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Flavones and flavanones are widely occurring natural flavonoids
produced by various medicinal plants and their synthetic
derivatives, featuring a main 15-carbon skeleton possessing 2
phenyl rings and 1 oxacycle." In recent decades, they have been
considered privileged structures exhibiting various biological
activities,” such as anti-inflammatory,® anti-cancer,* neuro-
protective,® and estrogen-related functions® (Fig. 1). As routes
towards such privileged flavonoids, many strategies, including
the Allan-Robinson reaction for flavones and intramolecular
conjugate addition of 2’-hydroxychalcones for flavanones, have
been reported.” Among these, intramolecular cyclization of 2'-
hydroxychalcone intermediates was conventionally used for the
synthesis of flavanones due to the readily available properties of
the substrates through the condensation of 2’-hydroxy-aceto-
phenones and corresponding aldehydes.® In addition, such
flavanones can be readily converted into flavones via further
oxidation processes (Scheme 1).° Thus, these types of flavonoid
synthesis involving intramolecular conjugate addition have
been generally used for flavonoid synthesis,' but they generally
have drawbacks of requiring harsh conditions such as acidic or
basic reflux conditions for cyclization, indicating that chemi-
cally labile compounds may in some cases not be tolerable in
reaction conditions." Additional oxidation steps in which
flavanones are transformed into flavones often require the use
of strong oxidants such as I, that enable side reactions to
occur.”” In this regard, novel synthetic routes featuring trans-
formative and compatible reaction conditions toward
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catalyses expediently provide a variety of flavones and flavanones from 2’'-
hydroxydihydrochalcones as common

intermediates, depending on oxidants and additives, via

discriminate oxidative cyclization sequences involving dehydrogenation, respectively, in a highly atom-

flavonoids have been pursued in recent decades. In particular,
given the increasing importance of constructing a privileged
chemical library for probing biological systems, efficient and
divergent synthesis of flavonoids is necessary.*

Taken together, it is important to develop a novel and
versatile synthetic transformation of common substrates into
flavones and flavanones under mild conditions and such
a transformation is also expected to enable straightforward
reactions for the construction of a privileged flavonoid library.
As mentioned above, 2’-hydroxychalcones have been conven-
tionally used as main precursors in flavonoid synthesis, but they
are reactive and unmanageable in some cases due to their
reactive o,B-unsaturated carbonyl and enol ether moieties. In
addition, their use is generally involved with several disadvan-
tages, as mentioned above.' Thus, we think that the use of
common intermediates instead of 2’-hydroxychalcones that is
traditionally used but somewhat problematic is required.
Recently, direct B-functionalization of simple ketones via
several catalysts using transition metals and light was re-
ported,” indicating that simple ketones can be useful and
potential surrogates of o,B-unsaturated ketones for further
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Fig.1 Examples of bioactive flavonoids.
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Scheme 1 Synthetic strategy for flavonoids pursued in this study.

oxidative catalysis. In addition, we reported that chromanones,
simple ketones, can be converted into flavones and flavanones
via palladium(u)-catalyzed dehydrogenation-mediated coupling
sequences with arylboronic esters and acids, respectively, and
also recently reported that N-substituted azaflavanone can be
synthesized from N-substituted aminodihydrochalcones via
Pd(n)-catalyzed oxidative cyclization." Inspired by these
previous works, we sought to find novel and divergent synthetic
routes to a variety of privileged flavonoids, particularly flavones
and flavanones using common starting materials.

Herein, we report palladium(u)-catalyzed oxidative cycliza-
tion of 2’-hydroxydihydroxychalcones that are novel and toler-
able isosteres of 2’-hydroxychalcones as an efficient and
divergent route for the synthesis of flavones and flavanones. To
find an optimal reaction condition where flavone and flavanone
were synthesized via Pd(u)-catalyzed oxidative cyclization from
the common intermediate in independent manners, simple 2'-
hydroxydihydrochalcone was selected as the model compound
to screen the reaction conditions (Table 1). Based on the spec-
ulation that the dehydrogenation process from 2'-hydroxydihy-
drochalcone to 2’-hydroxychalcone might proceed further
reactions into flavone and flavanone, we initially tested the
reaction conditions which are known to enable Pd(u)-catalyzed
dehydrogenation to occur with Pd(TFA), and DMSO under an O,
atmosphere, which is eco-friendly oxidant."” The use of this
reaction condition resulted in the formation of flavanone 4a as
the major product (31% yield, entry 1) and flavone 3a with 12%
yield, along with a small amount of 2’-hydroxychalcone 2a
(14%). This result implied that 2’-hydroxydihydrochalcone
could be dehydrogenated and slightly transformed into desired
flavonoids under the reaction conditions featuring Pd(u) catal-
ysis. Based on the results, we tried to optimize the reaction
conditions by using additives such as heterocyclic amines or
inorganic bases as Pd(u) ligands. In the presence of most of the
heterocyclic amines and K,CO;3, the overall yields of the reac-
tions for the synthesis of flavonoids were significantly increased
(entries 2-5). Interestingly, the catalytic system featuring 2,2’
bipyridine (bpy) as a ligand provided flavone 3a in 55% yield as
a major product, along with flavanone 4a in 10% yield, indi-
cating that bidentate amine was better than the other

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Optimization of the reaction conditions®

B ohyohgthy

Yield” [%)]

Pd(TFA),

Ligand
_ Oddant
OH DMSO
100°C

Entry Additive Oxidant 2a 3a 4a
1 — 0, 14 12 31
2 K,CO;4 0, 8 28 20
3 DMAP O, 6 29 36
4 Pyridine 0, 5 41 37
5 Pyrimidine 0, 7 48 32
6 bpy 0, 5 55 10
7 5-NO, phen 0, 3 81 2
8 — Benzoquinone 7 1 12
9 — K,S,05 11 4 19
10 — AgOAc 12 13 29
11 — Cu(OAc), 33 6 44
12 Phenanthroline Cu(OAc), 23 27 34
13 Pyridine Cu(OAc), 14 13 33
14 DMAP Cu(OAc), 25 22 35
15 K,CO;4 Cu(OAc), 7 1 16
16 AcOH Cu(OAc), 20 11 42
17 HCO,H Cu(OAc), 9 6 43
18 p-TsOH Cu(OAc), 15 21 27
19¢ — Cu(OAc), 30 3 55
2097 — Cu(OAc), 8 10 79
219¢ — Cu(OAc), — 16 —

@ Reactions were carried out in the presence of 0.3 mmol of 1a, 10 mol%
Pd(TFA),, 20 mol% additive, molecular oxygen or 1.0 equ1v oxidant and
DMSO 1 mL at 100 °C for 15-48 h. ? Isolated yield.  DMSO 3 mL.
4 Addition of 2 N HCI 20 mL and ethyl acetate 10 mL for 24 h after 1a
was consumed. ° Cu(OAc), 2 equiv.

monodentate amines, including pyridine as a Pd(u) ligand,
under incorporating conditions (entry 6). Notably, the use of 5-
nitro-1,10-phenanthroline as a ligand enables the reaction to
exclusively yield flavone 3a with the highest yield of 81% and
flavanone 4a in 2% yield (entry 7).

Next, we focused on optimizing the conditions where flava-
none, rather than flavone, is converted from 2’-hydroxydihy-
drochalcone that is a common starting material. In the view of
the oxidation process, we supposed that the use of a stoichio-
metric amount of oxidant rather than molecular oxygen can
result in a stepwise conversion of 2’-hydroxydihydrochalcone
into 2’-hydroxychalcone, leading to the flavanone through the
concurrent intramolecular 1,4-addition, rather than to the
flavone for which an additional oxidation process may be
needed. With this insight, we tested stoichiometric amounts of
various oxidants instead of molecular oxygen for obtaining
flavanone exclusively based on the entry 1 conditions (entries 8-
11). As anticipated, in most of the conditions, flavanone was
synthesized as a major product, but the yields were generally
poor. When Cu(OAc), was used as the oxidant, the yield of
flavanone was increased to 44%, along with the formation of
flavone at a yield of 6% (entry 11). In addition, we screened

RSC Adv, 2021, 11, 14000-14006 | 14001
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various bases and acids as additives or potential ligands for
improving the reaction under the conditions where Cu(OAc),
was used as the oxidant.

Heterocyclic ligands, including monodentates and biden-
tates, slightly decrease the yields of the reaction for providing
flavanones (entries 12-14). This trend was also observed for the
addition of potassium carbonate or acids (entries 15-18). Thus,
unlike for flavone synthesis, additives did not significantly
improve the reaction efficiency. With the entry 11 condition (no
additive), the concentration was diluted to 0.1 M for facilitating
intramolecular cyclization, and the reaction afforded flavanone
4ain 55% yield (entry 19). Next, with the conditions of entry 19,
an additional 2 N HCIl was added to cyclize the remaining

Pd(TFA),
5-NO, phen

H DMSO (0.3 M)
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Scheme 2 Reaction scope of the flavone synthesis. Reaction condi-
tions: 1 (1.0 equiv.), PA(TFA), (10 mol%), 5-NO,-1,10-phenanthroline
(20 mol%) and DMSO (0.3 M) at 100 °C under O, for 48 h. ? Yield
determined by *H NMR analysis. © 1.2 g scale reaction.
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chalcone to flavanone under acidic conditions when 2'-
hydroxydihydrochalcone 1a was completely consumed. Under
these conditions, flavanone 4a was successfully obtained with
the highest yield of 79% (entry 20). The use of 2 equivalents of
Cu(OAc), generated flavone 3a as a detectable major product in
lower yield (16%) than expected, indicating that excess
Cu(OAc), is less effective than molecular oxygen for flavonoid
synthesis.

With the optimized conditions in hand (Table 1, entry 7), we
applied our methodology for the synthesis of flavones with
various substituents from the corresponding 2'-hydroxydihy-
drochalcone (Scheme 2). A variety of aryl A ring derivatives were
successfully synthesized under these conditions. The reaction
was well-tolerated and proceeded with the 2’-hydroxydihy-
drochalcone derivatives with electron-withdrawing groups such
as halogens, triflate, pivalate and nitro groups (3b-f, 3h, and 3v-
y), regardless of the A or B ring. In the case of using the
substrates possessing electron-donating substituents such as
methyl (3g), hydroxy (3i, 30, and 3p), methoxy (3j, 31 and 3n),
benzyloxy (3k), dimethoxy (3 m, 3q and 3r) and trimethoxy

o o]
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N DMSO (0.1 M), 100 °C; N
R A R=F A
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B |—R? B |-R?
' Z Pz
o] o] o]

(e}

4a, 79% (50%)°
o

4b, 69%

=
o
o

=
(0]
Q
;ﬁo
o
By
9
;‘
=

4d, 68% 4e, 74%

o o o)
“O @ O
ACIAA S e
4g,81% 4h, 75% OMe i, 67% OH
o o) o
O O O OMe
O OO
4, 70% 4K, 69% OMe 4, 48%
OH OMe OMe
o) o) o)

o

o

=

@
o o
4 =
@ @
o

4m, 52% 4n, 51%

o o o
E o O i :o: “Me o //
s
ap, 22% cl 4q, 18% 4r, 29%

Scheme 3 Reaction scope of the flavanone synthesis. Reaction
conditions: 1 (1.0 equiv.), PA(TFA), (10 mol%), Cu(OAc), (1.0 equiv.) and
DMSO (0.1 M) at 100 °C under Ar for 15 h; then addition of 2 N HCl
20 mL and ethyl acetate 10 mL for 24 h at 100 °C.  No addition of 2 N
HCl and ethyl acetate. ? 1.0 g scale reaction.
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groups (3s and 3t), the reactions progressed well in moderate to
good yields. In particular, the highest yield of 95% was obtained
for 3'-hydroxyflavone 3p. 2-(Naphthalen-2-yl)-4H-chromen-4-one
3u was formed in 72% yield. However, 3-methylchromenone 3z
was obtained from a corresponding 2'-hydroxydihydrochalcone
in a relatively lower yield (30%). The substrates with heterocy-
cles such as N-methyl indol-3-yl, thiophen-2-yl, and furan-2-yl,
as B ring, were also converted to corresponding flavones 3aa,
3ab, and 3ac in 32%, 54%, and 15% yields.

Next, under the optimized conditions (Table 1, entry 20), we
performed the reaction for the synthesis of flavanones using
various derivatives of 2’-hydroxydihydrochalcone 1 that is the
common substrate for the synthesis of flavones (Scheme 3). The
desired flavanone products possessing electron-deficient
substituents such as halogens and ester groups (4b-c, and 40)
as well as electron-rich substituents such as hydroxy and alkoxy
moieties regardless of the A or B ring (4d-m) were readily ob-
tained in moderate to good yields. In particular, flavanones with
naturally abundant oxygen-containing moieties (4e and 4g-m)
were generated effectively in the reaction. Flavanone 4n with
a naphthyl moiety was also formed well in 72% yield. A
substrate containing a thiophene-2-yl group as B ring was also
converted to flavanone 4r in 29% yield. 3-Methylchromanone 4q
was obtained from a corresponding 2’-hydroxydihydrochalcone
in a lower yield (18%) compared to the other flavanones, which
is similar to the case of 3-methylchromenone 3z. In the case of
reactions for preparing 3z and 4q, lots of 1-(2-hydroxyphenyl)
butan-1-one, a starting material, remained not to be reacted.
A few flavones such as 3ac and flavanones such as 4p were not
obtained in good yield, along with several side products.
Collectively, these results indicated that 2'-hydroxydihy-
drochalcones that are chemically compatible substrates can be
obviously transformed into flavones and flavanones in diver-
gent and efficient manners, respectively.

To further investigate the divergent utility of our synthetic
methodology, we applied it to the synthesis of natural flavo-
noids (Scheme 4). Under the optimal conditions, geraldone
dimethyl ether 5a (ref. 18) and butin trimethyl ether 5b," the

Optimized condition
_ .

for flavone MeO

5a, 88%
Geraldone dimethyl ether

OMe
® i
OMe
Optimized condition O
1aa >
(@)

for flavanone MeO

l OMe

OMe
5b, 48%
Butin trimethyl ether

Optimized condition

for flavone

O OH
OMe

1ab 5c, 70%
Tithonine

Scheme 4 Application for the synthesis of natural products.
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biologically active natural flavonoids, were successfully trans-
formed from common substrate 1aa in moderate yields (88%
and 48%, respectively, Scheme 4). Tithonine 5¢, an anti-
inflammatory  flavone known as a selective COX
(cyclooxygenase)-1 inhibitor,*® was also synthesized well under
our reaction conditions.

Next, to investigate the mechanism of our synthetic meth-
odology, we carried out kinetic analysis of the reaction using
high-pressure liquid chromatography (HPLC) to examine the
time-dependent conversion of 2'-hydroxy-4-
methoxydihydrochalcone 1n to the corresponding flavone 3n
or flavanone 4h under optimized reaction conditions. For
flavone synthesis, it was observed that the amount of 2/-hydroxy-
4- methoxydihydrochalcone 1n gradually decreased over time,
and 2/-hydroxy-4-methoxychalcone 2n was increasingly formed
in a dramatic manner with the concurrent formation of flavone
3n within 5 h (Scheme 5a). Then, 2n was gradually diminished,
and 3n was significantly formed, indicating that 2n may be
consumed for the synthesis of the desired flavone 3n. In addi-
tion, in the conditions of flavanone synthesis (Scheme 5b), it

Pd(TFA)2
5-NO, phen

DMSO (0.3 M)
0, 100 °C

1n OMe OMe

100 & .
wh e PR
SOL g o
g 70 |d "
&
k7] 60 A
£s0f 2 N
S 40
30 | -
20 ...‘
10Ff8 .
Y
0 10 20 - " : s

Time (hours)

b) Pd(TFA),, Cu(OAc),

DMSO (0.1 M), 100 °C;

(o]
‘ OH O
in OMe 4h

then 2 N HCI, ethyl acetate

Conversion (%)

Time (hours)

Scheme 5 Kinetic experiments for flavone and flavanone synthesis
from 2’-hydroxy-4-methoxydihydrochalcone 1n. (a) Flavone synthesis
condition. (b) Flavanone synthesis condition.
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was observed that the reaction proceeded rapidly at first
(Fig. S1t), resulting in the drastic formation of 2’-hydroxy-4-
methoxychalcone 2n with the concurrent formation of flavo-
noids. After 15 h, the reaction was observed to reach the plateau
state. Upon adding 2 N aqueous HCI, flavanone 4h was imme-
diately formed with a significant disappearance of 2n, indi-
cating that 2n may also be consumed for the synthesis of the
desired flavanone 4h.

Based on the kinetic results, a plausible mechanism for this
divergent synthesis is proposed, as shown in Fig. 2. First, Pd(n)-
catalyzed dehydrogenation may result in the oxidative conver-
sion of 2’-hydroxydihydrochalcone 1a into 2’-hydroxychalcone
2a.' Then, common intermediate 2a can be transformed into
the desired flavanone 4a through Michael addition and flavone
3a through oxidative Heck coupling, respectively, depending on
the optimized reaction conditions that are used in the
synthesis. During oxidation processes such as dehydrogenation
and oxidative cyclization, Pd(0) species regenerated in the
reaction would be reoxidized into Pd(u) via the [O] process,
where O, or Cu(OAc), acts as the main oxidant.*

Conclusions

We reported novel and versatile approaches for the synthesis of
flavones and flavanones from common intermediates via Pd(u)-
catalyzed oxidative cyclization. These methodologies greatly
facilitate the construction of chemical libraries of flavones and
flavanones in moderate to high yields using easily accessible
reagents and offer good compatibilities with various functional
groups under mild conditions in atom-economic manner.
Further studies on the biological evaluation of a wide variety of
flavonoids synthesized by our methodology are ongoing.
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