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1 Introduction

Early in the history of molecular spectroscopy, when it became
a discipline within chemical physics in the 1920's," some
intriguing empirical relationships between different spectro-
scopic properties were observed.”™ In particular, it was found
that the equilibrium distance, R., and the harmonic vibrational
frequency, w, were correlated in diatomic molecules. As the
field evolved, the relationship between R. and w. became more
evident, and more empirical relations between spectroscopic
constants were identified.>**> However, these empirical rela-
tionships were typically only valid for specific atomic numbers
or groups of the constituent atoms. These results motivated the
development of realistic diatomic molecular potentials***'” and
triggered the physical chemistry community to think about the
“periodicity” of diatomic molecules.*®

The development of quantum chemistry helped to shed
some light on the physics behind empirical relationships
between spectroscopic constants. In particular, thanks to the
application of the Hellmann-Feynman theorem, it was possible
to connect w, directly with the electronic density at R.."* As
a result, a first principles-based explanation (containing a few
free parameters), of the observed empirical relations between
spectroscopic constants appeared.”®?° Nevertheless, the ob-
tained relations based on the electronic density were only valid
for subsets of molecules. To date, it has not been possible to
find general relations for spectroscopic constants of diatomic
molecules in terms of the properties of their constituent atoms.

The accuracy of quantum chemistry methods relies on
(finite) basis sets optimized for each element under certain
bounds. At the same time, an accurate description of the
system's electronic structure is required, which is achieved
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constants are predicted with an accuracy of <5%, whereas for the A-excited electronic state it is needed
to include other atomic properties leading to an accuracy of <11%.

through a hierarchy of different treatments of the electron
correlation.*>** On the other hand, the widely-used (Kohn-
Sham) density functional theory (DFT) methods require accu-
rate electron exchange-correlation density functionals. The
non-empirical density functionals are derived under certain
constraints, some with several free parameters,**¢ while the
semi-empirical density functionals employ more flexible func-
tional forms with (sometimes even several tens of) coefficients
fitted to various experimental or theoretical reference proper-
ties.***” Machine learning (ML) methods, on the other hand,
discover the underlying relationships from data (the so-called
“training set”) and build up models on top of them. These
models can be quantitatively predictive for other systems that
follow similar underlying physics. More importantly, they
provide possibilities for discovering relationships between the
different properties of the system under consideration.**?°
This work shows that the relationship between spectroscopic
constants of heteronuclear diatomic molecules is general for
most kinds of molecules at hand. Our findings rely upon
applying state-of-the-art ML models to an orthodox dataset of
experimental spectroscopic constants for diatomic molecules.
In particular, we apply the Gaussian process (GP) regression
model* to predict R, w., and the binding energy, D,, as
a function of the group and period of the constituent atoms.
Similarly, our model can predict R, and w. for the A-excited
electronic state of a given molecule. Our findings generalize
the idea that some of the system's chemical properties depend
on the atoms' group and period. Indeed, the periodicity of
elements has long been used to predict chemical compounds'
properties intuitively at a qualitative level. However, the corre-
lations between the chemical properties and the constituent
atoms' periodicity are not always straightforward, and such
predictions can hardly be quantitative in most cases. On the
contrary, our main result is quantitatively meaningful: it is
possible to predict those spectroscopic constants with an
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accuracy of <5% for ground electronic states and <11% for the
A-excited electronic state. More interestingly, by analyzing our
models’ outliers, we show that molecules showing a non-
chemical bond nature like bi-alkali molecules and molecules
containing first-row elements, such as HF, are more difficult to
predict. However, the spectroscopic constants of molecules
containing transition metals challenging for quantum chem-
istry methods can be adequately described.

2 The quest of relationships between
spectroscopic constants of diatomic
molecules

As soon as molecular spectroscopy became an essential tool to
analyze molecules’ unique fingerprints and more spectra of
molecules were taken, approximate relationships were found
between spectroscopic constants. As a result, it was postulated
that the molecules’ spectroscopic constants might be correlated
based on empirical grounds. In particular, it was observed that
the equilibrium distance and the harmonic vibrational
frequency are related as R.Sw.m = const in hydrogen
halides,>***** where m is the reduced mass of the molecule. This
relationship was generalized as R./w.*m = const, the precursor
of the well-known Badger's rule,® where 7 is a natural number.
On the other hand, after studying the spectra of 16 molecules,
including homonuclear molecules and molecular ions, Mecke
and Birge found that the expression R.*w. = const described the
observed spectra better.*** In the same line, but using a given
functional form for the interatomic interaction of a molecule,
Morse proposed a relationship given as R.>w. = const.* Finally,
more involved relationships between the equilibrium distance
and the vibrational harmonic frequency were proposed' as
mRSw. n", where n stands for the number of valence electrons,
and « is a rational number. The results for a variety of the
proposed empirical rules are shown in Fig. 1, where it is noticed
that for a larger dataset, as the present one, none of the
empirical relationships hold.
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Fig. 1 Distribution and box plots of Rw.’ with different powers

combined with the reduced mass m and number of valence electrons
n.

© 2021 The Author(s). Published by the Royal Society of Chemistry

View Article Online

RSC Advances

At the same time, more spectroscopic information of molecules
became available, and more advanced and accurate quantum
chemistry tools were developed. Therefore, it was possible to search
for a first principle explanation of the empirically observed rela-
tionships between spectroscopic constants. In that endeavor, Parr
and coworkers took the lead by looking at the electron density
within a molecule as the source of the relationship between spec-
troscopic constants. The model assumes that the electron density
mutually created by the one atom in the other atom is equal at the
equilibrium distance, ie., at the sum of two atomic radii. In
particular, the electron density of atom 1 at the position of atom 2,
within a molecule, is given by*

p1(2) = CZ; exp(—£Ry), (1)

where C is a fitting parameter and ¢ represents the decay
constant of the electron density. Within this model, one finds
arelationship between the atomic numbers of the two atoms, Z,
and Z,, and the equilibrium internuclear distance R. of
a diatomic molecule as*>*3%*

Z,\Z; = A exp(§R,), (2)

where A is a free parameter. According to this relationship, R,
depends linearly on log(Z,Z2,) as

R.=£t"'1og Z,Z, — £ log A. (3)

However, the performance of this relationship has only been
checked for molecules with atoms coming from the same group
of the periodic table.”

Anderson, Parr and coworkers also suggested a relationship
between w. and R.* as

mw,> = 4t CZ, Ze 2R, (4)

based on the Born-Oppenheimer approximation, the electron
density of eqn (1) and the Hellmann-Feynman theorem. From eqn
(4) it is possible to express the harmonic vibrational frequency in
terms of the equilibrium distance and atomic properties as

VAV
we = || 5)
m

In the same vein, following the relationship between the
equilibrium distance and the harmonic vibrational frequency, it
is possible to find a relationship between the atomic number Z;,
R., and the dissociation energy D, as>>*3%*

D.

o = 4nC 2, exp(—£'R.), (6)

which can be rewritten as

D )
log——¢ _ — _£'R, + log(41C). 7
ogRC,ZlZ2 —£'R. +log(4nC) )

For the derivation of eqn (6) it must be assumed that D, =
Amw R, without any further justification.* In eqn (7), /= 3 and
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& = 0.97. Eqn (7) has been tested in a dataset of 150 molecules
leading to a good result, although no further characterization of
the model performance was reported to objectively judge its
quality. Finally, using the relation of the dissociation energy, D.,
and the binding energy, D,,

1 1
De - DO + zhwe - Zhwexm (8)

where w.x. represents the first anharmonic correction to the
harmonic vibrational frequency, it should be possible to find
Do

a linear regression model for log ————.
Re'Z,2,

3 The dataset

In this work, we focus on heteronuclear molecules due to their
relevance on laser cooling of molecules with applications in
ultracold chemistry.*”** The employed dataset contains the
main spectroscopic constants: R., w., and D, for the ground
electronic state of heteronuclear diatomic molecules. In
particular, it contains the experimental values of R., w, for 256
heteronuclear diatomic molecules taken from ref. 50-53,
whereas the experimentally determined values of D, are only
available for 197 of them.

As far as we know, this is the most extensive dataset for
experimental ground state properties of heteronuclear diatomic
molecules. Fig. 2 shows the equilibrium distance's distribution
and its ratio to the sum of the atomic radii of the constituent
atoms, R; + R,, for molecules within the dataset. Most molecules
show an equilibrium distance between 1.4 A and 3.8 A, with
a most probable value of 1.7 A. Looking at the values of R./(R; +
R,), it is clear that the molecules within the dataset have
different bonds: covalent, van der Waals, and ionic.
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Fig. 2 Ratio of the equilibrium distance, R, to the sum of the atomic
radii of the atoms forming a molecule, R; + R,, vs. R.. The background
color indicates the nature of the molecular bond in each of the
molecules. The density in the upper part of the figure shows the kernel
density distribution of R.. The box plot shows the minimum, the
maximum, the sample median, and the first and third quarterlies of R..
The empirical atomic radii of the atoms are taken from ref. 46.
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We have classified the dataset based on the types of
constituent atoms within a molecule, and the results are shown
in Fig. 3. As a result, we notice that the dataset mainly consists
of various metal and non-metal halides, hydrides, and metal-
loid compounds. It is worth noticing that more than 20% of the
dataset contains transition metal compounds, including f-block
elements. Therefore, the present dataset is general since it goes
beyond the main-group diatomic molecules and deals with
some of the more intriguing and complex atoms from a chem-
istry standpoint.

In addition to the dataset mentioned above of the ground
state properties, we also study 131 molecules whose R, w,. are
available for the A-excited electronic state. The A-state dataset
mainly consists of metal and non-metal compounds, including
transition metal compounds and several f-block compounds.

4 Machine learning method

The quest for universal relationships between spectroscopic
constants is related to the problem of how atomic and molec-
ular properties describe a spectroscopic property of a molecule,
y = fix). Here, x = (x4, X, ..., X,), consists of different atomic
properties of the constituent atoms or molecular properties,
where n denotes the number of input features relevant for the
problem at hand. Unlike traditional (non-)linear regression
models, which assume a fixed form of function fx), GP
embraces a Bayesian perspective and presumes a prior distri-
bution over the space of functions

f(xi) ~ GP(m(x), K(x;, x;)), 9)

Number of molecules
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Fig. 3 Molecules in the dataset classified by the types of their
constituent atoms.
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with a joint multivariate-Gaussian distribution, centered at
m(x;) and characterized by the covariance function K(x; X)),
which specifies the correlation (or “similarity”) between data
points.*

In this work, the spectroscopic properties y are modeled as

Pilf(x;), xi) ~ N(yih(x)" 8 +f(x)), a,).

where the basis functions, h(x;), project {x;} to a new (higher
dimensional) feature space with coefficients 8, and ¢, includes
the noise in the observations.**** The training set
D= {(x;, yi)li=1, ..., N}with Nobservations, constrains the
available distribution of functions through Bayes theorem, and
the mean of the posterior distribution is used for prediction.
The functional form of K(x;, x;) and h(x) can be selected
according to the cross-validation performance of the models.

(10)

4.1 Model performance evaluation

In training and evaluating the regression models, as customary
in ML, the ground state dataset is divided into training and test
sets. The training set represents the set of molecules used for
learning a given spectroscopic constant from the atomic prop-
erties of the constituents atoms. The test set is the set of
molecules that have not been included in the learning proce-
dure and hence are new to the regression algorithm. In learning
the equilibrium internuclear distance, R., and the harmonic
vibrational frequency w,, the training and test sets consist of

231 and 25 molecules, respectively. In learning logR the

0
RYAVAS
training/test splitting is 172/25. For learning R. and w, for the A-
excited electronic state, the training set consists of 106 mole-
cules and the test set consists of 25 molecules.

The present dataset is relatively small from an ML perspec-
tive. When the dataset is split into training and test sets, the
training set may not be representative. This may lead to a bias in
the performance of the test set. To solve this problem, we have
employed a Monte Carlo (MC) approach, in which the dataset is
stratified into 25 strata based on the level of the true values of

D,
the labels (R., w., and logsi0 in the present work).
Re*Z12,

As shown in panel (a) of Fig. 4, we have two loops in the
training and evaluation of the models. In the outer loop, we split
the dataset into training set and test set. The training set is used
to learn from the data and the test set is used for model eval-
uation. In the inner loop, we train the models with the training
set, which is further split to perform a stratified 5-fold cross
validation (CV) for the hyperparameter optimization. In partic-
ular, as shown in panel (b) of Fig. 4, in the outer loop, the
training/test splittings are done by a Monte Carlo (MC)
approach. Specifically, we randomly select 25 test molecules
from the dataset, which is stratified into 25 strata based on the
levels of the true values of the labels. The stratification helps to
minimize the change of the proportions of the dataset compo-
sitions upon splitting.*® In each MC step, a regression model is
trained and gives the predictions to the training set and the test
set. Therefore, in this work we report the mean and standard
deviation of the predictions for each molecule when they are

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Model evaluation:
Monte-Carlo sampling for the training/test splitting

Model training:
Stratified 5-fold cross-validation

Model evaluation:
Monte-Carlo sampling for the training/test splitting

(Stratified, in the order of levels of true labels)
[_1AC_1A i
| / 7~ |
Lo Az

Training set Test set

Model training:
Stratified 5-fold cross-validation

Training set Validation set

Fig. 4 Scheme of the training/test set splitting in the model evalua-
tion. (a) There are two loops: the outer loop for the model perfor-
mance evaluation, and the inner loop for the training of model and
hyperparameter optimization. (b) In the outer loop, the data are
stratified based on the true values of the labels, and each stratum is
randomly split into training and test sets. In learning the properties, the
training sets are further split into training and validation sets to perform
a stratified 5-fold cross-validation.

used in the training and test sets from all the MC steps. In total,
we evaluate our models with 1000 MC steps for the training/test
splittings for the model performance evaluation, and 500 MC
steps for generating the learning curves.

The performance of the models is evaluated by three
different estimators. The first estimator is the mean absolute
error (MAE) defined as

1 & .
MAE = N ;‘yi =il (11)

where y:f are the true values, y; are the predictions, and N is the
number of observations. The second estimator is the root mean
square error (RMSE), which is given by

(12)

The last estimator is the normalized error r, defined as the
ratio of the RMSE to the range of y,

RSC Adv, 2021, 1, 14552-14561 | 14555
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RMSE

fg = ———.
Ymax — Vmin

(13)

4.2 The learning curves

The learning curves show the training and test performance of
a model as a function of the training set size N. From the
learning curves it is possible to infer the performance of
a model by looking at its bias and variance. Similarly, it is
possible to understand if the model performance improves with
the training set size. For each of the points in the learning curve,
the training is performed with 500 different training/test split-
tings by the MC approach.

5 Results and discussion
5.1 Learning ground state spectroscopic constants

Fueled by the idea of periodicity of molecules (see, e.g., ref. 18
and references in it), we use the group, gz, and period, p, of the
atoms within a molecule, i.e., k = 1, 2, as input features for a GP
regression model to predict different combinations of spectro-

scopic constants: R., w. and 10g<Res 7.7,

Section 2. The training sets are permuted before feeding the
learning algorithm to reproduce the permutational invariance
of relevant properties upon exchanging two atoms in a molecule
in the GP regression models.

The GP regression model performance of ground state R, as
a function of input features (g1, g», p1, p») is shown in Fig. 5,
where the MAE associated with each of the distinct type of
molecules is reported. As a result, most of the molecules are well
described by our GP model, as confirmed in the inset of Fig. 5.
In particular, it shows little dispersion of the predicted values
concerning the true values except for a handful of molecules
(transition metal-metal and bi-alkali molecules). To further
quantify the GP regression model performance, we calculate the
average RMSE of the predicted R. on 1000 randomly selected
test sets leading to 0.0968 4 0.0070 A (Table 1), and r; = 2.80 +
0.20%. Our results confirm that the model performance
improves as the number of molecules in the training set, N,
grows, as it is shown in the learning curve in panel (a) of Fig. 8.
Indeed, it is not yet converged for N = 231, suggesting that the
GP regression model can be further improved by learning more
data in the training set.

), as presented in

iso

In learning w,, we find (R." 1, gi°, g5°, p1, p», &) to be the best
combination of features, where R, is the predicted equilibrium
distance from (g, g2, p1, P2), 150 encodes the information about
the hydrogen isotopes of the k-th atom in the molecule, and g is
the average of the groups of the two atoms. However, a much
better performance is found when the true R, value is employed.
The GP model's performance is shown in the inset of Fig. 6,
where it is noticed that the predicted values agree very well with
the true values. Indeed, the test set MAE and RMSE are 46.7 +
0.6 cm™ ' and 73.4 + 0.2 cm ™!, respectively, while g = 1.80 +
0.005%, as shown in Table 1. Despite the outstanding perfor-
mance of our GPR model some molecules are still not well
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Fig. 5 GP regression performance on predicting Re using (g1, g2, p1.
p2) as input features classified by the types of the constituent atoms. In
particular, the MAE of the test set is reported. The inset shows the test
set predictions of R versus the true values. The values shown are the
average of predictions from 1000 MC sampled training/test splittings.
The GP regression model gives predictions of the test and training sets.
Shown are the mean and standard derivation of each molecule's
predictions when used as training data (green symbols) and test data
(orange symbols).

described as shown in Fig. 6. These outliers include HF, DF, and
HgH. The large errors predicting w. of HF and DF can be
attributed to their unique bond mechanism compared to other
halogen hydrides.

Within the features (R. ', £5°, g5°, p1, P2, §), it is interesting

that the average of groups g = % helps in learning w.. In

particular, with g, the MAE of the model reduces around 20%
compared with the predictions using (R.™*, g5°, g5°, py, p,) as
the input feature, as summarized in Table 1. Analogously, the
standard deviation of the MC training/test splittings predictions
becomes much smaller, suggesting that the model is more
robust for different kinds of molecules within the dataset.
Actually, by introducing g, the most significant improvement
happens in the descriptions of bi-alkali molecules, where the
MAE can be reduced by a factor of 3. The errors predicting HF
and DF can also be reduced by a factor of 2, although they are
still tricky cases for the model. On the contrary, introducing the

average of periods p = Z# does not help improve the

model, suggesting that w. has a dependency on the total
number of valence electrons of the two atoms rather than the
number of electron shells.

Motivated by the pioneering work of Anderson, Parr, and
3[)70 based
Re*Z12,
on GP regression and the results are shown in Fig. 7. In

coworkers,*”?*%%% we study the prediction of log

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Table1l Regression model predictions of Re, we, and Dg. g; and p; represent the group and period of the j-th atom, respectively. giﬂs° stand for the

i

group encoding the information of isotopes of hydrogen, and p, g are the average of groups and periods of the two atoms, respectively

Property Model Feature Test MAE Test RMSE Test g (%)
R. (A) GPR (g1, L2 P1y P2) 0.0662 + 0.0037 0.0968 + 0.0070 2.80 + 0.20
LR log(2,2,) 0.2605 + 0.0018 0.3591 + 0.0006 10.41 + 0.01
we (em™) GPR (Re ™, 21, £2, P1, P2) 126.7 + 2.1 207.2 + 2.6 5.07 + 0.06
(R, g1, &2, p1, p2)" 152.5 + 3.6 227.5 + 4.6 5.56 + 0.11
(R, g0, g5°, pa, p2) 61.5 + 2.9 142.8 + 7.0 3.49 £ 0.17
(R, 85, ¢5°, p1, pa) 96.9 + 2.9 176.0 + 13.1 4.30 + 0.32
(R, g5°, 5°, p1, P2y D) 67.5 + 1.0 151.8 £ 9.5 3.71 4 0.2
(R, g, 85°, P1, P2, D) 101.8 + 5.4 188.7 £ 25.4 4.61 £ 0.62
(R, g5°, 85°, p1, P2, ©) 46.7 £ 0.6 73.4 4 0.2 1.80 + 0.005
(R, £5°, 85°, pa, pa, §) 81.0 + 0.82 121.8 + 0.8 2.98 + 0.02
LR VZ1Zre 2R Jm 376.5 + 6.6 529.4 + 1.2 12.95 + 0.03
R, * 209.6 + 5.4 297.3 + 1.4 7.27 £ 0.03
log Dy GPR (Res & D) 0.249 + 0.008 0.357 & 0.007 3.52 + 0.07
R32,7, (R, 2, D) 0.270 = 0.006 0.451 £ 0.007 4.45 + 0.07
LR R. 0.833 £ 0.004 1.018 + 0.014 10.03 + 0.14

“ R. is the predicted value from (g1, g, p1, P2)-

particular, in the figure's inset, we show the GP regression

i~ D . .
model prediction of logsi0 versus its true value, which
Re*Z12,

shows a good performance with an RMSE = 0.357 =+ 0.007 and
argequal to 3.52 4 0.07%, as shown in Table 1. In this case, the
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Fig.6 GP regression performance based on the MAE predicting w, for
molecules in the test set using (Re %, g£°, g5°, p1, P2, §) as input features
classified by the types of the constituent atoms. The inset shows the
test set predictions of we compared with respect to the true values. The
values shown are the average of predictions from 1000 MC sampled
training/test splittings. The GP regression model as learned from the
training set gives predictions of the test and training set. Shown are the
mean and standard derivation of each molecule’'s predictions when
used as training data (green symbols) and test data (orange symbols).
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GP is fed with (R., g, p) as input features and it shows a fast
convergence with respect to the size of training set around N =
150 as shown in panel (c) of Fig. 8. The most significant outlier
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Fig.7 GP regression performance on predicting logﬁ using (Re,
. vpr €
g, p) as input features classified by the types of the constituent atoms.
In particular, the MAE of the test set is reported. The inset shows the

0

. D .
test set predictions of log———— compared with respect to the true
R3Z412,

values. The values shown are the average of predictions from 1000 MC
sampled training/test splittings. The GP regression model gives
predictions of the test and training set. Shown are the mean and
standard derivation of each molecule's predictions when used as
training data (green symbols) and test data (orange symbols).
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Table 2 Regression model predictions of the A excited electronic state Re and we. g; and p; are the groups and periods of the i-th atom,

respectively whereas g/*°

two atoms, respectively. Re(X) and R.(A) refer to the ground state and A-

stand for the group encoding the information of isotopes of hydrogen. p, g are the average of groups and periods of the

state R, respectively. we(X) refers to the ground state we

Property Model Feature Test MAE Test RMSE Test rg (%)
R. (A) GPR (Re(X), g1, &2, P1, P2) 0.0783 + 0.0018 0.107 =+ 0.0026 5.81 + 0.14
(Re(X), g1, 82, 1, P2, D(IP, EA)) 0.0691 + 0.0062 0.098 + 0.0097 5.32 + 0.53

we (em™) GPR (we(X), R *1(x) Re'(A), g5, 85°, 1, P2, 8) 71.8 + 1.4 107.9 + 4.4 11.3 + 0.46
(we(X), Re1(X), Re(A), £5°, £5°, by, p2) 70.4 + 0.9 105.1 + 1.5 11.0 + 0.15

(@e(X), Re™H(X), Re (A), gl, &2y D1y D2) 70.6 + 0.9 105.1 £ 1.1 11.0 £ 0.12

for log . is NaK, which is a van der Waals molecule. D, of correlated .to groups and periods' additive properties rath(?r
lez than the differences between the two atoms caused by their

NaK is overestlmated and it may be attributed to the fact that
NaK is the only bi-alkali molecule in the dataset having D,.
There are also some outliers having first-row elements and 3d
transition metals.

A summary of our GP regression model performance for the
different combinations of the ground state spectroscopic
constants considered in this work is shown in Table 1,
compared against the proposed models of Parr, Anderson
et al??3%% As a result, the GP regression model shows
a superior performance against the linear model (LR in the
table) based on a particular functional form of the electron
density within the molecule. Indeed, the GP performance is, in
some cases, five times better than the linear model (in terms of
the relative error). Therefore, the group and period (correlated
to the number of valence electrons and the number of electrons
shells, respectively) of constituent atoms within a molecule
encapsulates more valuable information regarding spectro-
scopic constants than using simple, functional forms for the
electron density within the framework of ref. 27, 29, 30 and 45.
Indeed, it is interesting to notice that, when predicting R. and
we, one needs groups and periods of each atom in the molecule,

whereas log can be well described only with the average

3
e 4142

of group and period of the two atoms. Therefore, logL is

different groups.

To further examine if our ML approach is generalizable, we
have selected 26 molecules out of the dataset and unseen by the
ML algorithm including Co0O,*® CrC,”” InBr,*® IrSi,* MgD,*
MoC,** NbC,** NiBr,* NiC,* NiO,* NiS,* Pbl PdC,** RuC,*
RuF,” ScBr,* Snl,* TiBr,* UF,* UO,* WC,™ YC,** ZnBr,* ZrC,*
ZrCl,”* ZrF.”* The MAE of the GP regression model predicting
ground state R, of the extra test set is 0.066 A. The average
relative error (defined as the absolute errors of each molecule
divided by their true R.) is 3.3%. Indeed, for CrC, InBr, MgD,
ZnBr, ZrCl the relative errors are <1%. Within this extra test set,
experimental ground state w, values are also available for 14
molecules: InBr, MoC, NbC, NiC, NiO, NiS, Pbl, PdC, RuC, Snl,
UO, WC, YC and ZnBr. The MAE of GPR model predictions is
30 cm ™' (4%). For RuC and ZnBr, the relative errors are below
1%, and for NiS and MoC, the relative errors are below 2%. For
MoC, NbC, Pbl, Snl, YC and ZrC, the experimental binding
energy has been reported and the MAE of our GPR model to
predict D, is 0.32 eV (7.6%). Therefore, our models perform
fairly well in this extra test set.

5.2 Learning the first excited state spectroscopic constants

To learn the equilibrium internuclear distance R. of the A

R32,7, . ! ;
excited electronic state for different molecules, we need to
@ g5 ® ©
—&— Training ®— Training ®— Training
o Test o Test 0.42 o Test
o 200 N N
= g A\ c!a\‘; © ° °
< £ 0.36 *—o o o
= 1 14
& 015 . < 150 . ~
h ]
5 e 3 a
wo oy e o ° by _g: 0.3 e
2 el W 100 N N, 5 e
4 5 e \ e o | § /
=
0.05 e
%0 *—o—9o oo % 024
o0 oo —9o 0
50 100 150 200 50 100 150 200 50 100 150 200

Number of training data

Number of training data

Number of training data

Fig. 8 Performance of the GP regression models as a function of the training set size N. (a) Learning curve of R, as a function of the size of
training set, predicted with the groups and periods of the two atoms, (g1, g2, p1, p2). (b) Learning curve of w, as a function of the size of training set,

using the equilibrium internuclear distance R., as well as the groups and periods and the average of groups of the two atoms (R. ™, g5°, g5

Dy
R3Z,Z,

g) as the input feature. (c) Learning curve of log<
e 142

iso _iso

 P1. P2,

) as a function of the size of training set, using the equilibrium internuclear distance R.,

as well as the averages of groups and periods of the two atoms (R, g, p) as the input feature. The shade around the points denotes the variance of

the errors regarding the MC method.
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Fig.9 The test set MAE predicting A excited electronic state R, by GP
regression, using (g1, g2, P1, P2 Re(X), D(IP, EA)) as input features,
classified by the types of the constituent atoms. The inset shows the
test set predictions of the A-excited electronic state R. compared with
respect to the true values. The values shown are the average of
predictions from 1000 MC sampled training/test splittings. The GP
regression model as learned from the training set gives predictions of
the test and training set. Shown are the mean and standard derivation
of each molecule’s predictions when used as training data (green
symbols) and test data (orange symbols).

employ atomic features of the two constituent atoms, including
g1, &2, P1, D2, D(IP, EA), and the ground state R.(X) when con-
structing the GP regression models. It is interesting that
including D(IP, EA) can improve the predictions (Table 2),
which is defined as

EA, — IP,,
EA, — IP,,

it x; <x

D(IP, EA) = { otherwise

where IP;, EA; and y; are the ionic potential, electron affinity and
electronegativity of atom i, respectively. Therefore, D(EA, IP)
qualitatively measures the electron transfer between the two
constituent atoms. The resultant test set MAE, RMSE and rg are
0.0691 £ 0.0062\AA, 0.098 + 0.0097\AA, 5.32 £ 0.53, respec-
tively. As shown in Fig. 9, similar to the results of ground state
R., the transition metal-metal compounds are the most difficult
ones to predict.

For learning . of the A excited electronic state, in addition
to the ground state R, '(X), it is also necessary to include the A
state R, '(A). Furthermore, it is better to include the ground
state w.(X) as the input feature. The results are shown in Fig. 10
in which (w(X), Re '(X), R~ "(A), £1, g2, P1, P>) leads to a RMSE of
105.1 + 1.1 cm ' and r; = 11.0 £+ 0.12%. We also find that
including the average of groups g or the isotope information
cannot further improve the model performance. This is ex-
pected, since this information have already been encoded in the
ground state we.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig.10 The test set MAE predicting A excited electronic state we by GP
regression, using (we(X), Re 1(X), Re HA), g1. g2, p1. P2) as input features,
classified by the types of the constituent atoms. The inset shows the
test set predictions of A-excited electronic state w. compared with
respect to the true values. The values shown are the average of
predictions from 1000 MC sampled training/test splittings. The GP
regression model as learned from the training set gives predictions of
the test and training set. Shown are the mean and standard derivation
of each molecule's predictions when used as training data (green
symbols) and test data (orange symbols).

The performance of our models predicting the A excited
electronic state R, and w, are summarized in Table 2. Compared
to the ground state predictions, the errors predicting the A
excited electronic state spectroscopic constants are around two
times larger, suggesting the difficulty predicting the excited
state properties. However, we notice that w,. is correlated with
the inverse of R.(A) as for ground state molecules. Our findings
corroborate the hypothetical relationship between R, and w, in
the early times of molecular spectroscopy as it has been intro-
duced in Section 2.

6 Conclusions

In summary, we have shown that using the GP regression
model, the main spectroscopic constants of diatomic molecules
are related. This result confirms the scenario that Kratzer and
Mecke envisioned a century ago.>* The relationships are mostly
independent of the nature of the chemical bond of the diatomic
molecule. In particular, we have demonstrated that merely
using the atoms' group and the period within a molecule as
input features can predict particular combinations of spectro-
scopic constants with an error rg < 5%. In other words, the
spectroscopic constants of diatomic molecules can be efficiently
learned from an appropriate dataset by GP regression models,
and their values can be accurately predicted. Furthermore, we
have shown that GP can efficiently

regression learn
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spectroscopic relationships for excited electronic states of
molecules with an error ry < 11%.

Despite the present GP models' outstanding performance,
machine learning methods may be considered mere fitting
techniques or as a black-box algorithm that one can hardly learn
anything new from them. This statement is not accurate. As an
example, here, we emphasize what we have learned from the
present machine learning approach:

o It is generally assumed that some molecular properties can
be predicted based on the forming atom's positions in the
periodic table.”” However, the predictions are only qualitative
rather than quantitative. For instance, it is possible to antici-
pate the nature of a molecule's bond, but it cannot accurately
guess its dissociation energy. However, thanks to ML, we know
that it is possible to predict reasonably accurate spectroscopic
constants using the constituent atoms' group and period.

e We have learned that w. and R. depend strongly on the
number of valence electrons and electrons shells of the atoms
forming a molecule, whereas the average number of valence
electrons also plays an important role in describing we.

D
log3—0 depends on the average number of valence electrons
R3Z17,

and average number of electron shells of the molecule.

e The capability of learning excited electronic state proper-
ties of diatomic molecules may open the possibility of predict-
ing Franck-Condon factors for interesting transitions regarding
direct cooling of molecules.*”737¢

Finally, we would like to emphasize that there are around
7000 heteronuclear molecules, and we only utilize 256 of these
for our GP regression model. The limited availability of spec-
troscopic data (only around 3% of possible heteronuclear
diatomic molecules) shows the vast amount of spectroscopy
that can be done within the realm of diatomic molecules. The
more data we have, the more accurate will be the GP regression
model predictions before reaching convergence of the learning
curve, and the more knowledgeable the community will be
about the fundamental properties of diatomic molecules. From
our perspective, the present work may motivate data science-
driven studies on the field of spectroscopy of diatomic mole-
cules. In particular, it will help to evolve the field of spectros-
copy towards the current information era and help to achieve
a better understanding on the spectroscopic properties.
Furthermore, our results may also bring some insight for the
development of features and geometry representations in
material science.

Appendix: details about the GP
regression models

The choice of covariance functions defines the smoothness of
the data points. In learning R., the covariance function
employed is the exponential kernel defined as

;
k(xh lea) = O'fz exp<—7>, (14)
where o is the signal variance, [/ is the characteristic length
scale, and r is the Euclidean distance between x; and x;.
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In learning w., we use the Matérn class of covariance
functions*’

R RCRG

kMatcrn(r)— F(V) l v l ) (15)

with v = 5/2. K, is modified Bessel function in D dimensions, r is

the Euclidean distance between x and x/, then the Matern 5/2
kernel function is

Var 5P V5
kpespr) = <1+Tr+# | =77)

The explicit basis functions in learning R. are linear basis,

(16)

D.

3

) the basis functions
e 142

while when learning v, and log(

are set to be constant.
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