Toluene	110	70
24	TBPB	—	DMSO	110	18
25	TBPB	—	Dioxane	110	15
26	TBPB	—	DMF	110	Trace
27	TBPB	—	THF	110	Trace
28	TBPB	—	H ₂ O	110	Trace
29	TBPB	—	AcOH	110	Trace
30	TBHP	—	TFA	110	NR
31	TBPB	—	PhCl	80	72
32	TBPB	—	PhCl	140	68
33	TBPB	—	PhCl	110	71 ^f

^a Reaction conditions: 2-(4-methoxyphenyl)-2H-indazole **1a** (0.13 mmol), 4-methyl benzaldehyde **2a** (0.27 mmol), oxidant (0.33 mmol), catalyst (20 mol%), N₂ atm, 110 °C, 24 h. ^b For details, see ref. 9f. ^c TBHP (0.53 mmol) and NCS (30 mol%) were used. ^d TFA (0.6 equiv.) was used. ^e **2a** (1 equiv.) was used. ^f Reaction was allowed to run for 16 h.

31–33). Thus, overall, 2 equivalents of substituted aldehydes, 2.5 equivalents of *tert*-butyl peroxybenzoate (TBPB) dissolved in chlorobenzene as solvent at 110 °C for 24 h under N₂ atmosphere were found to be the best optimization reaction conditions for the direct C-3 acylation/benzoylation of 2-aryl-2H-indazoles *via* a C_(sp²)-H/C_(sp²)-H cross-dehydrogenative coupling methodology.

Taking 2-(4-methoxyphenyl)-2H-indazole **1a** as a starting substrate, several substituted aromatic/aliphatic/heteroaromatic aldehydes **2a–q** were reacted under the optimized reaction conditions, which furnished substituted 3-(acylated/benzoylated)-2-(4-methoxyphenyl)-2H-indazoles **3a–q** in 57–86% yield (Scheme 2). Like **3a**, **1a** was reacted with benzaldehyde **2b** under the optimized reaction conditions and furnished **3b** in 80% yield. It has been noted that aromatic aldehydes with electron-donating groups (EDGs) at the *p*-position were found to

be well-tolerated and afforded the corresponding C-3 benzoylated-2H-indazoles **3a** and **3c** in 82% and 86% yields, respectively. However, aromatic aldehyde **2d** with two EDG (*i.e.*, OCH₃) groups was subjected to reaction with **1a** under the optimized conditions; **3d** was afforded in slightly lower (78%) yield compared to **3a** and **3c**. This could be due to the steric hindrance created by the OCH₃ group at the *o*-position to the aldehydic functionality. In the case of aromatic aldehydes containing a halo (X = F, Cl, Br) group at the *para*-position, the reaction of **1a** with **2e–g** under optimized conditions furnished **3e–g** in 81–84% yield. However, keeping all the reaction conditions the same, a decrease in the reactivity of aromatic aldehydes containing halo groups at the *meta*-/*ortho*-positions, was observed and **3h** and **3i** were obtained in 67% and 58% yields, respectively. In addition, the aromatic aldehyde containing an electron-withdrawing group (EWG) **2p** was found to

Scheme 2 Substrate scope: reaction of 2-(4-methoxyphenyl)-2H-indazole **1a** with various aldehydes **2a-q** for the synthesis of substituted 3-acylated 2-(4-methoxyphenyl)-2H-indazoles **3a-q**^{a,b}. ^aReaction conditions: 2-(4-methoxyphenyl)-2H-indazole **1a** (0.5 mmol), substituted aldehydes **2a-q** (1.0 mmol), oxidant (1.25 mmol), PhCl, N₂ atm, 110 °C, 24 h. ^bIsolated yield.

be totally reluctant to undergo the optimized reaction conditions. Similarly, phenyl acetaldehyde **2q** was also found to be unreactive. Furthermore, in order to check the versatility of the methodology, a few aliphatic aldehydes **2j-k** were reacted with **1a** under the optimized reaction conditions and afforded **3j** and **3k** in 68% and 61% yields, respectively. Comparing aromatic aldehydes with aliphatic aldehydes, the latter were found to be less reactive than the former. A different observation was noticed in the current protocol when the number of carbon atoms increased to four (unbranched and/or branched) in the aldehydes.⁷ Compounds **2l-m** on reaction with **1a** under the optimized reaction conditions did not furnish C-3 acylated 2H-indazoles but incorporated the corresponding alkyl group of the **2l** and **2m** via decarbonylation and furnished **3l** and **3m** in 60% and 71% yields, respectively. We could speculate on the stability of the corresponding generated free-radicals on treatment with TBPB based on the greater +I effect of the propyl group (generated after decarbonylation of *n*-butyraldehyde) compared to the +I effect of the ethyl group (generated after decarbonylation of *n*-propionaldehyde). This could lead to the formation

of unprecedented **3l** from **2l** in 60% yield. Furthermore, the instability of the acyl radical formed from **2m** on treatment with TBPB can be understood by the formation of a more stable secondary free-radical of isobutyraldehyde (generated after decarbonylation of *n*-isobutyraldehyde).^{6,7} Later on, the generated alkyl free-radical attacks at the C-3 position of 2-aryl-2H-indazole, subsequently leading to the formation of C-3-alkylated-2-aryl-2H-indazoles.^{6,7} Our protocol was also found to be feasible with hetero-aromatic aldehydes. Significantly, good yields were observed when pyrrole-2-carboxaldehyde **2n**, furan-2-carboxaldehyde **2o**, 5-methyl-furan-2-carboxaldehyde **2p** and 5-bromothiophene-2-carboxaldehyde **2q** were reacted under the optimized reaction conditions to furnish **3n-q**.

Overall, the reactivity order for different types of aldehydes has been depicted as:

Aromatic > aliphatic > hetero-aromatic

On the other hand, electron-donating groups (EDGs) containing aldehydes were found to be more favorable to the

Scheme 3 Substrate scope: reaction of different substituted 2H-indazoles **1b–m** with benzaldehyde **2a–b** for the synthesis of **4a–l**^{a,b}. ^aReaction conditions: substituted 2H-indazoles **1b–m** (0.5 mmol), substituted aldehydes **2a–b** (1.0 mmol), oxidant (1.25 mmol), PhCl, N₂ atm, 110 °C, 24 h. ^bIsolated yield.

optimized reaction conditions compared to electron-withdrawing groups (EWGs) containing aldehydes. The synthetic utility was also demonstrated by performing a gram-scale synthesis of **3a** by the reaction of **1a** with **2a** under our optimized reaction conditions, which furnished **3a** in 65% isolated yield (Scheme 2).

Sequentially, a diverse variety of substituted 2H-indazoles **1b–m** were reacted with substituted benzaldehyde **2a–b** under the optimized reaction conditions, which furnished the 3-benzoylated-2H-indazoles **4a–l** in 54–80% yield (Scheme 3). 2H-Indazoles with EDGs, *i.e.*, **1b** ($R_1 = -OCH_2O-$), **1d** ($R_1 = -OCH_3$), **1e** ($R_1 = CH_3$) and **1g** ($R_1 = -OCH_2O-$), were reacted with **2a** under the optimized reaction conditions, which furnished **4a**, **4c**, **4d** and **4f** in 55%, 65%, 68% and 58% moderate yields, respectively. However, 2H-indazoles with a halo group ($R_1 = F$, Cl) **1c** and **1f**, when subjected to CDC reaction with **2a** under the

optimized reaction conditions afforded **4b** and **4e** in 71% and 78% yields, respectively. 2H-Indazoles **1g–i** ($R_2 = p-OCH_3$, CH_3 , Cl) and **1m** ($R_2 = H$) on coupling with benzaldehyde **2a** and **2b** afforded C-3 benzoylated product **4f–h** in 58–85% yields and **4l** in 80% yield, respectively. Similarly, heteroaryl 2H-indazoles **1j–l** were reacted with 4-methylbenzaldehyde **2a**, which furnished 3-benzoylated-(heteroaryl)-2H-indazoles **4i–k** in 72%, 71% and 82% yields, respectively. The substrates, 2-cyclohexyl-2H-indazole **1n** and 1H-indazole **1o** were found to be unreactive under the optimized reaction conditions. This clearly illustrates that the 2-aryl substitution in 2H-indazole plays a dynamic role in stabilizing the intermediate for the coupling of aldehydes. This transition-metal-free, regioselective, direct C-3 benzoylation of 2-aryl-2H-indazoles *via* a $C_{(sp^2)}-H/C_{(sp^2)}-H$ cross-dehydrogenative coupling also works effectively with several substituted benzyl alcohols **5a–e** and styrenes **6a–e** on reaction

Scheme 4 Reaction of oxidative coupling of different substituted benzyl alcohol 5a–e with 2H-indazole 1a^{a,b}. ^aReaction conditions: 2-(4-methoxyphenyl)-2H-indazole 1a (0.5 mmol), substituted benzyl alcohols 5a–e (1.0 mmol), TBPB (1.25 mmol), PhCl, N₂ atm, 110 °C, 24 h. ^bIsolated yield.

Scheme 5 Benzoylation reaction of different substituted styrenes 6a–e with 2H-indazole 1a^{a,b}. ^aReaction conditions: 2-(4-methoxyphenyl)-2H-indazole 1a (0.5 mmol), substituted styrenes 6a–e (1.0 mmol), TBPB (1.25 mmol), PhCl, N₂ atm, 110 °C, 24 h. ^bIsolated yield.

with 1a, which furnished C-3-benzoylated-2-aryl-2H-indazole products 3a–c and 3e–f in good yields (Schemes 4 and 5).

In order to understand the mechanism of this unique protocol, control experiments were conducted [Scheme 6, eqn (i)–(iv)]. It has already been exemplified in the literature that *tert*-butyl peroxybenzoate (TBPB) acts as a radical initiator.¹¹ Keeping all the reaction conditions the same, 1a was reacted with 2a under the optimized reaction conditions in the presence of TEMPO (1 equiv.), which furnished 3a in 51% yield [Scheme

6, eqn (i)]. However, 3a was not formed and the reaction was completely aborted when TEMPO (2.5 equiv.) was added under the standard reaction conditions. We were successful in isolating the TEMPO-trapped acyl adduct 7 in 71% yield [Scheme 6, eqn (ii)]. The isolation of adduct 7 confirmed that the synthetic pathway towards the regioselective synthesis of 3-(acyl/benzoyl)-2-aryl-2H-indazoles proceed *via* the free-radical pathway. This underlines the importance of the oxidant in this free-radical-catalyzed reaction. In order to interpret the

Scheme 6 Control experiments.

Fig. 2 Plausible mechanism.

reactivity order among EDGs and EWGs while keeping all the reaction conditions the same, a competitive experiment was executed in which substrate **1a** was reacted with an equimolar amount of **2c** and **2e**, which afforded the C-3 benzoylated products **3c** and **3e** in 56% and 30% yields, respectively [Scheme 6, eqn (iii)]. Therefore, it has been concluded that **2c** with an EDG showed higher reactivity than **2e** with an EWG. Another competitive experiment was carried out to analyse the reactivity

order of this CDC reaction between aliphatic and aromatic aldehydes. Thus, substrate **1a** was reacted with an equimolar amount of **2a** and **2j** under optimized reaction conditions, which furnished 3-(4-methylbenzoylated)-2-aryl-2*H*-indazole **3a** and 3-(acetyl)-2-aryl-2*H*-indazole **3j** in 55% and 29% yields, respectively [Scheme 6, eqn (iv)]. This reaction demonstrated that the aromatic aldehydes were found to be more reactive than aliphatic aldehydes.

Scheme 7 Practical synthetic applications.

A plausible free-radical mechanism for this regioselective benzoylation method has been depicted in Fig. 2. Initially, thermal cleavage of TBPB generates a ^3BuO free-radical and a carboxyl (PhCOO) free-radical. Then, the ^3BuO free-radical through hydrogen radical abstraction (HRA) from 4-methylbenzaldehyde **2a** generates a benzoyl (acyl) free-radical **8** [note: the radical species **8** was trapped with TEMPO to give adduct **7**]. The free-radical **8** can also be derived from benzyl alcohol **5a** as well as styrene **6a**.^{10a,b} This benzoyl free-radical species **8** was regioselectively added to the C-3 position of **1a**. Subsequently, the carboxyl free-radical abstracted the hydrogen radical from the intermediate radical species **9** to afford the desired product **3a**.

To illustrate the synthetic application of the developed CDC methodology, using our optimized reaction conditions, we synthesized the indazole-based anti-inflammatory agent **11** (Scheme 7). The substrate **1p** on reaction with *m*-acetoxymethylbenzaldehyde **2r** under the optimized reaction conditions furnished **10**, which on deacetylation furnished anti-inflammatory agent **11** in 51% yield. It has been noted that compound **11** was earlier synthesized in 7 steps;¹² in contrast, we were successful in synthesizing **11** in 51% in two steps. Progressively, the (2-bromophenyl)(2-(4-methoxyphenyl)-2*H*-indazol-3-yl)methanone **12** was synthesized by the reaction of **1a** with *o*-bromobenzaldehyde using our optimized reaction conditions which on further subjection to Pd-catalyzed biaryl coupling leads to the formation of a novel class of heterocycles, *i.e.*, 3-methoxy-9*H*-dibenzo[4,5;6,7]azepino[1,2-*b*]indazol-9-one **13** in 75% yield, which can be utilized for medicinal chemistry applications.¹³ In addition, the synthesized benzoylated product **3a** on subjection to NaBH_4 reduction in methanol furnished the reduced hydroxylated product, *i.e.*, (2-(4-methoxyphenyl)-2*H*-indazol-3-yl)(*p*-tolyl)methanol **14**, in 90% yield, which can be utilized further for derivatization/functionalization and other organic transformations.

Conclusions

In summary, we have developed an efficient, cost-effective, transition-metal-free, regioselective, TBPB-promoted, oxidative $\text{C}(\text{sp}^2)-\text{H}/\text{C}(\text{sp}^3)-\text{H}$ cross-dehydrogenative coupling protocol for the direct C-3 acylation/benzoylation of 2-substituted-2*H*-indazoles **3a-q/4a-l** *via* the reaction of various 2-substituted-2*H*-indazoles **1a-m** with different substituted aldehydes **2a-q**/benzyl alcohols **5a-e**/styrenes **6a-e** in up to 87% yields. The operationally simple, oxidant-promoted protocol exhibits a variety of functional group tolerances and wide substrate compatibilities. The reaction involves a free-radical mechanism and proceeds *via* the addition of an *in situ* generated acyl radical (from aldehydes/benzyl alcohols/styrenes) on 2*H*-indazoles. The gram-scale synthesis, and facile synthesis of anti-inflammatory agent **11**, 3-methoxy-9*H*-dibenzo[4,5;6,7]azepino[1,2-*b*]indazol-9-one **13** and hydroxylated product **14** further highlights the versatile nature of the developed methodology. We believe that our acylation/benzoylation regioselective CDC protocol will accomplish several kinds of utilization in constructing a ubiquitous class of bioactive azaheterocycles.

Experimental

General

Oven-dried laboratory glassware was used for carrying out all the synthetic procedures. Melting points were taken in open capillaries on Sisco melting point apparatus and are presented uncorrected. ^1H NMR and ^{13}C NMR spectra were recorded on a JEOL ECS-400 spectrometer (2-channel console with a flexible broadband RF performance), which was operating at 400 MHz for ^1H and 100 MHz for ^{13}C NMR and utilized CDCl_3 and DMSO-d_6 as solvents for sample preparation. Tetramethylsilane (δ 0.00 ppm) and CDCl_3 both served as internal standards in ^1H NMR (δ 7.246 ppm) and ^{13}C (δ 77.0 ppm) NMR. Patterns of chemical shifts are reported in parts per million. Peak splitting patterns are described as singlet (s), broad singlet (brs), doublet (d), double doublet (dd), triplet (t), and multiplet (m). Coupling constants (J) are reported in Hertz (Hz). High-Resolution Electron Impact Mass Spectra (HR-EIMS) were obtained on Xevo G2-S Q-ToF (Waters, USA) compatible with ACQUITY UPLC® and nano ACQUITY UPLC® systems. Column chromatography was performed over normal (particle size: 60–120 mesh, 100–200 mesh) and flash (particle size: 230–400 mesh) silica gel, which was procured from Qualigens™ (India), Rankem (India), and Spectrochem (India). TLC plates coated with silica gel (Kiesel 60-F₂₅₄, Merck (India)) were used for monitoring the progress of the reactions. The visualizing agents used for TLC was UV light. A BUCHI Rotavapor R-210 was used for all drying and concentration procedures. All the analytical grade supplied solvents such as MeOH, EtOH were used without further purification. All the AR grade chemicals and reagents obtained from Sigma Aldrich (USA), Merck (India), TCI (India) and/or Spectrochem (India) *etc.* were used without further purification.

Synthesis of starting material 2*H*-indazoles **1a-o** (Scheme 8)¹⁴

A solution of 2-bromobenzaldehyde or substituted-2-bromobenzaldehyde (1.5 mmol) and aromatic/heteroaromatic/aliphatic/cyclic amine (2.4 mmol) in methanol (20 mL) was refluxed for 6–7 h at 80 °C. After the completion of the reaction, the solvent was evaporated under reduced pressure to get the corresponding imine product, which was further used in the next step without prior purification.

The imine product was dissolved in anhydrous DMSO (10.0 mL) and CuI (38 mg, 0.20 mmol), NaN_3 (261 mg, 4.0 mmol) and TMEDA (22 mg, 0.20 mmol) were added. The reaction mixture was heated at 120 °C for 12 h. After cooling the reaction mixture,

Scheme 8 General procedure for the synthesis of 2*H*-indazoles **1a-o**.

it was poured into chloroform (70.0 mL) and sequentially washed with water (3×30 mL) and brine (3×30 mL), then dried over anhyd. Na_2SO_4 . Then, after evaporation of the solvent under reduced pressure, the crude product was further purified by column chromatography (hexane : EtOAc = 99 : 1 to 90 : 10) to produce the corresponding 2*H*-indazole **1a–m**.

Synthetic procedure for the C-3 benzoylation of 2*H*-indazoles

3a–q/4a–l (Schemes 2 and 3)

For the C-3 benzoylation of 2*H*-indazoles **3a–q/4a–l**, a mixture of 2*H*-indazole **1a–m** (0.5 mmol), aromatic/hetero-aromatic/aliphatic aldehydes **2a–q** (1 mmol) and TBPB (1.25 mmol) dissolved in PhCl were taken in a sealed reaction tube under nitrogen atmosphere. Then the reaction mixture was stirred at 110 °C for 24 h. After completion of the reaction, the reaction mixture was cooled and the work-up was done with a saturated solution of NaHCO_3 (10 mL) and ethyl acetate (3×20 mL). The combined organic layers were dried over anhydrous Na_2SO_4 , filtered, and concentrated under reduced pressure to get the crude residue which was further purified through column chromatography on silica gel (100–200 mesh) using hexane : ethyl acetate (95 : 5 ratio) as an eluent to afford the corresponding desired product.

General procedure for the gram-scale synthesis of compound

3a

A mixture of 2-(4-methoxyphenyl)-2*H*-indazole **1a** (1.0 g, 4.46 mmol), 4-methyl benzaldehyde **2a** (1.05 mL, 8.92 mmol) and TBPB (2.12 mL, 11.15 mmol) was taken in a 50 mL round-bottom flask under nitrogen atmosphere. Then, the reaction mixture was stirred at 110 °C for 24 h. After completion of the reaction, the reaction mixture was cooled and the work-up was done with a saturated solution of NaHCO_3 (10 mL) and ethyl acetate (3×20 mL). The combined organic layers were dried over anhydrous Na_2SO_4 , filtered, and concentrated under reduced pressure to get the crude residue which was further purified through column chromatography on silica gel (100–200 mesh) using hexane : ethyl acetate (95 : 5 ratio) as an eluent to afford compound **3a** as a yellow solid in 65% yield (0.97 g).

Characterization of C-3 acylated/benzoylated 2*H*-indazoles

2-(4-Methoxyphenyl)-2*H*-indazol-3-yl)(*p*-tolyl)methanone

(3a). Product **3a** was obtained by utilizing the general procedure (Scheme 2) using 2-(4-methoxyphenyl)-2*H*-indazole **1a** (112 mg, 0.5 mmol) and 4-methyl benzaldehyde **2a** (118 μ L, 1 mmol) and isolated by column chromatography (hexane : EtOAc = 95 : 05) as a yellow solid in 82% yield (140 mg, 0.40 mmol); mp: 153–155 °C; R_f (hexane : EtOAc = 85 : 15): 0.48; ^1H NMR (400 MHz, chloroform-*d*) δ 7.86 (d, J = 8.4 Hz, 1H), 7.79 (d, J = 8.0 Hz, 2H), 7.49–7.44 (m, 2H), 7.38–7.33 (m, 2H), 7.27 (d, J = 8.4 Hz, 2H), 7.17–7.13 (m, 1H), 6.93 (d, J = 8.8 Hz, 2H), 3.82 (s, 3H), 2.44 (s, 3H); ^{13}C NMR (100 MHz, chloroform-*d*) δ 185.87, 159.94, 148.41, 144.80, 135.37, 133.75, 132.41, 130.29, 129.47, 126.89, 126.70, 124.69, 123.86, 120.68, 118.44, 114.33, 55.63, 21.89; HRMS (ESI/QTOF) m/z : calcd for $\text{C}_{22}\text{H}_{18}\text{N}_2\text{O}_2$, 343.1441 [M + H]⁺; found, 343.1446.

(2-(4-Methoxyphenyl)-2*H*-indazol-3-yl)(phenyl)methanone (3b). Product **3b** was obtained by utilizing the general procedure (Scheme 2) using 2-(4-methoxyphenyl)-2*H*-indazole **1a** (112 mg, 0.5 mmol) and benzaldehyde **2b** (102 μ L, 1 mmol) and isolated by column chromatography (hexane : EtOAc = 95 : 05) as a yellow solid in 80% yield (131 mg, 0.39 mmol); mp: 93–95 °C; R_f (hexane : EtOAc = 85 : 15): 0.45; ^1H NMR (400 MHz, chloroform-*d*) δ 7.88–7.84 (m, 3H), 7.59 (t, J = 7.2 Hz, 1H), 7.47–7.43 (m, 4H), 7.38–7.32 (m, 2H), 7.17–7.13 (m, 1H), 6.91 (d, J = 8.8 Hz, 2H), 3.81 (s, 3H); ^{13}C NMR (100 MHz, chloroform-*d*) δ 186.15, 159.99, 148.46, 137.99, 133.74, 133.63, 132.20, 130.01, 128.73, 126.95, 126.78, 124.95, 124.05, 120.63, 118.51, 114.33, 55.63; HRMS (ESI/QTOF) m/z : calcd for $\text{C}_{21}\text{H}_{16}\text{N}_2\text{O}_2$, 329.1285 [M + H]⁺; found, 329.1282.

(4-Methoxyphenyl)(2-(4-methoxyphenyl)-2*H*-indazol-3-yl)methanone (3c). Product **3c** was obtained by utilizing the general procedure (Scheme 2) using 2-(4-methoxyphenyl)-2*H*-indazole **1a** (112 mg, 0.5 mmol) and 4-methoxybenzaldehyde **2c** (121 μ L, 1 mmol) and isolated by column chromatography (hexane : EtOAc = 95 : 05) as a yellow solid in 86% yield (154 mg, 0.43 mmol); mp: 123–125 °C; R_f (hexane : EtOAc = 85 : 15): 0.38; ^1H NMR (400 MHz, chloroform-*d*) δ 7.89–7.83 (m, 3H), 7.47–7.44 (m, 2H), 7.39–7.33 (m, 2H), 7.16–7.12 (m, 1H), 6.94–6.91 (m, 4H), 3.87 (s, 3H), 3.81 (s, 3H); ^{13}C NMR (100 MHz, chloroform-*d*) δ 184.89, 164.25, 159.91, 148.39, 133.73, 132.63, 132.51, 130.67, 126.90, 126.63, 124.56, 123.71, 120.65, 118.40, 114.35, 114.07, 55.70, 55.64; HRMS (ESI/QTOF) m/z : calcd for $\text{C}_{22}\text{H}_{18}\text{N}_2\text{O}_3$, 359.1390 [M + H]⁺; found, 359.1392.

(2,5-Dimethoxyphenyl)(2-(4-methoxyphenyl)-2*H*-indazol-3-yl)methanone (3d). Product **3d** was obtained by utilizing the general procedure (Scheme 2) using 2-(4-methoxyphenyl)-2*H*-indazole **1a** (112 mg, 0.5 mmol) and 2,5-dimethoxybenzaldehyde **2d** (166 mg, 1 mmol) and isolated by column chromatography (hexane : EtOAc = 95 : 05) as a brown oil in 78% yield (152 mg, 0.39 mmol); R_f (hexane : EtOAc = 85 : 15): 0.30; ^1H NMR (400 MHz, chloroform-*d*) δ 7.84 (d, J = 8.8 Hz, 1H), 7.44 (d, J = 9.2 Hz, 2H), 7.35–7.33 (m, 2H), 7.17–7.14 (m, 1H), 7.04 (d, J = 3.2 Hz, 1H), 6.99–6.96 (m, 1H), 6.88 (d, J = 9.2 Hz, 2H), 6.74 (d, J = 9.2 Hz, 1H), 3.80 (s, 3H), 3.76 (s, 3H), 3.48 (s, 3H); ^{13}C NMR (100 MHz, chloroform-*d*) δ 184.23, 159.38, 153.19, 151.66, 147.87, 133.21, 133.15, 128.89, 126.53, 126.34, 124.61, 123.37, 120.08, 118.91, 117.86, 113.95, 113.37, 112.36, 55.70, 55.49, 55.13. HRMS (ESI/QTOF) m/z : calcd for $\text{C}_{23}\text{H}_{20}\text{N}_2\text{O}_4$, 389.1496 [M + H]⁺; found, 389.1498.

(4-Fluorophenyl)(2-(4-methoxyphenyl)-2*H*-indazol-3-yl)methanone (3e). Product **3e** was obtained by utilizing the general procedure (Scheme 2) using 2-(4-methoxyphenyl)-2*H*-indazole **1a** (112 mg, 0.5 mmol) and 4-fluorobenzaldehyde **2e** (106 μ L, 1 mmol) and isolated by column chromatography (hexane : EtOAc = 95 : 05) as a yellow solid in 83% yield (143 mg, 0.41 mmol); mp: 135–137 °C; R_f (hexane : EtOAc = 85 : 15): 0.42; ^1H NMR (400 MHz, chloroform-*d*) δ 7.92–7.87 (m, 3H), 7.46–7.44 (m, 2H), 7.40–7.36 (m, 2H), 7.22–7.18 (m, 1H), 7.14 (t, J = 8.8 Hz, 2H), 6.94 (d, J = 9.2 Hz, 2H), 3.83 (s, 3H); ^{13}C NMR (100 MHz, chloroform-*d*) δ 184.52, 165.94 ($J_{\text{C}-\text{F}}$ = 254.7 Hz), 159.96, 148.37, 134.18 ($J_{\text{C}-\text{F}}$ = 2.9 Hz), 133.52, 132.60 ($J_{\text{C}-\text{F}}$ =

9.4 Hz), 131.81, 126.95, 126.65, 125.03, 123.90, 120.30, 118.52, 115.91 ($J_{C-F} = 22.0$ Hz), 114.28, 55.57; HRMS (ESI/QTOF) m/z : calcd for $C_{21}H_{15}FN_2O_2$, 347.1191 [M + H]⁺; found, 347.1194.

(4-Chlorophenyl)(2-(4-methoxyphenyl)-2*H*-indazol-3-yl)methanone (3f). Product 3f was obtained by utilizing the general procedure (Scheme 2) using 2-(4-methoxyphenyl)-2*H*-indazole 1a (112 mg, 0.5 mmol) and 4-chlorobenzaldehyde 2f (141 mg, 1 mmol) and isolated by column chromatography (hexane : EtOAc = 95 : 05) as a yellow solid in 81% yield (147 mg, 0.41 mmol); mp: 142–144 °C; R_f (hexane : EtOAc = 85 : 15): 0.45; ¹H NMR (400 MHz, chloroform-*d*) δ 7.86 (d, $J = 8.8$ Hz, 1H), 7.78 (d, $J = 8.8$ Hz, 2H), 7.44–7.40 (m, 4H), 7.37–7.33 (m, 2H), 7.19–7.16 (m, 1H), 6.91 (d, $J = 8.8$ Hz, 2H), 3.81 (s, 3H); ¹³C NMR (100 MHz, chloroform-*d*) δ 184.77, 160.07, 148.45, 140.09, 136.28, 133.57, 131.75, 131.36, 129.09, 127.05, 126.76, 125.23, 124.01, 120.38, 118.63, 114.37, 55.65; HRMS (ESI/QTOF) m/z : calcd for $C_{21}H_{15}ClN_2O_2$, 363.0895 [M + H]⁺; found, 363.0897.

(4-Bromophenyl)(2-(4-methoxyphenyl)-2*H*-indazol-3-yl)methanone (3g).

Product 3g was obtained by utilizing the general procedure (Scheme 2) using 2-(4-methoxyphenyl)-2*H*-indazole 1a (112 mg, 0.5 mmol) and 4-bromobenzaldehyde 2g (165 mg, 1 mmol) and isolated by column chromatography (hexane : EtOAc = 95 : 05) as a yellow solid in 84% yield (170 mg, 0.42 mmol); mp: 141–143 °C; R_f (hexane : EtOAc = 85 : 15): 0.48; ¹H NMR (400 MHz, chloroform-*d*) δ 7.89–7.87 (m, 1H), 7.73 (d, $J = 8.4$ Hz, 2H), 7.61 (d, $J = 8.4$ Hz, 2H), 7.44 (d, $J = 9.2$ Hz, 2H), 7.45–7.35 (m, 2H), 7.22–7.18 (m, 1H), 6.94 (d, $J = 8.8$ Hz, 2H), 3.84 (s, 3H); ¹³C NMR (100 MHz, chloroform-*d*) δ 184.93, 160.08, 148.46, 136.71, 133.56, 132.07, 131.70, 131.43, 128.83, 127.05, 126.76, 125.26, 124.00, 120.38, 118.64, 114.38, 55.66; HRMS (ESI/QTOF) m/z : calcd for $C_{21}H_{15}BrN_2O_2$, 407.0390 [M + H]⁺; found, 407.0392.

(3-Chlorophenyl)(2-(4-methoxyphenyl)-2*H*-indazol-3-yl)methanone (3h).

Product 3h was obtained by utilizing the general procedure (Scheme 2) using 2-(4-methoxyphenyl)-2*H*-indazole 1a (112 mg, 0.5 mmol) and 3-chlorobenzaldehyde 2h (141 mg, 1 mmol) and isolated by column chromatography (hexane : EtOAc = 95 : 05) as a yellow solid in 67% yield (122 mg, 0.34 mmol); mp: 155–157 °C; R_f (hexane : EtOAc = 85 : 15): 0.44; ¹H NMR (400 MHz, chloroform-*d*) δ 7.88 (d, $J = 8.8$ Hz, 1H), 7.78 (s, 1H), 7.69 (d, $J = 7.6$ Hz, 1H), 7.54 (d, $J = 8.0$ Hz, 1H), 7.43–7.37 (m, 5H), 7.23–7.19 (m, 1H), 6.92 (d, $J = 8.8$ Hz, 2H), 3.81 (s, 3H); ¹³C NMR (100 MHz, chloroform-*d*) δ 184.63, 160.07, 148.51, 139.52, 134.98, 133.57, 133.37, 131.66, 130.01, 129.76, 128.03, 127.11, 126.81, 125.45, 124.20, 120.37, 118.66, 114.37, 55.66; HRMS (ESI/QTOF) m/z : calcd for $C_{21}H_{15}ClN_2O_2$, 363.0895 [M + H]⁺; found, 363.0892.

(2-Chlorophenyl)(2-(4-methoxyphenyl)-2*H*-indazol-3-yl)methanone (3i).

Product 3i was obtained by utilizing the general procedure (Scheme 2) using 2-(4-methoxyphenyl)-2*H*-indazole 1a (112 mg, 0.4459 mmol) and 2-chlorobenzaldehyde 2i (141 mg, 1 mmol) and isolated by column chromatography (hexane : EtOAc = 95 : 05) as a yellow solid in 58% yield (105 mg, 0.29 mmol); mp: 90–92 °C; R_f (hexane : EtOAc = 85 : 15): 0.44; ¹H NMR (400 MHz, chloroform-*d*) δ 7.8–7.78 (m, 1H), 7.39 (d, $J = 8.8$ Hz, 2H), 7.36–7.24 (m, 5H), 7.14–7.09 (m,

1H), 7.06–7.04 (m, 1H), 6.84 (d, $J = 8.8$ Hz, 2H), 3.75 (s, 3H); ¹³C NMR (100 MHz, chloroform-*d*) δ 183.82, 160.11, 148.53, 138.80, 133.59, 132.21, 132.16, 131.94, 130.37, 129.90, 127.20, 127.09, 126.08, 124.52, 120.20, 118.77, 114.09, 55.68; HRMS (ESI/QTOF) m/z : calcd for $C_{21}H_{15}ClN_2O_2$, 363.0895 [M + H]⁺; found, 363.0898.

1-(2-(4-Methoxyphenyl)-2*H*-indazol-3-yl)ethan-1-one (3j).

Product 3j was obtained by utilizing the general procedure (Scheme 2) using 2-(4-methoxyphenyl)-2*H*-indazole 1a (112 mg, 0.5 mmol) and acetaldehyde 2j (57 μ L, 1 mmol) and isolated by column chromatography (hexane : EtOAc = 95 : 05) as a yellow oil in 68% yield (90 mg, 0.34 mmol); R_f (hexane : EtOAc = 85 : 15): 0.36; ¹H NMR (400 MHz, chloroform-*d*) δ 7.70–7.68 (m, 1H), 7.60 (d, $J = 8.4$ Hz, 1H), 7.45 (d, $J = 8.8$ Hz, 2H), 7.32–7.28 (m, 1H), 7.06–7.00 (m, 3H), 3.87 (s, 3H), 2.60 (s, 3H); ¹³C NMR (100 MHz, chloroform-*d*) δ 188.07, 159.75, 148.49, 133.02, 132.07, 127.53, 127.06, 126.70, 120.86, 120.02, 117.52, 114.37, 55.69, 11.12; HRMS (ESI/QTOF) m/z : calcd for $C_{16}H_{14}N_2O_2$, 267.1128 [M + H]⁺; found, 267.1131.

1-(2-(4-Methoxyphenyl)-2*H*-indazol-3-yl)propan-1-one (3k).

Product 3k was obtained by utilizing the general procedure (Scheme 2) using 2-(4-methoxyphenyl)-2*H*-indazole 1a (112 mg, 0.5 mmol) and propionaldehyde 2k (73 μ L, 1 mmol) and isolated by column chromatography (hexane : EtOAc = 95 : 05) as a yellow oil in 61% yield (86 mg, 0.31 mmol); R_f (hexane : EtOAc = 85 : 15): 0.31; ¹H NMR (400 MHz, chloroform-*d*) δ 7.86–7.59 (m, 2H), 7.47–7.40 (m, 2H), 7.31–7.28 (m, 1H), 7.07–7.00 (m, 3H), 3.87 (s, 3H), 3.02 (q, $J = 7.6$ Hz, 1H), 2.60 (s, 1H), 1.27–1.23 (m, 3H); ¹³C NMR (100 MHz, chloroform-*d*) δ 188.08, 159.92, 159.76, 148.55, 138.10, 133.09, 127.36, 127.06, 126.59, 120.86, 120.84, 120.15, 117.61, 114.36, 55.68, 18.91, 14.15; HRMS (ESI/QTOF) m/z : calcd for $C_{17}H_{16}N_2O_2$, 281.1285 [M + H]⁺; found, 281.1287.

1-(2-(4-Methoxyphenyl)-2*H*-indazol-3-yl)butan-1-one (3l).

Product 3l was obtained by utilizing the general procedure (Scheme 2) using 2-(4-methoxyphenyl)-2*H*-indazole 1a (112 mg, 0.5 mmol) and butyraldehyde 2l (90 μ L, 1 mmol) and isolated by column chromatography (hexane : EtOAc = 95 : 05) as a yellow oil in 60% yield (88 mg, 0.30 mmol); R_f (hexane : EtOAc = 85 : 15): 0.32; ¹H NMR (400 MHz, chloroform-*d*) δ 7.70–7.64 (m, 2H), 7.45–7.40 (m, 2H), 7.31–7.27 (m, 1H), 7.06–7.00 (m, 3H), 3.87 (s, 3H), 2.96 (t, $J = 7.6$ Hz, 2H), 1.66 (q, $J = 7.6$ Hz, 2H), 0.88 (t, $J = 7.2$ Hz, 3H); ¹³C NMR (100 MHz, chloroform-*d*) δ 159.89, 148.49, 136.89, 133.16, 127.49, 127.06, 126.56, 120.84, 120.29, 117.58, 114.37, 114.32, 55.68, 27.36, 22.87, 14.08; HRMS (ESI/QTOF) m/z : calcd for $C_{17}H_{18}N_2O$, 267.1492 [M + H]⁺; found, 267.1495.

1-(2-(4-Methoxyphenyl)-2*H*-indazol-3-yl)-2-methylpropan-1-one (3m).

Product 3m was obtained by utilizing the general procedure (Scheme 2) using 2-(4-methoxyphenyl)-2*H*-indazole 1a (112 mg, 0.5 mmol) and isobutyraldehyde 2m (91 μ L, 1 mmol) and isolated by column chromatography (hexane : EtOAc = 95 : 05) as a yellow solid in 71% yield (104 mg, 0.35 mmol); mp: 98–100 °C; R_f (hexane : EtOAc = 85 : 15): 0.34; ¹H NMR (400 MHz, chloroform-*d*) δ 7.81 (dd, $J = 8.4$ Hz, 0.8 Hz, 1H), 7.69 (d, $J = 8.8$ Hz, 1H), 7.39–7.37 (m, 2H), 7.30–7.26 (m, 1H), 7.03–7.00 (m, 3H), 3.87 (s, 3H), 3.36–3.29 (m, 1H), 1.46 (d, $J = 7.2$ Hz, 3H); ¹³C NMR (100 MHz, chloroform-*d*) δ 188.08, 159.89, 148.49, 136.89, 133.16, 127.49, 127.06, 126.56, 120.84, 120.29, 117.58, 114.37, 114.32, 55.68, 27.36, 22.87, 14.08; HRMS (ESI/QTOF) m/z : calcd for $C_{17}H_{18}N_2O$, 267.1492 [M + H]⁺; found, 267.1495.

= 7.2 Hz, 6H); ^{13}C NMR (100 MHz, chloroform-*d*) δ 160.01, 148.77, 142.10, 133.18, 127.70, 126.28, 120.97, 120.56, 119.06, 117.86, 114.29, 55.69, 27.20, 22.51; HRMS (ESI/QTOF) *m/z*: calcd for $\text{C}_{17}\text{H}_{18}\text{N}_2\text{O}$, 267.1492 [M + H]⁺; found, 267.1498.

(2-(4-Methoxyphenyl)-2*H*-indazol-3-yl)(1*H*-pyrrol-2-yl)methanone (3n).

Product **3n** was obtained by utilizing the general procedure (Scheme 2) using 2-(4-methoxyphenyl)-2*H*-indazole **1a** (112 mg, 0.5 mmol) and 1*H*-pyrrole-2-carbaldehyde **2n** (95 mg, 1 mmol) and isolated by column chromatography (hexane : EtOAc = 95 : 05) as a brown solid in 58% yield (92 mg, 0.29 mmol); mp: 134–136 °C; R_f (hexane : EtOAc = 85 : 15): 0.29; ^1H NMR (400 MHz, chloroform-*d*) δ 10.35 (b, 1H), 7.84 (d, J = 8.8 Hz, 1H), 7.74 (dd, J = 8.4 Hz, 0.8 Hz, 1H), 7.51–7.49 (m, 2H), 7.38–7.34 (m, 1H), 7.21–7.17 (m, 1H), 7.03 (s, 1H), 6.96–6.94 (m, 3H), 6.33–6.31 (m, 1H), 3.83 (s, 3H); ^{13}C NMR (100 MHz, chloroform-*d*) δ 174.34, 159.87, 148.50, 133.85, 132.45, 132.25, 127.24, 126.95, 126.66, 124.31, 123.14, 121.36, 120.80, 118.21, 114.29, 111.60, 55.65; HRMS (ESI/QTOF) *m/z*: calcd for $\text{C}_{19}\text{H}_{15}\text{N}_3\text{O}_2$, 318.1237 [M + H]⁺; found, 318.1233.

Furan-2-yl(2-(4-methoxyphenyl)-2*H*-indazol-3-yl)methanone (3o).

Product **3o** was obtained by utilizing the general procedure (Scheme 2) using 2-(4-methoxyphenyl)-2*H*-indazole **1a** (112 mg, 0.5 mmol) and furan-2-aldehyde **2o** (83 μL , 1 mmol) and isolated by column chromatography (hexane : EtOAc = 95 : 05) as a brown solid in 57% yield (91 mg, 0.28 mmol); mp: 70–72 °C; R_f (hexane : EtOAc = 85 : 15): 0.29; ^1H NMR (400 MHz, chloroform-*d*) δ 7.85 (d, J = 9.6 Hz, 1H), 7.68 (d, J = 8.4 Hz, 1H), 7.60 (b, 1H), 7.46 (d, J = 8.8 Hz, 2H), 7.40–7.36 (m, 1H), 7.24–7.20 (m, 2H), 6.93 (d, J = 8.8 Hz, 2H), 6.56–6.54 (m, 1H), 3.81 (s, 3H); ^{13}C NMR (100 MHz, chloroform-*d*) δ 178.93, 172.80, 159.93, 152.39, 148.49, 147.78, 133.70, 127.06, 126.55, 124.94, 123.70, 121.20, 120.42, 118.45, 114.35, 112.79, 55.64; HRMS (ESI/QTOF) *m/z*: calcd for $\text{C}_{19}\text{H}_{14}\text{N}_2\text{O}_3$, 319.1077 [M + H]⁺; found, 319.1073.

(2-(4-Methoxyphenyl)-2*H*-indazol-3-yl)(5-methylfuran-2-yl)methanone (3p).

Product **3p** was obtained by utilizing the general procedure (Scheme 2) using 2-(4-methoxyphenyl)-2*H*-indazole **1a** (112 mg, 0.5 mmol) and 5-methylfuran-2-carbaldehyde **2p** (99 μL , 1 mmol) and isolated by column chromatography (hexane : EtOAc = 95 : 05) as a brown solid in 61% yield (101 mg, 0.30 mmol); mp: 76–78 °C; R_f (hexane : EtOAc = 85 : 15): 0.24; ^1H NMR (400 MHz, chloroform-*d*) δ 7.83 (d, J = 9.2 Hz, 1H), 7.72 (d, J = 8.8 Hz, 1H), 7.48 (d, J = 8.8 Hz, 2H), 7.39–7.35 (m, 1H), 7.24–7.19 (m, 1H), 7.12 (dd, J = 3.6, 0.7 Hz, 1H), 6.93 (d, J = 8.8 Hz, 2H), 6.17–6.16 (m, 1H), 3.82 (s, 3H), 2.33 (s, 3H); ^{13}C NMR (101 MHz, chloroform-*d*) δ 172.24, 159.88, 159.60, 151.18, 148.50, 133.84, 131.85, 127.02, 126.44, 124.64, 123.63, 120.52, 118.32, 114.31, 109.71, 55.66, 14.18; HRMS (ESI/QTOF) *m/z*: calcd for $\text{C}_{20}\text{H}_{16}\text{N}_2\text{O}_3$, 333.1234 [M + H]⁺; found, 333.1235.

(5-Bromothiophen-2-yl)(2-(4-methoxyphenyl)-2*H*-indazol-3-yl)methanone (3q).

Product **3q** was obtained by utilizing the general procedure (Scheme 2) using 2-(4-methoxyphenyl)-2*H*-indazole **1a** (112 mg, 0.5 mmol) and 5-bromothiophene-2-carbaldehyde **2q** (119 μL , 1 mmol) and isolated by column chromatography (hexane : EtOAc = 95 : 05) as a yellow solid in 59% yield (122 mg, 0.29 mmol); mp: 70–72 °C; R_f (hexane : EtOAc = 85 : 15): 0.34; ^1H NMR (400 MHz, chloroform-*d*)

δ 7.78 (d, J = 8.8 Hz, 1H), 7.56 (d, J = 8.8 Hz, 1H), 7.39 (d, J = 9.2 Hz, 2H), 7.33–7.29 (m, 2H), 7.17–7.13 (m, 1H), 7.02–7.03 (m, 1H), 6.88 (d, J = 8.8 Hz, 2H), 3.76 (s, 3H); ^{13}C NMR (101 MHz, chloroform-*d*) δ 176.80, 160.09, 148.49, 145.70, 135.74, 133.39, 131.53, 131.17, 127.12, 126.59, 125.03, 124.85, 123.46, 120.22, 118.55, 114.45, 55.67; HRMS (ESI/QTOF) *m/z*: calcd for $\text{C}_{19}\text{H}_{13}\text{BrN}_2\text{O}_2\text{S}$, 412.9954 [M + H]⁺; found, 412.9957.

(2-Phenyl-2*H*-[1,3]dioxolo[4,5-*f*]indazol-3-yl)(*p*-tolyl)methanone (4a).

Product **4a** was obtained by utilizing the general procedure (Scheme 3) using 2-phenyl-2*H*-[1,3]dioxolo[4,5-*f*]indazole **1b** (119 mg, 0.5 mmol) and 4-methylbenzaldehyde **2b** (118 μL , 1 mmol) and isolated by column chromatography (hexane : EtOAc = 95 : 05) as a yellow oil in 55% yield (91 mg, 0.26 mmol); R_f (hexane : EtOAc = 85 : 15): 0.40; ^1H NMR (400 MHz, chloroform-*d*) δ 7.75 (d, J = 8.4 Hz, 2H), 7.47–7.45 (m, 2H), 7.39–7.35 (m, 4H), 7.23 (s, 1H), 7.08 (s, 1H), 6.58 (s, 1H), 5.98 (s, 2H), 2.41 (s, 3H); ^{13}C NMR (100 MHz, chloroform-*d*) δ 185.80, 149.62, 147.86, 146.11, 144.59, 140.49, 135.13, 132.16, 130.03, 129.39, 129.00, 128.34, 125.08, 120.78, 101.40, 95.69, 94.54, 21.79; HRMS (ESI/QTOF) *m/z*: calcd for $\text{C}_{22}\text{H}_{16}\text{N}_2\text{O}_3$, 357.1234 [M + H]⁺; found, 357.1239.

(5-Fluoro-2-phenyl-2*H*-indazol-3-yl)(*p*-tolyl)methanone (4b).

Product **4b** was obtained by utilizing the general procedure (Scheme 3) using 5-fluoro-2-phenyl-2*H*-indazole **1c** (106 mg, 0.5 mmol) and 4-methylbenzaldehyde **2b** (118 μL , 1 mmol) and isolated by column chromatography (hexane : EtOAc = 95 : 05) as an off-white solid in 71% yield (101 mg, 0.31 mmol); mp: 65–67 °C; R_f (hexane : EtOAc = 85 : 15): 0.51; ^1H NMR (400 MHz, chloroform-*d*) δ 7.88–7.84 (m, 1H), 7.78 (d, J = 8.4 Hz, 2H), 7.54–7.51 (m, 2H), 7.44–7.42 (m, 3H), 7.28 (d, J = 7.6 Hz, 2H), 7.18 (td, J = 9.2, 2.4 Hz, 1H), 6.97–6.94 (m, 1H), 2.45 (s, 3H); ^{13}C NMR (100 MHz, chloroform-*d*) δ 185.31, 160.09 ($J_{\text{C}-\text{F}} = 243.3$ Hz), 145.89, 144.94, 140.39, 134.92, 130.05, 129.51, 129.14, 129.02, 125.35, 123.78 ($J_{\text{C}-\text{F}} = 11.9$ Hz), 120.77 ($J_{\text{C}-\text{F}} = 9.9$ Hz), 118.67 ($J_{\text{C}-\text{F}} = 29.0$ Hz), 103.63 ($J_{\text{C}-\text{F}} = 25.5$ Hz), 97.22, 21.83.3; HRMS (ESI/QTOF) *m/z*: calcd for $\text{C}_{21}\text{H}_{15}\text{FN}_2\text{O}_3$, 331.1241 [M + H]⁺; found, 331.1244.

(5-Methoxy-2-phenyl-2*H*-indazol-3-yl)(*p*-tolyl)methanone (4c).

Product **4c** was obtained by utilizing the general procedure (Scheme 3) using 5-methoxy-2-phenyl-2*H*-indazole **1d** (112 mg, 0.5 mmol) and 4-methylbenzaldehyde **2b** (118 μL , 1 mmol) and isolated by column chromatography (hexane : EtOAc = 95 : 05) as a brown solid in 65% yield (111 mg, 0.32 mmol); mp: 140–142 °C; R_f (hexane : EtOAc = 85 : 15): 0.48; ^1H NMR (400 MHz, chloroform-*d*) δ 7.75–7.72 (m, 3H), 7.48–7.46 (m, 2H), 7.36–7.32 (m, 3H), 7.20 (d, J = 7.2 Hz, 2H), 7.07–7.04 (m, 1H), 6.67 (s, 1H), 3.68 (s, 3H), 2.39 (s, 3H); ^{13}C NMR (100 MHz, chloroform-*d*) δ 185.93, 157.54, 145.56, 144.41, 140.72, 135.32, 131.84, 130.07, 129.29, 129.08, 128.61, 125.39, 125.01, 122.14, 119.92, 97.13, 55.44, 21.84; HRMS (ESI/QTOF) *m/z*: calcd for $\text{C}_{22}\text{H}_{18}\text{N}_2\text{O}_2$, 343.1441 [M + H]⁺; found, 343.1445.

(6-Methyl-2-phenyl-2*H*-indazol-3-yl)(*p*-tolyl)methanone (4d).

Product **4d** was obtained by utilizing the general procedure (Scheme 3) using 6-methyl-2-phenyl-2*H*-indazole **1e** (104 mg, 0.5 mmol) and 4-methylbenzaldehyde **2b** (118 μL , 1 mmol) and isolated by column chromatography (hexane : EtOAc = 95 : 05) as a yellow solid in 68% yield (111 mg, 0.34 mmol); mp: 102–

104 °C; R_f (hexane : EtOAc = 85 : 15): 0.44; ^1H NMR (400 MHz, chloroform-*d*) δ 7.80 (d, J = 8.4 Hz, 2H), 7.61 (s, 1H), 7.53–7.38 (m, 6H), 7.27–7.25 (m, 2H), 7.00 (d, J = 8.8 Hz, 1H), 2.47 (s, 3H), 2.44 (s, 3H); ^{13}C NMR (100 MHz, chloroform-*d*) δ 185.70, 149.13, 144.67, 140.56, 136.99, 135.24, 132.28, 130.18, 129.35, 129.04, 128.71, 127.75, 125.43, 122.38, 120.14, 116.69, 22.08, 21.80; HRMS (ESI/QTOF) *m/z*: calcd for $\text{C}_{22}\text{H}_{18}\text{N}_2\text{O}$, 327.1492 [M + H]⁺; found, 327.1494.

(5-Chloro-2-phenyl-2*H*-indazol-3-yl)(*p*-tolyl)methanone (4e). Product **4e** was obtained by utilizing the general procedure (Scheme 3) using 5-chloro-2-phenyl-2*H*-indazole **1f** (114 mg, 0.5 mmol) and 4-methylbenzaldehyde **2b** (118 μL , 1 mmol) and isolated by column chromatography (hexane : EtOAc = 95 : 05) as a yellow solid in 78% yield (134 mg, 0.39 mmol); mp: 158–160 °C; R_f (hexane : EtOAc = 85 : 15): 0.50; ^1H NMR (400 MHz, chloroform-*d*) δ 7.81 (dd, J = 9.2 Hz, 0.8 Hz, 1H), 7.76 (d, J = 8.4 Hz, 2H), 7.52–7.50 (m, 2H), 7.42–7.37 (m, 4H), 7.32–7.26 (m, 3H), 2.26 (s, 3H); ^{13}C NMR (100 MHz, chloroform-*d*) δ 185.29, 146.83, 145.14, 140.22, 134.78, 132.19, 130.71, 130.11, 129.55, 129.16, 129.09, 128.54, 125.33, 124.19, 120.00, 119.36, 21.85; HRMS (ESI/QTOF) *m/z*: calcd for $\text{C}_{21}\text{H}_{15}\text{ClN}_2\text{O}$, 347.0946 [M + H]⁺; found, 347.0947.

(2-(4-Methoxyphenyl)-2*H*-[1,3]dioxolo[4,5-*f*]indazol-3-yl)(*p*-tolyl)methanone (4f). Product **4f** was obtained by utilizing the general procedure (Scheme 3) using 2-(4-methoxyphenyl)-2*H*-[1,3]dioxolo[4,5-*f*]indazole **1g** (134 mg, 0.5 mmol) and 4-methylbenzaldehyde **2b** (118 μL , 1 mmol) and isolated by column chromatography (hexane : EtOAc = 95 : 05) as a yellow oil in 58% yield (112 mg, 0.29 mmol); R_f (hexane : EtOAc = 85 : 15): 0.40; ^1H NMR (400 MHz, chloroform-*d*) δ 7.75 (d, J = 8.4 Hz, 2H), 7.39 (dd, J = 6.8 Hz, 2.0 Hz, 2H), 7.26 (s, 2H), 7.09 (s, 1H), 6.90 (dd, J = 6.8 Hz, 2.0 Hz, 2H), 6.56 (s, 1H), 5.99 (s, 2H), 3.81 (s, 3H), 2.44 (s, 3H); ^{13}C NMR (100 MHz, chloroform-*d*) δ 185.62, 159.25, 149.25, 147.49, 145.60, 144.32, 135.00, 133.54, 131.87, 129.82, 129.17, 126.08, 120.30, 113.95, 101.14, 95.52, 94.31, 55.31, 21.58; HRMS (ESI/QTOF) *m/z*: calcd for $\text{C}_{23}\text{H}_{18}\text{N}_2\text{O}_4$, 387.1340 [M + H]⁺; found, 387.1346.

***p*-Tolyl(2-(*p*-tolyl)-2*H*-indazol-3-yl)methanone (4g).** Product **4g** was obtained by utilizing the general procedure (Scheme 3) using 2-(*p*-tolyl)-2*H*-indazole **1h** (104 mg, 0.5 mmol) and 4-methylbenzaldehyde **2b** (118 μL , 1 mmol) and isolated by column chromatography (hexane : EtOAc = 95 : 05) as a yellow solid in 79% yield (129 mg, 0.40 mmol); mp: 167–169 °C; R_f (hexane : EtOAc = 85 : 15): 0.48; ^1H NMR (400 MHz, chloroform-*d*) δ 7.87 (dd, J = 8.4 Hz, 0.8 Hz, 1H), 7.81 (d, J = 8.0 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 7.35 (t, J = 8.4 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 7.16–7.13 (m, 1H), 2.44 (s, 3H), 2.38 (s, 3H); ^{13}C NMR (100 MHz, chloroform-*d*) δ 185.71, 148.38, 144.72, 138.94, 138.08, 135.22, 132.33, 130.21, 129.67, 129.37, 126.81, 125.17, 124.62, 123.79, 120.59, 118.41, 21.80, 21.19; HRMS (ESI/QTOF) *m/z*: calcd for $\text{C}_{22}\text{H}_{18}\text{N}_2\text{O}$, 327.1492 [M + H]⁺; found, 327.1495.

(2-(4-Chlorophenyl)-2*H*-indazol-3-yl)(*p*-tolyl)methanone (4h). Product **4h** was obtained by utilizing the general procedure (Scheme 3) using 2-(4-chlorophenyl)-2*H*-indazole **1i** (114 mg, 0.5 mmol) and 4-methylbenzaldehyde **2b** (118 μL , 1 mmol) and isolated by column chromatography (hexane : EtOAc = 95 : 05)

as a yellow semi-solid in 85% yield (142 mg, 0.41 mmol); R_f (hexane : EtOAc = 85 : 15): 0.48; ^1H NMR (400 MHz, chloroform-*d*) δ 7.86 (dd, J = 8.8 Hz, 0.8 Hz, 1H), 7.81 (d, J = 8.0 Hz, 2H), 7.52–7.48 (m, 2H), 7.41 (d, J = 8.8 Hz, 2H), 7.38–7.33 (m, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.19–7.15 (m, 1H), 2.46 (s, 3H); ^{13}C NMR (100 MHz, chloroform-*d*) δ 185.59, 148.70, 145.14, 139.10, 135.13, 134.90, 132.54, 130.30, 129.58, 129.35, 127.29, 126.74, 125.12, 123.97, 120.72, 118.55, 21.93; HRMS (ESI/QTOF) *m/z*: calcd for $\text{C}_{21}\text{H}_{15}\text{ClN}_2\text{O}$, 347.0946 [M + H]⁺; found, 347.0942.

(2-(5-Methylpyridin-2-yl)-2*H*-indazol-3-yl)(*p*-tolyl)methanone (4i). Product **4i** was obtained by utilizing the general procedure (Scheme 3) using 2-(5-methylpyridin-2-yl)-2*H*-indazole **1j** (105 mg, 0.5 mmol) and 4-methylbenzaldehyde **2b** (118 μL , 1 mmol) and isolated by column chromatography (hexane : EtOAc = 95 : 05) as a yellow solid in 72% yield (118 mg, 0.36 mmol); mp: 130–132 °C; R_f (hexane : EtOAc = 85 : 15): 0.34; ^1H NMR (400 MHz, chloroform-*d*) δ 8.08 (s, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.83 (d, J = 8.8 Hz, 1H), 7.79 (d, J = 8.0 Hz, 2H), 7.69–7.66 (m, 1H), 7.43 (d, J = 8.8 Hz, 1H), 7.38–7.34 (m, 1H), 7.24 (d, J = 7.6 Hz, 2H), 7.15–7.11 (m, 1H), 2.42 (s, 3H), 2.32 (s, 3H); ^{13}C NMR (100 MHz, chloroform-*d*) δ 186.88, 149.95, 148.92, 148.30, 144.37, 139.19, 135.40, 133.35, 132.60, 129.95, 129.39, 127.60, 124.43, 123.49, 120.67, 118.40, 116.99, 21.86, 18.10; HRMS (ESI/QTOF) *m/z*: calcd for $\text{C}_{21}\text{H}_{17}\text{N}_3\text{O}$, 328.1445 [M + H]⁺; found, 328.1449.

(2-(5-Chloropyridin-2-yl)-2*H*-indazol-3-yl)(*p*-tolyl)methanone (4j). Product **4j** was obtained by utilizing the general procedure (Scheme 3) using 2-(5-chloropyridin-2-yl)-2*H*-indazole **1k** (115 mg, 0.5 mmol) and 4-methylbenzaldehyde **2b** (118 μL , 1 mmol) and isolated by column chromatography (hexane : EtOAc = 95 : 05) as a white solid in 71% yield (124 mg, 0.35 mmol); mp: 104–106 °C; R_f (hexane : EtOAc = 85 : 15): 0.38; ^1H NMR (400 MHz, chloroform-*d*) δ 8.18–8.17 (m, 1H), 8.03–8.00 (m, 1H), 7.85–7.75 (m, 4H), 7.42–7.34 (m, 2H), 7.24 (d, J = 8.8 Hz, 2H), 7.14–7.10 (m, 1H), 2.41 (s, 3H); ^{13}C NMR (100 MHz, chloroform-*d*) δ 186.65, 150.10, 149.12, 146.77, 144.62, 138.41, 135.09, 132.81, 131.34, 129.85, 129.42, 127.98, 124.70, 123.56, 120.59, 118.33, 118.07, 21.80; HRMS (ESI/QTOF) *m/z*: calcd for $\text{C}_{20}\text{H}_{14}\text{ClN}_3\text{O}$, 348.0898 [M + H]⁺; found, 348.0895.

(2-(Pyridin-2-yl)-2*H*-indazol-3-yl)(*p*-tolyl)methanone (4k). Product **4k** was obtained by utilizing the general procedure (Scheme 3) using 2-(pyridin-2-yl)-2*H*-indazole **1l** (98 mg, 0.5 mmol) and 4-methylbenzaldehyde **2b** (118 μL , 1 mmol) and isolated by column chromatography (hexane : EtOAc = 95 : 05) as a yellow solid in 82% yield (131 mg, 0.42 mmol); mp: 98–100 °C; R_f (hexane : EtOAc = 85 : 15): 0.33; ^1H NMR (400 MHz, chloroform-*d*) δ 8.25–8.23 (m, 1H), 8.06–8.04 (m, 1H), 7.89–7.82 (m, 2H), 7.77 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 8.8 Hz, 1H), 7.40–7.35 (m, 1H), 7.23–7.21 (m, 3H), 7.16–7.12 (m, 1H), 2.40 (s, 3H); ^{13}C NMR (100 MHz, chloroform-*d*) δ 186.81, 151.87, 149.01, 148.04, 144.29, 138.64, 135.30, 132.73, 129.78, 129.30, 127.74, 124.47, 123.50, 123.28, 120.62, 118.35, 117.33, 21.76; HRMS (ESI/QTOF) *m/z*: calcd for $\text{C}_{20}\text{H}_{15}\text{N}_3\text{O}$, 311.1288 [M + H]⁺; found, 314.1286.

Phenyl(2-phenyl-2*H*-indazol-3-yl)methanone (4l). Product **4l** was obtained by utilizing the general procedure (Scheme 3) using 2-phenyl-2*H*-indazole **1m** (97 mg, 0.5 mmol) and

benzaldehyde **2a** (118 μ L, 1 mmol) and isolated by column chromatography (hexane : EtOAc = 95 : 05) as a yellow solid in 80% yield (119 mg, 0.40 mmol); mp: 125–127 $^{\circ}$ C; R_f (hexane : EtOAc = 85 : 15): 0.42; 1 H NMR (400 MHz, chloroform-*d*) δ 7.89–7.85 (m, 3H), 7.62–7.57 (m, 1H), 7.55–7.52 (m, 2H), 7.47–7.35 (m, 7H), 7.19–7.15 (m, 1H); 13 C NMR (100 MHz, chloroform-*d*) δ 186.07, 148.66, 140.58, 137.90, 133.67, 132.35, 130.00, 129.18, 129.03, 128.74, 127.12, 125.63, 125.12, 124.16, 120.68, 118.63; HRMS (ESI/QTOF) *m/z*: calcd for $C_{20}H_{14}N_2O_2$, 299.1179 [M + H]⁺; found, 299.1176.

General procedure for the synthesis of 11

The starting substrate **1p** was synthesized using the reported procedure¹⁵ and was reacted with *m*-acetoxybenzaldehyde **2r** under the optimized reaction conditions to afford **10**. In the reaction vessel, 2-(3-methoxyphenyl)-2*H*-indazole (**1p**, 112 mg, 0.5 mmol) was charged with *m*-acetoxybenzaldehyde (**2r**, 164 mg, 1 mmol) and TBPB (238 μ L, 1.25 mmol) dissolved in chlorobenzene. The reaction mixture was then stirred under N_2 atmosphere at 110 $^{\circ}$ C for 24 h. After completion of the reaction, the reaction mixture was cooled and the work-up was done with a saturated solution of NaHCO₃ (10 mL) and ethyl acetate (3 \times 20 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to get the crude residue which was further purified through column chromatography on silica gel (100–200 mesh) using hexane : ethyl acetate (80 : 20 ratio) as an eluent to afford the corresponding product **10** which upon deprotection under basic conditions furnished the desire product **11** (anti-inflammatory agent).

(3-Hydroxyphenyl)(2-(3-methoxyphenyl)-2*H*-indazol-3-yl)methanone (11). Product **11** was obtained by utilizing the general procedure and isolated by column chromatography (hexane : EtOAc = 95 : 05) as a white solid in 51% yield (87 mg, 0.25 mmol); R_f (hexane : EtOAc = 85 : 15): 0.20; 1 H NMR (400 MHz, DMSO-*d*₆) δ 9.84 (s, 1H), 7.84 (d, J = 8.8 Hz, 1H), 7.40–7.17 (m, 6H), 7.13 (t, J = 2.4 Hz, 1H), 7.11–7.09 (m, 1H), 7.04–6.96 (m, 3H), 3.72 (s, 3H); 13 C NMR (100 MHz, DMSO-*d*₆) δ 186.09, 160.00, 158.10, 148.30, 141.66, 139.09, 132.77, 130.49, 127.70, 125.58, 123.85, 121.48, 121.08, 120.75, 118.74, 118.22, 116.01, 115.27, 111.66, 56.02; HRMS (ESI/QTOF) *m/z*: calcd for $C_{21}H_{16}N_2O_3$, 345.1234 [M + H]⁺; found, 345.1236.

General procedure for the synthesis of 13

The starting material **12** was synthesized by utilizing our general procedure which on subjection to Pd-catalyzed direct biaryl coupling using the reported procedure¹⁶ afforded a new class of bio-azaheterocycles, *i.e.*, 3-methoxy-9*H*-dibenzo[4,5:6,7]azepino[1,2-*b*]indazol-9-one (indazole-fused diazepine).

3-Methoxy-9*H*-dibenzo[4,5:6,7]azepino[1,2-*b*]indazol-9-one (13). Product **13** was obtained by utilizing the general procedure and isolated by column chromatography (hexane : DCM = 90 : 10) as a yellow solid in 75% yield (123 mg, 0.37 mmol); mp: 108–110 $^{\circ}$ C; R_f (hexane : DCM = 50 : 50): 0.5; 1 H NMR (400 MHz, chloroform-*d*) δ 8.14–8.09 (m, 2H), 8.05–8.03 (m, 1H), 7.82 (d, J = 8.8 Hz, 1H), 7.77 (d, J = 7.6 Hz, 1H), 7.66–7.62 (m, 1H), 7.55–7.51 (m, 1H), 7.41–7.37 (m, 1H), 7.31–7.27 (m, 1H), 7.19 (d,

J = 2.8 Hz, 1H), 7.09 (dd, J = 9.2, 2.8 Hz, 1H), 3.89 (s, 3H); 13 C NMR (100 MHz, chloroform-*d*) δ 183.27, 159.12, 148.62, 139.52, 138.11, 134.80, 132.75, 131.61, 130.70, 130.17, 129.16, 128.72, 127.93, 127.60, 125.89, 123.69, 121.09, 118.05, 116.36, 115.47, 55.84; HRMS (ESI/QTOF) *m/z*: calcd for $C_{21}H_{14}N_2O_2$, 327.1128 [M + H]⁺; found, 327.1126.

General procedure for the synthesis of 14

To a solution of **3a** (0.29 mmol; 1.0 equiv.) in methanol (10–15 mL) was added NaBH₄ (0.58 mmol; 2.0 equiv.) portionwise at room temperature and the reaction was stirred at the same temperature for 1 h. After completion of the reaction monitored by TLC, the solvent was evaporated under reduced pressure and the crude solid product was extracted with ethyl acetate (3 \times 20 mL) and water (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to get the crude residue which was further purified through column chromatography on silica gel (100–200 mesh) using hexane : ethyl acetate (80 : 20 ratio) as an eluent to afford the corresponding product **14** as a white solid in 90% yield.

(2-(4-Methoxyphenyl)-2*H*-indazol-3-yl)(*p*-tolyl)methanol (14). Product **14** was obtained by utilizing the general procedure and isolated by column chromatography (hexane : EtOH = 80 : 20) as a white solid in 90% yield (90 mg, 0.26 mmol); mp: 106–108 $^{\circ}$ C; R_f (hexane : EtOH = 70 : 30): 0.3; 1 H NMR (400 MHz, chloroform-*d*) δ 7.51 (d, J = 9.2 Hz, 1H), 7.39 (d, J = 9.2 Hz, 1H), 7.15–7.09 (m, 3H), 7.04 (d, J = 8.4 Hz, 2H), 6.98 (d, J = 8.0 Hz, 2H), 6.87–6.83 (m, 1H), 6.69 (d, J = 8.8 Hz, 2H), 5.93 (s, 1H), 3.69 (s, 3H), 2.22 (s, 3H); 13 C NMR (101 MHz, chloroform-*d*) δ 159.98, 148.56, 138.37, 137.65, 137.54, 132.49, 129.26, 127.48, 126.69, 126.47, 121.84, 121.40, 120.39, 117.40, 114.16, 68.75, 55.62, 21.25; HRMS (ESI/QTOF) *m/z*: calcd for $C_{22}H_{20}N_2O_2$, 345.1598 [M + H]⁺; found, 345.1596.

General procedure for the competition reaction

A mixture of 2-(4-methoxyphenyl)-2*H*-indazole **1a** (112 mg, 0.5 mmol), 4-methoxybenzaldehyde **2c** (61 μ L, 0.5 mmol) and 4-fluorobenzaldehyde **2e** (53 μ L, 0.5 mmol) and TBPB (238 μ L, 1.25 mmol) was taken in a sealed reaction tube under nitrogen atmosphere. Then, the reaction mixture was stirred at 110 $^{\circ}$ C for 24 h. After completion of the reaction, the reaction mixture was cooled and the work-up was done with a saturated solution of NaHCO₃ (10 mL) and ethyl acetate (3 \times 20 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to get the crude residue which was further purified through column chromatography on silica gel (100–200 mesh) using hexane : ethyl acetate (95 : 5 ratio) as an eluent to afford the corresponding product **3c** in 56% (101 mg, 0.28 mmol as a yellow solid) and **3e** in 30% (52 mg, 0.15 mmol as a yellow solid) yields, respectively. Similarly, a mixture of 2-(4-methoxyphenyl)-2*H*-indazole **1a** (112 mg, 0.5 mmol), 4-methylbenzaldehyde **2a** (59 μ L, 0.5 mmol) and acetaldehyde **2j** (28 μ L, 0.5 mmol) and TBPB (238 μ L, 1.25 mmol) was taken in a sealed reaction tube under nitrogen atmosphere. Then the reaction mixture was stirred at 110 $^{\circ}$ C for

24 h. After work-up, the crude residue was further purified through column chromatography on silica gel (100–200 mesh) using hexane : ethyl acetate (95 : 5 ratio) as an eluent to afford the corresponding product **3a** in 55% (94 mg, 0.27 mmol as a yellow solid) and **3j** in 29% (39 mg, 0.14 mmol as a yellow solid) yields, respectively.

Synthetic procedure for performing the control experiment

A mixture of 2-(4-methoxyphenyl)-2*H*-indazole **1a** (112 mg, 0.5 mmol), 4-methylbenzaldehyde **2a** (118 μ L, 1 mmol) and TBPP (238 μ L, 1.25 mmol) and TEMPO (195 mg, 1.25 mmol) was taken in a sealed reaction tube under nitrogen atmosphere. Then, the reaction mixture was stirred at 110 °C for 24 h. After completion of the reaction, the reaction mixture was cooled and the work-up was done with a saturated solution of NaHCO₃ (10 mL) and ethyl acetate (3 \times 20 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to get the crude residue which was further purified through column chromatography on silica gel (100–200 mesh) using hexane : ethyl acetate (95 : 5 ratio) as an eluent to afford the TEMPO trapped acyl adduct (**7**) as a viscous liquid. TLC observation showed that there was no formation of **3a** in the TEMPO-assisted reaction. The intermediate, *i.e.* benzoyl free radical, was trapped with TEMPO to afford the TEMPO-acyl adduct **7**.

2,2,6,6-Tetramethylpiperidin-1-yl 4-methylbenzo-ate 7. Product **7** was obtained in 71% yield as a viscous liquid; *R*_f (hexane : ethyl acetate = 85 : 15) 0.5; ¹H NMR (400 MHz, chloroform-*d*) δ 7.93 (d, *J* = 8.4 Hz, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 2.37 (s, 3H), 1.77–1.63 (m, 3H), 1.55–1.52 (m, 2H), 1.43–1.40 (m, 1H), 1.23 (s, 6H), 1.08 (s, 6H); ¹³C NMR (100 MHz, chloroform-*d*) δ 166.50, 143.56, 129.66, 129.22, 128.52, 126.98, 60.40, 39.11, 32.03, 25.43, 21.72, 20.91, 17.08; HRMS (ESI/QTOF) *m/z*: calcd for C₁₇H₂₅NO₂, 276.1958 [M + H]⁺; found, 276.1955.

Conflicts of interest

The author declares no competing financial interest.

Acknowledgements

S. C. acknowledges DST-NRF Indo-South Africa Joint research project [DST/INT/South Africa/P-19/2016]. R. S. acknowledges MNIT Jaipur for providing an institute fellowship. L. Y. and R. K. Y. thanks DST, New Delhi and UGC, New Delhi for providing financial assistance in the form of a senior research fellowship. Materials Research Centre (MRC), MNIT Jaipur is gratefully acknowledged for providing analytical facilities.

Notes and references

- (a) C.-Y. Huang, H. Kang, J. Li and C.-J. Li, *J. Org. Chem.*, 2019, **84**, 12705–12721; (b) S. Girard, T. Knauber and C. -J. Li, *Angew. Chem., Int. Ed.*, 2014, **53**, 74–100; (c) C.-J. Li, *Acc. Chem. Res.*, 2009, **42**, 335–344.

- (a) C. N. Sternberg, I. D. Davis, J. Mardiak, C. Szczylik, E. Lee, J. Wagstaff, C. H. Barrios, P. Salman, O. A. Gladkov, A. Kavina, J. J. Zarbá, M. Chen, L. McCann, L. Pandite, D. F. Roychowdhury and R. E. Hawkins, *J. Clin. Oncol.*, 2010, **28**, 1061–1068; (b) P. Jones, S. Altamura, J. Boueres, F. Ferrigno, M. Fonsi, C. Giomini, S. Lamartina, E. Monteagudo, J. M. Ontoria, M. V. Orsali, M. C. Palumbi, S. Pesci, G. Roscilli, R. Scarpelli, C. Schultz- Fademrecht, C. Toniatti and M. Rowley, *J. Med. Chem.*, 2009, **52**, 7170–7185; (c) A. Floridi, M. G. Paggi, M. L. Marcante, B. Silvestrini, A. Caputo and C. D. Martino, *J. Natl. Cancer Inst.*, 1981, **66**, 497; (d) H. Shen, S. Gou, J. Shen, Y. Zhu, Y. Zhang and X. Chen, *Bioorg. Med. Chem. Lett.*, 2010, **20**, 2115; (e) L. A. Clutterbuck, C. G. Posada, C. Visintin, D. R. Riddal, B. Lancaster, P. J. Gane, J. Garthwaite and D. L. Selwood, *J. Med. Chem.*, 2009, **52**, 2694; (f) D. Szymon, B. Marta, P. Arkadiusz, P. Michał, F. Michał, W. Maria, D. Anna, S. Sebastian, T. Adam and K. Marcin, *Int. J. Cardiol.*, 2018, **269**, 283; (g) M. C. Vega, M. Rolón, A. Montero-Torres, C. Fonseca-Berzal, J. A. Escario, A. Gómez-Barrio, J. Gálvez, Y. Marrero-Ponce and V. J. Arán, *Eur. J. Med. Chem.*, 2012, **58**, 214; (h) A. Tanitame, Y. Oyamada, K. Ofuji, Y. Kyoya, K. Suzuki, H. Ito, M. Kawasaki, K. Nagai, M. Wachi and J. Yamagishi, *Bioorg. Med. Chem. Lett.*, 2004, **14**, 2857; (i) W. Han, J. C. Pelletier and C. N. Hodge, *Bioorg. Med. Chem. Lett.*, 1998, **8**, 3615.
- (a) A. Thangadurai, M. Minu, S. Wakode, S. Agrawal and B. Narasimhan, *Med. Chem. Res.*, 2012, **21**, 1509; (b) I. Denya, S. F. Malan and J. Joubert, *Expert Opin. Ther. Pat.*, 2018, **28**, 441; (c) H. Cerecetto, A. Gerpe, M. Gonzalez, V. Aran and C. de Ocariz, *Mini-Rev. Med. Chem.*, 2005, **5**, 869; (d) J. Dong, Q. Zhang, Z. Wang, G. Huang and S. Li, *ChemMedChem*, 2018, **13**, 1490; (e) F.-Y. Lee, J.-C. Lien, L.-J. Huang, T.-M. Huang, S.-C. Tsai, C.-M. Teng, C.-C. Wu, F.-C. Cheng and S.-C. Kuo, *J. Med. Chem.*, 2001, **44**, 3746; (f) Y. Ikeda, N. Takano, H. Matsushita, Y. Shiraki, T. Koide, R. Nagashima, Y. Fujimura, M. Shindo, S. Suzuki and T. Iwasaki, *Arzneim. Forsch.*, 1979, **29**, 511; (g) S.-G. Zhang, C.-G. Liang and W.-H. Zhang, *Molecules*, 2018, **23**, 2783.
- (a) L. Yadav and S. Chaudhary, *Org. Biomol. Chem.*, 2020, **18**, 5927–5936; (b) S. Ghosh, S. Mondal and A. Hajra, *Adv. Synth. Catal.*, 2020, **362**, 3768–3794.
- H. Oh, S. Han, A. K. Pandey, S. H. Han, N. K. Mishra, S. Kim, R. Chun, H. S. Kim, J. Park and I. S. Kim, *J. Org. Chem.*, 2018, **83**, 4070–4077.
- G. Bogonda, H. Y. Kim and K. Oh, *Org. Lett.*, 2018, **9**, 2711–2715.
- Y.-L. Liu, Y.-L. Pan, G.-J. Li, H.-F. Xu and J.-Z. Chen, *Org. Biomol. Chem.*, 2019, **17**, 8749–8755.
- L. Liu, P. Jiang, Y. Liu, H. Du and J. Tan, *Org. Chem. Front.*, 2020, **7**, 2278–2283.
- (a) R. Chen, J. Chen, J. Zhang and X. Wan, *Chem. Rec.*, 2018, **18**, 1292; (b) S. Rajamanickam, G. Majji, S. K. Santra and B. K. Patel, *Org. Lett.*, 2015, **17**, 5586; (c) G. Majji, S. Rajamanickam, N. Khatun, S. K. Santra and B. K. Patel, *J. Org. Chem.*, 2015, **80**, 3440; (d) A. Gogoi, A. Modi,

S. Guin, S. K. Rout, D. Das and B. K. Patel, *Chem. Commun.*, 2014, **50**, 10445; (e) X.-F. Wu, J.-L. Gong and X. Qia, *Org. Biomol. Chem.*, 2014, **12**, 5807; (f) Y. Siddaraju and K. R. Prabhu, *Tetrahedron*, 2016, **72**, 959–967.

10 (a) N. Khatun, A. Banerjee, S. K. Santra, A. Behera and B. K. Patel, *RSC Adv.*, 2014, **4**, 54532; (b) S. K. Rout, S. Guin, A. Gogoi, G. Majji and B. K. Patel, *Org. Lett.*, 2014, **16**, 1614.

11 (a) J.-J. Cao, T.-H. Zhu, S.-Y. Wang, Z.-Y. Gu, X. Wang and S.-J. Ji, *Chem. Commun.*, 2014, **50**, 6439–6442; (b) S.-L. Zhou, L.-N. Guo, H. Wang and X.-H. Duan, *Chem.-Eur. J.*, 2013, **19**, 12970–12973; (c) T. He, H. Li, P. Li and L. Wang, *Chem. Commun.*, 2011, **47**, 8946–8948; (d) H. Zhang, Z. Gu, P. Xu, H. Hu, Y. Chenga and C. Zhu, *Chem. Commun.*, 2016, **52**, 477–480.

12 R. J. Steffan, E. M. Matelan, [(1*H*-Indazol-3-ly)Methyl] Phenols and (Hydroxyphenyl), (1*H*-Indazol-3-yl) Methanones, *WO Pat.*, 2006050006, 2006.

13 A. H. Shinde, S. Vidyacharan and D. S. Sharada, *Org. Biomol. Chem.*, 2016, **14**, 3207–3211.

14 M. R. Kumar, A. Park, N. Park and S. Lee, *Org. Lett.*, 2011, **13**, 3542–3545.

15 N. E. Genung, L. Wei and G. E. Aspnes, *Org. Lett.*, 2014, **16**, 3114–3117.

16 A. P. Kozikowski and D. Ma, *Tetrahedron Lett.*, 1991, **32**, 3317–3320.

