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ip between spectroscopic
constants of diatomic molecules: a machine
learning approach

Xiangyue Liu, Gerard Meijer and Jesús Pérez-Ŕıos *

Through a machine learning approach, we show that the equilibrium distance, harmonic vibrational

frequency and binding energy of diatomic molecules are related, independently of the nature of the

bond of a molecule; they depend solely on the group and period of the constituent atoms. As a result,

we show that by employing the group and period of the atoms that form a molecule, the spectroscopic

constants are predicted with an accuracy of <5%, whereas for the A-excited electronic state it is needed

to include other atomic properties leading to an accuracy of <11%.
1 Introduction

Early in the history of molecular spectroscopy, when it became
a discipline within chemical physics in the 1920's,1 some
intriguing empirical relationships between different spectro-
scopic properties were observed.2–4 In particular, it was found
that the equilibrium distance, Re, and the harmonic vibrational
frequency, ue, were correlated in diatomic molecules. As the
eld evolved, the relationship between Re and ue became more
evident, and more empirical relations between spectroscopic
constants were identied.5–12 However, these empirical rela-
tionships were typically only valid for specic atomic numbers
or groups of the constituent atoms. These results motivated the
development of realistic diatomic molecular potentials4,13–17 and
triggered the physical chemistry community to think about the
“periodicity” of diatomic molecules.18

The development of quantum chemistry helped to shed
some light on the physics behind empirical relationships
between spectroscopic constants. In particular, thanks to the
application of the Hellmann–Feynman theorem, it was possible
to connect ue directly with the electronic density at Re.19–22 As
a result, a rst principles-based explanation (containing a few
free parameters), of the observed empirical relations between
spectroscopic constants appeared.23–30 Nevertheless, the ob-
tained relations based on the electronic density were only valid
for subsets of molecules. To date, it has not been possible to
nd general relations for spectroscopic constants of diatomic
molecules in terms of the properties of their constituent atoms.

The accuracy of quantum chemistry methods relies on
(nite) basis sets optimized for each element under certain
bounds. At the same time, an accurate description of the
system's electronic structure is required, which is achieved
scha, Faradayweg 4-6, 14195 Berlin,
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61
through a hierarchy of different treatments of the electron
correlation.31,32 On the other hand, the widely-used (Kohn–
Sham) density functional theory (DFT) methods require accu-
rate electron exchange–correlation density functionals. The
non-empirical density functionals are derived under certain
constraints, some with several free parameters,33–36 while the
semi-empirical density functionals employ more exible func-
tional forms with (sometimes even several tens of) coefficients
tted to various experimental or theoretical reference proper-
ties.33,37 Machine learning (ML) methods, on the other hand,
discover the underlying relationships from data (the so-called
“training set”) and build up models on top of them. These
models can be quantitatively predictive for other systems that
follow similar underlying physics. More importantly, they
provide possibilities for discovering relationships between the
different properties of the system under consideration.38,39

This work shows that the relationship between spectroscopic
constants of heteronuclear diatomic molecules is general for
most kinds of molecules at hand. Our ndings rely upon
applying state-of-the-art ML models to an orthodox dataset of
experimental spectroscopic constants for diatomic molecules.
In particular, we apply the Gaussian process (GP) regression
model40 to predict Re, ue, and the binding energy, D0, as
a function of the group and period of the constituent atoms.
Similarly, our model can predict Re and ue for the A-excited
electronic state of a given molecule. Our ndings generalize
the idea that some of the system's chemical properties depend
on the atoms' group and period. Indeed, the periodicity of
elements has long been used to predict chemical compounds'
properties intuitively at a qualitative level. However, the corre-
lations between the chemical properties and the constituent
atoms' periodicity are not always straightforward, and such
predictions can hardly be quantitative in most cases. On the
contrary, our main result is quantitatively meaningful: it is
possible to predict those spectroscopic constants with an
© 2021 The Author(s). Published by the Royal Society of Chemistry
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accuracy of <5% for ground electronic states and <11% for the
A-excited electronic state. More interestingly, by analyzing our
models' outliers, we show that molecules showing a non-
chemical bond nature like bi-alkali molecules and molecules
containing rst-row elements, such as HF, are more difficult to
predict. However, the spectroscopic constants of molecules
containing transition metals challenging for quantum chem-
istry methods can be adequately described.
2 The quest of relationships between
spectroscopic constants of diatomic
molecules

As soon as molecular spectroscopy became an essential tool to
analyze molecules' unique ngerprints and more spectra of
molecules were taken, approximate relationships were found
between spectroscopic constants. As a result, it was postulated
that the molecules' spectroscopic constants might be correlated
based on empirical grounds. In particular, it was observed that
the equilibrium distance and the harmonic vibrational
frequency are related as Re

2ue
2m ¼ const in hydrogen

halides,2,41–43 wherem is the reduced mass of the molecule. This
relationship was generalized as Re

iue
2m ¼ const, the precursor

of the well-known Badger's rule,6 where i is a natural number.
On the other hand, aer studying the spectra of 16 molecules,
including homonuclear molecules and molecular ions, Mecke
and Birge found that the expression Re

2ue¼ const described the
observed spectra better.3,44 In the same line, but using a given
functional form for the interatomic interaction of a molecule,
Morse proposed a relationship given as Re

3ue ¼ const.4 Finally,
more involved relationships between the equilibrium distance
and the vibrational harmonic frequency were proposed17 as
mRe

6ue
2na, where n stands for the number of valence electrons,

and a is a rational number. The results for a variety of the
proposed empirical rules are shown in Fig. 1, where it is noticed
that for a larger dataset, as the present one, none of the
empirical relationships hold.
Fig. 1 Distribution and box plots of Re
aue

b with different powers
combined with the reduced mass m and number of valence electrons
n.

© 2021 The Author(s). Published by the Royal Society of Chemistry
At the same time, more spectroscopic information of molecules
became available, and more advanced and accurate quantum
chemistry tools were developed. Therefore, it was possible to search
for a rst principle explanation of the empirically observed rela-
tionships between spectroscopic constants. In that endeavor, Parr
and coworkers took the lead by looking at the electron density
within a molecule as the source of the relationship between spec-
troscopic constants. The model assumes that the electron density
mutually created by the one atom in the other atom is equal at the
equilibrium distance, i.e., at the sum of two atomic radii. In
particular, the electron density of atom 1 at the position of atom 2,
within a molecule, is given by27

r1(2) ¼ CZ1 exp(�xR1), (1)

where C is a tting parameter and x represents the decay
constant of the electron density. Within this model, one nds
a relationship between the atomic numbers of the two atoms, Z1
and Z2, and the equilibrium internuclear distance Re of
a diatomic molecule as27,29,30,45

Z1Z2 ¼ A exp(xRe), (2)

where A is a free parameter. According to this relationship, Re

depends linearly on log(Z1Z2) as

Re ¼ x�1 log Z1Z2 � x�1 log A. (3)

However, the performance of this relationship has only been
checked for molecules with atoms coming from the same group
of the periodic table.29

Anderson, Parr and coworkers also suggested a relationship
between ue and Re

29 as

mue
2 ¼ 4pCZ1Z2e

�2Re, (4)

based on the Born–Oppenheimer approximation, the electron
density of eqn (1) and the Hellmann–Feynman theorem. From eqn
(4) it is possible to express the harmonic vibrational frequency in
terms of the equilibrium distance and atomic properties as

ue ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

0
Z1Z2e

�2Re

m

s
: (5)

In the same vein, following the relationship between the
equilibrium distance and the harmonic vibrational frequency, it
is possible to nd a relationship between the atomic number Zi,
Re, and the dissociation energy De, as27,29,30,45

De

Re
l
¼ 4pCZ1Z2 expð�x0ReÞ; (6)

which can be rewritten as

log
De

Re
lZ1Z2

¼ �x0Re þ logð4pCÞ: (7)

For the derivation of eqn (6) it must be assumed that De ¼
Amue

2Re
l without any further justication.30 In eqn (7), l¼ 3 and
RSC Adv., 2021, 11, 14552–14561 | 14553
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x0 ¼ 0.97. Eqn (7) has been tested in a dataset of 150 molecules
leading to a good result, although no further characterization of
the model performance was reported to objectively judge its
quality. Finally, using the relation of the dissociation energy, De,
and the binding energy, D0,

De ¼ D0 þ 1

2
ħue � 1

4
ħuexe; (8)

where uexe represents the rst anharmonic correction to the
harmonic vibrational frequency, it should be possible to nd

a linear regression model for log
D0

Re
lZ1Z2

.

3 The dataset

In this work, we focus on heteronuclear molecules due to their
relevance on laser cooling of molecules with applications in
ultracold chemistry.47–49 The employed dataset contains the
main spectroscopic constants: Re, ue, and D0 for the ground
electronic state of heteronuclear diatomic molecules. In
particular, it contains the experimental values of Re, ue for 256
heteronuclear diatomic molecules taken from ref. 50–53,
whereas the experimentally determined values of D0 are only
available for 197 of them.

As far as we know, this is the most extensive dataset for
experimental ground state properties of heteronuclear diatomic
molecules. Fig. 2 shows the equilibrium distance's distribution
and its ratio to the sum of the atomic radii of the constituent
atoms, R1 + R2, for molecules within the dataset. Most molecules
show an equilibrium distance between 1.4 �A and 3.8 �A, with
a most probable value of 1.7�A. Looking at the values of Re/(R1 +
R2), it is clear that the molecules within the dataset have
different bonds: covalent, van der Waals, and ionic.
Fig. 2 Ratio of the equilibrium distance, Re, to the sum of the atomic
radii of the atoms forming a molecule, R1 + R2, vs. Re. The background
color indicates the nature of the molecular bond in each of the
molecules. The density in the upper part of the figure shows the kernel
density distribution of Re. The box plot shows the minimum, the
maximum, the sample median, and the first and third quarterlies of Re.
The empirical atomic radii of the atoms are taken from ref. 46.

14554 | RSC Adv., 2021, 11, 14552–14561
We have classied the dataset based on the types of
constituent atoms within a molecule, and the results are shown
in Fig. 3. As a result, we notice that the dataset mainly consists
of various metal and non-metal halides, hydrides, and metal-
loid compounds. It is worth noticing that more than 20% of the
dataset contains transition metal compounds, including f-block
elements. Therefore, the present dataset is general since it goes
beyond the main-group diatomic molecules and deals with
some of the more intriguing and complex atoms from a chem-
istry standpoint.

In addition to the dataset mentioned above of the ground
state properties, we also study 131 molecules whose Re, ue are
available for the A-excited electronic state. The A-state dataset
mainly consists of metal and non-metal compounds, including
transition metal compounds and several f-block compounds.

4 Machine learning method

The quest for universal relationships between spectroscopic
constants is related to the problem of how atomic and molec-
ular properties describe a spectroscopic property of a molecule,
y ¼ f(x). Here, x ¼ (x1, x2, ., xn), consists of different atomic
properties of the constituent atoms or molecular properties,
where n denotes the number of input features relevant for the
problem at hand. Unlike traditional (non-)linear regression
models, which assume a xed form of function f(x), GP
embraces a Bayesian perspective and presumes a prior distri-
bution over the space of functions

f ðxiÞ � GP
�
mðxiÞ; K

�
xi; xj

��
; (9)
Fig. 3 Molecules in the dataset classified by the types of their
constituent atoms.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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with a joint multivariate-Gaussian distribution, centered at
m(xi) and characterized by the covariance function K(xi, xj),
which species the correlation (or “similarity”) between data
points.40

In this work, the spectroscopic properties y are modeled as

Pðyijf ðxiÞ; xiÞ � N
�
yi
��hðxiÞÞTbþ f ðxiÞ; sy

2
�
: (10)

where the basis functions, h(xi), project {xi} to a new (higher
dimensional) feature space with coefficients b, and sy includes
the noise in the observations.40,54 The training set
D ¼ fðxi; yiÞji ¼ 1; .; Ng with N observations, constrains the
available distribution of functions through Bayes theorem, and
the mean of the posterior distribution is used for prediction.
The functional form of K(xi, xj) and h(x) can be selected
according to the cross-validation performance of the models.
Fig. 4 Scheme of the training/test set splitting in the model evalua-
tion. (a) There are two loops: the outer loop for the model perfor-
mance evaluation, and the inner loop for the training of model and
hyperparameter optimization. (b) In the outer loop, the data are
stratified based on the true values of the labels, and each stratum is
randomly split into training and test sets. In learning the properties, the
training sets are further split into training and validation sets to perform
a stratified 5-fold cross-validation.
4.1 Model performance evaluation

In training and evaluating the regression models, as customary
in ML, the ground state dataset is divided into training and test
sets. The training set represents the set of molecules used for
learning a given spectroscopic constant from the atomic prop-
erties of the constituents atoms. The test set is the set of
molecules that have not been included in the learning proce-
dure and hence are new to the regression algorithm. In learning
the equilibrium internuclear distance, Re, and the harmonic
vibrational frequency ue, the training and test sets consist of

231 and 25 molecules, respectively. In learning log
D0

Re
3Z1Z2

the

training/test splitting is 172/25. For learning Re and ue for the A-
excited electronic state, the training set consists of 106 mole-
cules and the test set consists of 25 molecules.

The present dataset is relatively small from an ML perspec-
tive. When the dataset is split into training and test sets, the
training set may not be representative. This may lead to a bias in
the performance of the test set. To solve this problem, we have
employed a Monte Carlo (MC) approach, in which the dataset is
stratied into 25 strata based on the level of the true values of

the labels (Re, ue, and log
D0

Re
3Z1Z2

in the present work).

As shown in panel (a) of Fig. 4, we have two loops in the
training and evaluation of themodels. In the outer loop, we split
the dataset into training set and test set. The training set is used
to learn from the data and the test set is used for model eval-
uation. In the inner loop, we train the models with the training
set, which is further split to perform a stratied 5-fold cross
validation (CV) for the hyperparameter optimization. In partic-
ular, as shown in panel (b) of Fig. 4, in the outer loop, the
training/test splittings are done by a Monte Carlo (MC)
approach. Specically, we randomly select 25 test molecules
from the dataset, which is stratied into 25 strata based on the
levels of the true values of the labels. The stratication helps to
minimize the change of the proportions of the dataset compo-
sitions upon splitting.55 In each MC step, a regression model is
trained and gives the predictions to the training set and the test
set. Therefore, in this work we report the mean and standard
deviation of the predictions for each molecule when they are
© 2021 The Author(s). Published by the Royal Society of Chemistry
used in the training and test sets from all the MC steps. In total,
we evaluate our models with 1000 MC steps for the training/test
splittings for the model performance evaluation, and 500 MC
steps for generating the learning curves.

The performance of the models is evaluated by three
different estimators. The rst estimator is the mean absolute
error (MAE) dened as

MAE ¼ 1

N

XN
i¼1

��yi � y*i
��; (11)

where y*i are the true values, yi are the predictions, and N is the
number of observations. The second estimator is the root mean
square error (RMSE), which is given by

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

�
yi � y*i

�2vuut : (12)

The last estimator is the normalized error rE, dened as the
ratio of the RMSE to the range of y,
RSC Adv., 2021, 11, 14552–14561 | 14555
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Fig. 5 GP regression performance on predicting Re using (g1, g2, p1,
p2) as input features classified by the types of the constituent atoms. In
particular, the MAE of the test set is reported. The inset shows the test
set predictions of Re versus the true values. The values shown are the
average of predictions from 1000 MC sampled training/test splittings.
The GP regressionmodel gives predictions of the test and training sets.
Shown are the mean and standard derivation of each molecule's
predictions when used as training data (green symbols) and test data
(orange symbols).
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rE ¼ RMSE

ymax � ymin

: (13)

4.2 The learning curves

The learning curves show the training and test performance of
a model as a function of the training set size N. From the
learning curves it is possible to infer the performance of
a model by looking at its bias and variance. Similarly, it is
possible to understand if the model performance improves with
the training set size. For each of the points in the learning curve,
the training is performed with 500 different training/test split-
tings by the MC approach.

5 Results and discussion
5.1 Learning ground state spectroscopic constants

Fueled by the idea of periodicity of molecules (see, e.g., ref. 18
and references in it), we use the group, gk, and period, pk, of the
atoms within a molecule, i.e., k ¼ 1, 2, as input features for a GP
regression model to predict different combinations of spectro-

scopic constants: Re, ue and log
�

D0

Re
3Z1Z2

�
, as presented in

Section 2. The training sets are permuted before feeding the
learning algorithm to reproduce the permutational invariance
of relevant properties upon exchanging two atoms in amolecule
in the GP regression models.

The GP regression model performance of ground state Re as
a function of input features (g1, g2, p1, p2) is shown in Fig. 5,
where the MAE associated with each of the distinct type of
molecules is reported. As a result, most of themolecules are well
described by our GP model, as conrmed in the inset of Fig. 5.
In particular, it shows little dispersion of the predicted values
concerning the true values except for a handful of molecules
(transition metal–metal and bi-alkali molecules). To further
quantify the GP regression model performance, we calculate the
average RMSE of the predicted Re on 1000 randomly selected
test sets leading to 0.0968 � 0.0070�A (Table 1), and rE ¼ 2.80 �
0.20%. Our results conrm that the model performance
improves as the number of molecules in the training set, N,
grows, as it is shown in the learning curve in panel (a) of Fig. 8.
Indeed, it is not yet converged for N ¼ 231, suggesting that the
GP regression model can be further improved by learning more
data in the training set.

In learning ue, we nd (Re
*�1, giso1 , giso2 , p1, p2, �g) to be the best

combination of features, where R*
e is the predicted equilibrium

distance from (g1, g2, p1, p2), g
iso
k encodes the information about

the hydrogen isotopes of the k-th atom in the molecule, and �g is
the average of the groups of the two atoms. However, a much
better performance is found when the true Re value is employed.
The GP model's performance is shown in the inset of Fig. 6,
where it is noticed that the predicted values agree very well with
the true values. Indeed, the test set MAE and RMSE are 46.7 �
0.6 cm�1 and 73.4 � 0.2 cm�1, respectively, while rE ¼ 1.80 �
0.005%, as shown in Table 1. Despite the outstanding perfor-
mance of our GPR model some molecules are still not well
14556 | RSC Adv., 2021, 11, 14552–14561
described as shown in Fig. 6. These outliers include HF, DF, and
HgH. The large errors predicting ue of HF and DF can be
attributed to their unique bond mechanism compared to other
halogen hydrides.

Within the features (Re
�1, giso1 , giso2 , p1, p2, �g), it is interesting

that the average of groups g ¼ g1 þ g2
2

helps in learning ue. In

particular, with �g, the MAE of the model reduces around 20%
compared with the predictions using (Re

�1, giso1 , giso2 , p1, p2) as
the input feature, as summarized in Table 1. Analogously, the
standard deviation of theMC training/test splittings predictions
becomes much smaller, suggesting that the model is more
robust for different kinds of molecules within the dataset.
Actually, by introducing �g, the most signicant improvement
happens in the descriptions of bi-alkali molecules, where the
MAE can be reduced by a factor of 3. The errors predicting HF
and DF can also be reduced by a factor of 2, although they are
still tricky cases for the model. On the contrary, introducing the

average of periods p ¼ p1 þ p2
2

does not help improve the

model, suggesting that ue has a dependency on the total
number of valence electrons of the two atoms rather than the
number of electron shells.

Motivated by the pioneering work of Anderson, Parr, and

coworkers,27,29,30,45 we study the prediction of log
D0

Re
3Z1Z2

based

on GP regression and the results are shown in Fig. 7. In
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Regression model predictions of Re, ue, and D0. gi and pi represent the group and period of the i-th atom, respectively. gisoi stand for the
group encoding the information of isotopes of hydrogen, and �p, �g are the average of groups and periods of the two atoms, respectively

Property Model Feature Test MAE Test RMSE Test rE (%)

Re (�A) GPR (g1, g2, p1, p2) 0.0662 � 0.0037 0.0968 � 0.0070 2.80 � 0.20
LR log(Z1Z2) 0.2605 � 0.0018 0.3591 � 0.0006 10.41 � 0.01

ue (cm
�1) GPR (Re

�1, g1, g2, p1, p2) 126.7 � 2.1 207.2 � 2.6 5.07 � 0.06
(Re

*�1, g1, g2, p1, p2)
a 152.5 � 3.6 227.5 � 4.6 5.56 � 0.11

(Re
�1, giso1 , giso2 , p1, p2) 61.5 � 2.9 142.8 � 7.0 3.49 � 0.17

(Re
*�1, giso1 , giso2 , p1, p2) 96.9 � 2.9 176.0 � 13.1 4.30 � 0.32

(Re
�1, giso1 , giso2 , p1, p2, �p) 67.5 � 1.0 151.8 � 9.5 3.71 � 0.2

(Re
*�1, giso1 , giso2 , p1, p2, �p) 101.8 � 5.4 188.7 � 25.4 4.61 � 0.62

(Re
�1, giso1 , giso2 , p1, p2, �g) 46.7 � 0.6 73.4 � 0.2 1.80 � 0.005

(Re
*�1, giso1 , giso2 , p1, p2, �g) 81.0 � 0.82 121.8 � 0.8 2.98 � 0.02

LR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z1Z2e�2Re=m

p
376.5 � 6.6 529.4 � 1.2 12.95 � 0.03

Re
�2 209.6 � 5.4 297.3 � 1.4 7.27 � 0.03

log
D0

Re
3Z1Z2

GPR (Re, g�, �p) 0.249 � 0.008 0.357 � 0.007 3.52 � 0.07
(R*

e, �g, �p) 0.270 � 0.006 0.451 � 0.007 4.45 � 0.07
LR Re 0.833 � 0.004 1.018 � 0.014 10.03 � 0.14

a R*
e is the predicted value from (g1, g2, p1, p2).
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particular, in the gure's inset, we show the GP regression

model prediction of log
D0

Re
3Z1Z2

versus its true value, which

shows a good performance with an RMSE ¼ 0.357 � 0.007 and
a rE equal to 3.52 � 0.07%, as shown in Table 1. In this case, the
Fig. 6 GP regression performance based on the MAE predicting ue for
molecules in the test set using (Re

�1, giso1 , giso2 , p1, p2, �g) as input features
classified by the types of the constituent atoms. The inset shows the
test set predictions ofue comparedwith respect to the true values. The
values shown are the average of predictions from 1000 MC sampled
training/test splittings. The GP regression model as learned from the
training set gives predictions of the test and training set. Shown are the
mean and standard derivation of each molecule's predictions when
used as training data (green symbols) and test data (orange symbols).

© 2021 The Author(s). Published by the Royal Society of Chemistry
GP is fed with (Re, �g, �p) as input features and it shows a fast
convergence with respect to the size of training set around N ¼
150 as shown in panel (c) of Fig. 8. The most signicant outlier
Fig. 7 GP regression performance on predicting log
D0

Re
3Z1Z2

using (Re,

�g, �p) as input features classified by the types of the constituent atoms.

In particular, the MAE of the test set is reported. The inset shows the

test set predictions of log
D0

Re
3Z1Z2

compared with respect to the true

values. The values shown are the average of predictions from 1000MC

sampled training/test splittings. The GP regression model gives

predictions of the test and training set. Shown are the mean and

standard derivation of each molecule's predictions when used as

training data (green symbols) and test data (orange symbols).
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Table 2 Regression model predictions of the A excited electronic state Re and ue. gi and pi are the groups and periods of the i-th atom,
respectively whereas gisoi stand for the group encoding the information of isotopes of hydrogen. �p, �g are the average of groups and periods of the
two atoms, respectively. Re(X) and Re(A) refer to the ground state and A-state Re, respectively. ue(X) refers to the ground state ue

Property Model Feature Test MAE Test RMSE Test rE (%)

Re (Å) GPR (Re(X), g1, g2, p1, p2) 0.0783 � 0.0018 0.107 � 0.0026 5.81 � 0.14
(Re(X), g1, g2, p1, p2, D(IP, EA)) 0.0691 � 0.0062 0.098 � 0.0097 5.32 � 0.53

ue (cm
�1) GPR (ue(X), Re

�1(X), Re
�1(A), giso1 , giso2 , p1, p2, �g) 71.8 � 1.4 107.9 � 4.4 11.3 � 0.46

(ue(X), Re
�1(X), Re

�1(A), giso1 , giso2 , p1, p2) 70.4 � 0.9 105.1 � 1.5 11.0 � 0.15
(ue(X), Re

�1(X), Re
�1(A), g1, g2, p1, p2) 70.6 � 0.9 105.1 � 1.1 11.0 � 0.12
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for log
D0

Re
3Z1Z2

is NaK, which is a van der Waals molecule. D0 of

NaK is overestimated and it may be attributed to the fact that
NaK is the only bi-alkali molecule in the dataset having D0.
There are also some outliers having rst-row elements and 3d
transition metals.

A summary of our GP regression model performance for the
different combinations of the ground state spectroscopic
constants considered in this work is shown in Table 1,
compared against the proposed models of Parr, Anderson
et al.27,29,30,45 As a result, the GP regression model shows
a superior performance against the linear model (LR in the
table) based on a particular functional form of the electron
density within the molecule. Indeed, the GP performance is, in
some cases, ve times better than the linear model (in terms of
the relative error). Therefore, the group and period (correlated
to the number of valence electrons and the number of electrons
shells, respectively) of constituent atoms within a molecule
encapsulates more valuable information regarding spectro-
scopic constants than using simple, functional forms for the
electron density within the framework of ref. 27, 29, 30 and 45.
Indeed, it is interesting to notice that, when predicting Re and
ue, one needs groups and periods of each atom in the molecule,

whereas log
D0

Re
3Z1Z2

can be well described only with the average

of group and period of the two atoms. Therefore, log
D0

Re
3Z1Z2

is
Fig. 8 Performance of the GP regression models as a function of the t
training set, predicted with the groups and periods of the two atoms, (g1, g
using the equilibrium internuclear distance Re, as well as the groups and p

�g) as the input feature. (c) Learning curve of log

�
D0

Re
3Z1Z2

�
as a function o

as well as the averages of groups and periods of the two atoms (Re, �g, �p) as
the errors regarding the MC method.

14558 | RSC Adv., 2021, 11, 14552–14561
correlated to groups and periods' additive properties rather
than the differences between the two atoms caused by their
different groups.

To further examine if our ML approach is generalizable, we
have selected 26 molecules out of the dataset and unseen by the
ML algorithm including CoO,56 CrC,57 InBr,58 IrSi,59 MgD,60

MoC,61 NbC,61 NiBr,62 NiC,63 NiO,64 NiS,65 PbI,66 PdC,61 RuC,61

RuF,67 ScBr,62 SnI,66 TiBr,62 UF,68 UO,69 WC,70 YC,61 ZnBr,62 ZrC,61

ZrCl,71 ZrF.71 The MAE of the GP regression model predicting
ground state Re of the extra test set is 0.066 �A. The average
relative error (dened as the absolute errors of each molecule
divided by their true Re) is 3.3%. Indeed, for CrC, InBr, MgD,
ZnBr, ZrCl the relative errors are <1%. Within this extra test set,
experimental ground state ue values are also available for 14
molecules: InBr, MoC, NbC, NiC, NiO, NiS, PbI, PdC, RuC, SnI,
UO, WC, YC and ZnBr. The MAE of GPR model predictions is
30 cm�1 (4%). For RuC and ZnBr, the relative errors are below
1%, and for NiS and MoC, the relative errors are below 2%. For
MoC, NbC, PbI, SnI, YC and ZrC, the experimental binding
energy has been reported and the MAE of our GPR model to
predict D0 is 0.32 eV (7.6%). Therefore, our models perform
fairly well in this extra test set.
5.2 Learning the rst excited state spectroscopic constants

To learn the equilibrium internuclear distance Re of the A
excited electronic state for different molecules, we need to
raining set size N. (a) Learning curve of Re as a function of the size of

2, p1, p2). (b) Learning curve of ue as a function of the size of training set,
eriods and the average of groups of the two atoms (Re

�1, giso1 , giso2 , p1, p2,

f the size of training set, using the equilibrium internuclear distance Re,

the input feature. The shade around the points denotes the variance of

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 The test set MAE predicting A excited electronic state Re by GP
regression, using (g1, g2, p1, p2, Re(X), D(IP, EA)) as input features,
classified by the types of the constituent atoms. The inset shows the
test set predictions of the A-excited electronic state Re compared with
respect to the true values. The values shown are the average of
predictions from 1000 MC sampled training/test splittings. The GP
regression model as learned from the training set gives predictions of
the test and training set. Shown are the mean and standard derivation
of each molecule's predictions when used as training data (green
symbols) and test data (orange symbols).

Fig. 10 The test set MAE predicting A excited electronic state ue by GP
regression, using (ue(X), Re

�1(X), Re
�1(A), g1, g2, p1, p2) as input features,

classified by the types of the constituent atoms. The inset shows the
test set predictions of A-excited electronic state ue compared with
respect to the true values. The values shown are the average of
predictions from 1000 MC sampled training/test splittings. The GP
regression model as learned from the training set gives predictions of
the test and training set. Shown are the mean and standard derivation
of each molecule's predictions when used as training data (green
symbols) and test data (orange symbols).

Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
A

pr
il 

20
21

. D
ow

nl
oa

de
d 

on
 1

/1
1/

20
26

 1
0:

06
:1

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
employ atomic features of the two constituent atoms, including
g1, g2, p1, p2, D(IP, EA), and the ground state Re(X) when con-
structing the GP regression models. It is interesting that
including D(IP, EA) can improve the predictions (Table 2),
which is dened as

DðIP; EAÞ ¼
�
EA2 � IP1; if c1\c2

EA1 � IP2; otherwise

where IPi, EAi and ci are the ionic potential, electron affinity and
electronegativity of atom i, respectively. Therefore, D(EA, IP)
qualitatively measures the electron transfer between the two
constituent atoms. The resultant test set MAE, RMSE and rE are
0.0691 � 0.0062\AA, 0.098 � 0.0097\AA, 5.32 � 0.53, respec-
tively. As shown in Fig. 9, similar to the results of ground state
Re, the transitionmetal–metal compounds are the most difficult
ones to predict.

For learning ue of the A excited electronic state, in addition
to the ground state Re

�1(X), it is also necessary to include the A
state Re

�1(A). Furthermore, it is better to include the ground
state ue(X) as the input feature. The results are shown in Fig. 10
in which (ue(X), Re

�1(X), Re
�1(A), g1, g2, p1, p2) leads to a RMSE of

105.1 � 1.1 cm�1 and rE ¼ 11.0 � 0.12%. We also nd that
including the average of groups �g or the isotope information
cannot further improve the model performance. This is ex-
pected, since this information have already been encoded in the
ground state ue.
© 2021 The Author(s). Published by the Royal Society of Chemistry
The performance of our models predicting the A excited
electronic state Re and ue are summarized in Table 2. Compared
to the ground state predictions, the errors predicting the A
excited electronic state spectroscopic constants are around two
times larger, suggesting the difficulty predicting the excited
state properties. However, we notice that ue is correlated with
the inverse of Re(A) as for ground state molecules. Our ndings
corroborate the hypothetical relationship between Re and ue in
the early times of molecular spectroscopy as it has been intro-
duced in Section 2.
6 Conclusions

In summary, we have shown that using the GP regression
model, the main spectroscopic constants of diatomic molecules
are related. This result conrms the scenario that Kratzer and
Mecke envisioned a century ago.2,3 The relationships are mostly
independent of the nature of the chemical bond of the diatomic
molecule. In particular, we have demonstrated that merely
using the atoms' group and the period within a molecule as
input features can predict particular combinations of spectro-
scopic constants with an error rE < 5%. In other words, the
spectroscopic constants of diatomicmolecules can be efficiently
learned from an appropriate dataset by GP regression models,
and their values can be accurately predicted. Furthermore, we
have shown that GP regression can efficiently learn
RSC Adv., 2021, 11, 14552–14561 | 14559

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1ra02061g


RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
A

pr
il 

20
21

. D
ow

nl
oa

de
d 

on
 1

/1
1/

20
26

 1
0:

06
:1

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
spectroscopic relationships for excited electronic states of
molecules with an error rE < 11%.

Despite the present GP models' outstanding performance,
machine learning methods may be considered mere tting
techniques or as a black-box algorithm that one can hardly learn
anything new from them. This statement is not accurate. As an
example, here, we emphasize what we have learned from the
present machine learning approach:

� It is generally assumed that some molecular properties can
be predicted based on the forming atom's positions in the
periodic table.72 However, the predictions are only qualitative
rather than quantitative. For instance, it is possible to antici-
pate the nature of a molecule's bond, but it cannot accurately
guess its dissociation energy. However, thanks to ML, we know
that it is possible to predict reasonably accurate spectroscopic
constants using the constituent atoms' group and period.

� We have learned that ue and Re depend strongly on the
number of valence electrons and electrons shells of the atoms
forming a molecule, whereas the average number of valence
electrons also plays an important role in describing ue.

log
D0

Re
3Z1Z2

depends on the average number of valence electrons

and average number of electron shells of the molecule.
� The capability of learning excited electronic state proper-

ties of diatomic molecules may open the possibility of predict-
ing Franck–Condon factors for interesting transitions regarding
direct cooling of molecules.47,73–76

Finally, we would like to emphasize that there are around
7000 heteronuclear molecules, and we only utilize 256 of these
for our GP regression model. The limited availability of spec-
troscopic data (only around 3% of possible heteronuclear
diatomic molecules) shows the vast amount of spectroscopy
that can be done within the realm of diatomic molecules. The
more data we have, the more accurate will be the GP regression
model predictions before reaching convergence of the learning
curve, and the more knowledgeable the community will be
about the fundamental properties of diatomic molecules. From
our perspective, the present work may motivate data science-
driven studies on the eld of spectroscopy of diatomic mole-
cules. In particular, it will help to evolve the eld of spectros-
copy towards the current information era and help to achieve
a better understanding on the spectroscopic properties.
Furthermore, our results may also bring some insight for the
development of features and geometry representations in
material science.
Appendix: details about the GP
regression models

The choice of covariance functions denes the smoothness of
the data points. In learning Re, the covariance function
employed is the exponential kernel dened as

k
�
xi; xj jq

� ¼ sf
2 exp

	
�r

l



; (14)

where sf is the signal variance, l is the characteristic length
scale, and r is the Euclidean distance between xi and xj.
14560 | RSC Adv., 2021, 11, 14552–14561
In learning ue, we use the Matérn class of covariance
functions40

kMaternðrÞ ¼ 21�n

GðnÞ

ffiffiffi
2

p
r

l

n

Kv

ffiffiffi
2

p
r

l
; (15)

with n¼ 5/2. Kv is modied Bessel function in D dimensions, r is
the Euclidean distance between x and x0, then the Matern 5/2
kernel function is

kn¼5=2ðrÞ ¼
 
1þ

ffiffiffi
5

p
r

l
þ 5r2

3l2

!
exp

 
�

ffiffiffi
5

p
r

l

!
: (16)

The explicit basis functions in learning Re are linear basis,

while when learning ue and log
�

De

Re
3Z1Z2

�
the basis functions

are set to be constant.
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