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Molecular free energy optimization on
a computational grapht

Xiaoyong Cao? and Pu Tian (& *2®

Free energy is arguably the most important property of molecular systems. Despite great progress in both its
efficient estimation by scoring functions/potentials and more rigorous computation based on extensive
sampling, we remain far from accurately predicting and manipulating biomolecular structures and their
interactions. There are fundamental limitations, including accuracy of interaction description and
difficulty of sampling in high dimensional space, to be tackled. Computational graph underlies major
artificial intelligence platforms and is proven to facilitate training, optimization and learning. Combining
autodifferentiation, coordinates transformation and generalized solvation free energy theory, we
construct a computational graph infrastructure to realize seamless integration of fully trainable local free
energy landscape with end to end differentiable iterative free energy optimization. This new framework
replacing specific
implementation in protein structure refinement achieves superb efficiency and competitive accuracy

drastically improves efficiency by local sampling with differentiation. Its

when compared with state of the art all-atom mainstream methods.

Introduction

Full understanding of free energy landscape (FEL) for a given
molecular system implicates the ability to accurately predict its
behavior, and provides a rational basis for further manipulation
and design. Scientists have made tremendous effort in calcu-
lating FEL with great achievements in advancement of both
theory and computational algorithms.' Rigorous computation
of FEL usually involves sampling of configurational space by
molecular simulations and post-processing of generated
trajectories/statistics. More efficient estimation as utilized in
design/prediction/refinement of protein structures®>* involves
repetitive proposal/sampling and/or energy minimization of
candidate structures/sequences (e.g. FastRelax®) followed by
evaluating/scoring with various forms of potentials.®* All these
schemes have fundamental limitations as briefed below:

(1) Pairwise approximation of non-bonded molecular inter-
actions is utilized in essentially all molecular modeling with
either physics or knowledge based force fields (FF) (e.g
CHARMM,,® Rosetta'®). Two non-bonded basic units (atoms or
coarse grained particles) are assumed to have interactions
determined only by the distance (and orientation in case of
anisotropic units) between them, regardless of identity and
spatial distribution of other neighboring units.
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(2) Fixed simple functional form (e.g. Lennard-Jones,
quadratic form) are utilized in traditional FF for convenience
of fitting. While having well grounded physical underpinning
when relevant basic units are near equilibrium positions (local
minima), these functions create a ceiling of accuracy for
description of frustrated molecular systems™* with a significant
fraction of comprising units off energy minima position and/or
orientation.

(3) Repetitive local sampling is universal. The number of
energetically favorable local configurations of a given compo-
sition for typical molecular systems (e.g. water, protein) at
specific conditions (e.g. temperature, pressure) is a tractable
number and form a local FEL (LFEL). The reason is that local
correlations are strong in soft condensed matter, thus effective
local dimensionality is much smaller than that corresponds to
the number of degrees of freedom (DOFs). Different local
compositions, which is also a tractable number for similar
reason, form different LFEL. Competition and superposition of
these overlapping LFEL constitutes global FEL of a given
molecular system. However, sampling of these local arrange-
ments are repeatedly carried out with tremendous wasting of
computational resources.

(4) No direct manipulation of molecular coordinates based
on free energy is available for sampling based methods.

(5) Maintenance of rigid constraints (e.g. bond lengths) is
frequently utilized to improve efficiency of molecular simula-
tions with either shake,” rattle”® or settle* algorithm. These
iterative procedures maintain bond lengths (and angles) within
a preset tolerance off target value, engender computational cost,
and may diverge when large forces are experienced by relevant
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units. Specialized methods, such as concerted rotation* and
backrub,® are helpful in maintaining constraints for stochastic
configurational space sampling of (bio)polymers. However,
these procedures may not be directly driven by differentiation
w.r.t. (with respect to) a given potential.

Among these limitations, the first two have fundamental
impact on accurate interaction description, the third and the
fourth severely decrease computational efficiency, and the fifth
is a nuisance. Neural network based many body potentials'”
may help with the first two limitations. The remaining three are
yet to be overcome. We previously developed generalized
solvation free energy (GSFE) theory.? The local maximum like-
lihood approximation (LMLA) of GSFE theory was implemented
with a simple neural network to assess protein structural
models, and demonstrated strong competitiveness when
compared with state-of-the-art knowledge based potentials. The
physical essence of GSFE is caching of LFEL by training with
data sets derived from high resolution experimental structures.
The connection of LFEL to mainstream enhanced sampling and
coarse-graining algorithms are described in detail elsewhere.*®

A graph is a set of vertices and edges connecting them. In
a computational graph, vertices are functions that processing
data transmitted through edges. Autodifferentiation (AD) is
a powerful way of solving exact derivatives first developed in
1974, its special form of backpropagation (BP) in neural
network was reinvented by Hinton? in 1986. Derivatives, as long
as they exists, in all programmable computational process may
be calculated with autodifferentiation without explicit func-
tional forms. The gorgeous capability of computational graph
empowered by autodifferentiation has been proven by wide-
spread application of major artificial intelligence platforms (e.g.
TensorFlow and PyTorch). Integrating the GSFE theory, coor-
dinates transformation and autodifferentiation, we map
molecular free energy optimization onto a computational graph
to address the last three of above mentioned challenges.
Implementation of this algorithm in protein structure refine-
ment (PSR) is demonstrated to be competitive in accuracy and
orders of magnitude more efficient when compared with
present mainstream methodologies.

Methods

Introduction to local maximum likelihood approximation of
GSFE

In GSFE, each comprising unit is both solute and solvent of its
neighbors. For a n-residue protein with sequence X = {xy, x,, ...,
x,}, the free energy of a given structure is:

F = —In P(Structure|X) (1)
With Bayes formula:
—In P(Structure|X) = —In P(X|Structure) P(Structure)/ P(X) (2)

For a given sequence X, P(X) is a constant and is dropped. For
maximum likelihood approximation, the prior term P(Struc-
ture) is ignored. Define R/(X;, Y;) as local structural regions
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within selected cutoff distance of X; (Y; being specific solvent of
X;). With further local approximation we have:

P(X|Structure) = ﬁP(x,-|R,-) (3)

Eqn (3) assumes all influence to each unit is included in its
solvent Y;, this product of n local likelihood terms is the LMLA
(local maximum likelihood approximation) of GSFE, which is
the basis for our NN training in this work. Incorporation of local
priors and direct long range interactions will be tackled in
future.

Training of local free energy landscape neural network

The same training/validation/test dataset as ref. 8 is used for
training LFEL. For each target residue, 22 neighboring residues
are selected as its neighbors (6 upstream, 6 downstream
sequentially adjacent residues in primary sequence and 10 non-
adjacent ones). Features for each target residue include one-hot
vectors representing identities of neighboring residues, residue
pair distances (C,-C,) between the target and its neighbor
residues, and dihedral angles (C,, C, N, Cg) indicating side
chain orientations. Input for each comprising solvent unit of
a LFEL includes a 22-dimensional one-hot vector, 6 sets of bond
angle parameters (each angle # is converted into sin § and
cos #), and the C,-C, distance resulting in an input of (22 + 6 x
2 +1) x 22 = 770 dimensions, the resulting LFEL is denoted as
770-LFEL. A four-layer feed-forward (770-512-512-512-21)
network architecture is used (Fig. 2A) and trained for 30 epochs
with a learning rate of 0.1.

Refinement datasets

Four data sets are prepared to evaluate GSFE-refinement. The
first is 3DRobot data set. After removing structures having
sequences of higher than 25% identity with training set, 36 of
original 200 native structures® remain, and 322 decoys for these
36 native structures are selected by random sampling according
to refineD.?” The second is the 150-target refineD test set.>” The
third dataset includes 34 decoys available from CASP11 and 31
available from CASP12 respectively. The last data set is the 31
decoys out of 44 from CASP14 (we missed the earliest 13 targets
due to late registration). CASP decoys are downloaded from
CASP website (https://predictioncenter.org/download_area/).

The refinement pipeline

As shown in Fig. 2B, a given starting structure is first striped of
all side chain atoms other than Cg. Cartesian coordinates of the
remaining backbone (C,, CO, N) and Cg atoms are converted
into internal coordinates, which is further converted back into
Cartesian coordinates for feature extraction. The NeRF (Natural
Extension Reference Frame) algorithm (see ESI for detailst) is
used for coordinates transformation in both ways (see ESI for
detailst). The approximate free energy calculated by the forward
pass through the neural network (which caches LFELs), plus
some additional restraints (see below), constitute the total loss

© 2021 The Author(s). Published by the Royal Society of Chemistry
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function. Derivatives of the total loss w.r.t. the input coordi-
nates is calculated with back propagation of AD, and optimi-
zation is subsequently performed with simple gradient descent
using the given learning rate and calculated derivatives. To
maintain constraints of bond lengths and angles, only gradients
of the loss function w.r.t. backbone dihedrals ¢ and y are saved,
and derivatives w.r.t. other inputs are set to zero.

Loss function of the optimization process. The total loss is
shown below:

LOSS = loss + 210SS¢moothr1 (4)
1 n
1 - — i 1 i 5
0ss p ; w; log p (5)
m;
wi = - (6)
2 m

i=1

1OsssmomhLl =
1~/ 0.5 x (dist0; — dist1,)* if|dist0; — dist1,| < 1 )
L &\ |dist0; — distl;] — 0.5 otherwise

Here, 4 is the coefficient of 10SSsmootnz1, Which is designed to
limit the conformational search space during optimization. The
larger the 2, the stronger the restraint. w; is the AA (amino acid)
site weight parameter, 7 is the protein chain length, m is the
total number of AA types (m = 21), L is the number of neigh-
boring AA around each target AA (L = 22), and p; is the predicted
likelihood for the specific solvent configuration given residue i,
dist0; and dist1; are distances between the solute C, and its ith
solvent C, atoms in the starting and updated structures. The
total LOSS is iteratively minimized during the optimization.
Learning rate specifies an effective step size for updating coor-
dinates, its value is specified in Results. It is important to note
that learning rate in training process specifies magnitude for
updating of neural network parameters, which caches LFEL.
Computational graphs. The framework of the fitted local free
energy landscape in this paper is implemented using the
PyTorch platform. Its built-in TORCH.AUTOGRAD package is
mainly used to realize the function of automatic differentiation.
Generally speaking, computational graphs, tensors and AD are
used in combination. The function that is applied to tensor to
construct a computational graph actually contains two func-
tions: one is to know how to calculate the function in the
forward direction, and the other is to propagate backward.
Calculate the derivative of this function in (backward propaga-
tion step). We use AUTOGRAD to record all the tensors for
setting gradients (Tensor) and all the operations performed
(including the new tensors generated in this process) through
a directed acyclic graph (DAG). In this DAG, the leaf tensor is the
input tensor, and the root tensor is the output tensor. You can
track the graph from the follower to the leaf, or use the chain
rule to automatically calculate the gradient (https://pytorch.org/
tutorials/beginner/basics/autogradqs_tutorial.html). In this
article, the free energy function LOSS = F(¢, y) we fitted can be
considered as the function with the dihedral angle as the
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independent variable (as shown in Fig. 2B), the whole process of
constructing the function and the intermediate variables
produced (Tensor) are included in the calculation graph, so
each iteration, generating new Cartesian coordinates through
reverse derivation is equivalent to updating the optimized
protein structure once. Moreover, the automatic differentiation
calculated using the calculation graph is the same as manual
differentiation and symbolic differentiation in terms of
accuracy.”

Results

Mapping of free energy optimization onto a computational
graph

With a simple probabilistic description of molecular systems,
GSFE formulates a directed link from molecular coordinates to
LFEL, superposition of which under strict implicit global
correlation restraints (see eqn (3) and Fig. 1) is utilized to
approximate total free energy of interested molecular system.
Caching of LFEL through training of the neural network is
described perviously® (and briefed in Methods section as well).
However, GSFE does not provide measures to efficiently update
structures. In principle, with establishment of a computational
graph, BP operation of AD from calculated approximate free
energy (AFE) to coordinates may provide gradients (and higher
ordered derivatives when needed) of AFE w.r.t. coordinates,
which may subsequently be updated by a simple gradient
descent (or higher ordered) optimization. AD is implemented by
major Al platforms and may be turned on by a simple state-
ment. One concern is that in such direct update of coordinates,

C
A

>
IS

)
~.

Fig.1 Illustration of implicit mediated global correlations and effective
larger cutoff in GSFE-refinement. Two dashed circles are two “local”
region for LFEL centered at solute unit B and D respectively. As
a comprising unit of LFELs centered on both unit B and D, unit C
experience effective force from unit A as mediated by B, and effective
force from E as mediated by D. In fact, each unit experience effective
forces mediated by LFELs defined by all of its solvent unit, resulting in
an effective large cutoff that is approximately two times the radius of
dashed circle for defining LFEL as shown. All mediated global corre-
lations in essence is the equality of shared states for overlapping DOFs
belong to different LFELs, since only one set of coordinates is used in
the whole optimization process, these correlations are naturally
maintained.
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Fig. 2 Schematic representation of GSFE-refinement training and optimization. (A) Illustration of LFEL training based on LMLA-GSFE (see ref. 8
for details). (B) Illustration of the fully end-to-end differentiable optimization pipeline. Small solid black arrows represent forward pass
computation of approximate free energy, small solid red arrows represent BP operation for taking derivatives. The empty arrow represents input
of decoys. Final result is delivered as output after a preset iteration number N.

bond lengths/angles would be changed and one has to utilize
iterative algorithms such as shake' or rattle’ to maintain
constraints if desire. To overcome this issue, we design a coor-
dinate transformation procedure that updates internal coordi-
nates where only derivatives w.r.t. interested quantity
(dihedrals) are utilized and derivatives w.r.t. constraint quantity
(bond lengths and angles) are set to zero. This way, constraints
are realized exactly with no concern of divergence. As shown in
Fig. 2, to facilitate feature extraction, a transformation from
internal to Cartesian coordinates is necessary.

GSFE-refinement performance on 3DRobot data set

Refinement with LMLA-GSFE. In order to investigate the
efficiency of optimization with BP operation of AD and the

accuracy of LMLA-GSFE, we carried out refinement with
770LFEL on the 3DRobot dataset (see Methods). The results for
the best of top 5 models at learning rates of 0.001, 0.0005 and
0.0001 are evaluated by C,, RMSD (root-mean-squared deviation)
and GDT-HA (global distance test high accuracy) as indicators>
and listed in Table 1 (rows 1, 2 and 3). Avg-AGDT-HA (see Table
1) with learning rates 0.001, 0.0005 and 0.0001 are —1.38, —0.18
and 0.2, corresponding GDT-HA-num (see Table 1) are 95/322,
134/322 and 182/322 respectively. Within limited range of
examination, we observe on average the smaller the learning
rate, the larger the average AGDT-HA and the larger the GDT-
HA-num (as shown in Fig. 3A and 4A-C). However, for some
decoys, a larger learning rate improves refinement (see Fig. S87).
Physically, a larger learning rate means refinement with a larger
step in all of considered LFEL and costs less computing

Table 1 Summary for the best of top 5 models with various combinations for LR/A/W on 3DRobot dataset

LR/A/W* Avg-AGDT-HA? GDT-HA-num® Avg-ARMSD? RMSD-num*®
0.001/0/0 -1.38 95/322 0.0022 130/322
0.0005/0/0 -0.18 134/322 —0.0175 158/322
0.0001/0/0 0.2 182/322 —0.0099 201/322
0.0005/0.1/0 -0.19 137/322 ~0.0168 166/322
0.0005/1.2/0 —0.02 162/322 —0.0147 188/322
0.0005/10.0/0 0.24 211/322 —0.0167 257/322
0.0005/0.1/1 0.02 163/322 —0.0136 191/322
0.0005/1.2/1 0.26 214/322 —0.0178 275/322
0.0005/10.0/1 0.27 210/322 —0.019 291/322

“ LR is the learning rate, 1 is the coefficient of smooth_l1 loss for conformation restraints, W is the AA weight (see eqn (5) and (6), with 1 represents

on and 0 represents off).  The average value of AGDT-HA for all decoys. ©

The average number of decoys with AGDT-HA > 0 for all 36 decoy sets.

4 The average value of ARMSD for all decoys. ¢ The average number of decoys with ARMSD < 0 for all 36 decoy sets.
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Fig.3 Box plots for AGDT-HA with different LR/A/W combinations for 3DRobot dataset. Effects of variation are exhibited for (A) learning rates, (B)
structural restraints and (C) weights for approximating local priors. More box plots of ARMSD and AGDT-HA are available in ESI (Fig. S1-S3).¥
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Fig. 4 Scatter plots of AAGDT-HA as a function of start GDT-HA score for best of top 5 models from GSFE-refinement for 3DRobot dataset.
Corresponding LR/A/W combination is noted on top of each plot. Effects of variation are exhibited for (A—C) learning rates; (D—F) structural
restraints and (G-I) weights for approximating local priors. More scattered plots of ARMSD and AGDT-HA are available in ESI (Fig. S4-S6).

resource. Considering all these factors, a learning rate of 0.0005
is utilized hereafter.

Impact of the smooth_l1 term. In view of the increasing
accuracy of the starting structures generated by protein struc-
ture prediction, the imposition of reasonable restrictions has
become an important part of refinement.”>*® Here, we add the
smooth_l1 loss term (see eqn (4) and (7) in Methods) to limit the
conformation search space to be in the vicinity of starting
structures. As shown in Table 1 (rows 4, 5 and 6), the Avg-AGDT-
HA for A = 0.1, 1.2, 10.0 are —0.19, —0.02, 0.24 and corre-
sponding GDT-HA-num are 137/322, 162/322 and 211/322
respectively. The Avg-AGDT-HA based on A = 10.0 is signifi-
cantly better than that based on A = 0.1 and 1.2, and GDT-HA-

© 2021 The Author(s). Published by the Royal Society of Chemistry

num and RMSD indicators show similar trends (as shown in
Fig. 3B and 4D-F).

Impact of local weights on the refinement performance.
There have been some studies on local restraints in protein
structure refinement based on prior knowledge,*****® selection
of specific regions,*>***! and local structure evaluation.*>**** In
our training of LFEL, the available data are significantly
different for each of amino acids (AA). Larger datasets are highly
likely to improve description of LEFL surrounding corre-
sponding AAs. To test this speculation, the fraction of each AA is
used as the refinement weight for LFEL (see eqn (5) and (6)).
Table 1 shows the significantly improved results after adding
local weights (rows 7, 8 and 9 compared with rows 4, 5 and 6).

RSC Adv, 2021, 11, 12929-12937 | 12933
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Table2 Summary of GSFE-refinement and other refinement methods
on the 150-target refineD dataset (results for other methods are taken
from ref. 22)¢

Method Avg. top 1 Avg. best of 5 GDT-HA-num
refineD-C 0.6365 1.3109 121/150
refineD-NC —1.2403 1.5343 104/150
FG-MD 0.5597 0.5597 —
FastRelax —3.4317 —0.1999 —
FastRelax-0.5 A —0.3411 0.8811 90/150
FastRelax-2.0 A —1.2120 0.8223 77/150
FastRelax-4.0 A —2.5471 0.0751 67/150
ModRefiner-0 —0.8400 —0.8400 —
ModRefiner-100 0.1491 0.1491 —
GSFE-refinement 0.0800 0.4400 112/150

% More details for top 1 and the best of top 5 models for refineD data set
are available in ESI (Tables S1 and S2).

For example, when LR/A/W changes from 0.0005/1.2/0 to 0.0005/
1.2/1, the Avg-AGDT-HA increased from —0.02 to 0.26 (row 5
and row 8). Various other evaluation indicators (GDT-HA-num,
RMSD and RMSD-num) exhibit similar improvement (as shown
in Fig. 3B, C and 4D-I).

GSFE-refinement performance on refineD data set

In order to further investigate the robustness of GSFE-
refinement, we test its performance on the refineD dataset at
LR/A/W = 0.0005/1.2/1 with 770-LFEL. As shown in Table 2 (see
detailed results in Tables S1 and S2 in ESI), in top 1 models,
the GDT-HA score of GSFE-refinement is 0.08 and ranks the
fourth. In best of top 5 models, GSFE-refinement ranks the
sixth, its result (0.4400) is better than FastRelax-0.5 A (0.0548),
FastRelax-4.0 A (0.0751), FastRelax (—0.1999), ModRefiner-
0 (—0.8400), and ModRefiner-100 (0.1491). These results are
generated by 5 iterations within a few seconds on a single CPU
core, in strong contrast to conventional sampling and minimi-
zation (e.g. FastRelax®) where thousands or even hundreds of

5/A 0.1B
<
T 5 [a)
; | 08°.3 ) N
'5 Q- P800 S 1 E 0.0 Bs og%ég =
Q < o o
S|
=5/ _ _ _ —-0.1] . _ _
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5/C 0.1 D
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E O me%'@p@o%&""""" -1 = 0.0 000 @; @S
[o4 o 90 o
Q Pl o oo
< © 5 o
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Fig.5 AGDT-HA and ARMSD of best of top 5 models as a function of
start GDT-HA score obtained from GSFE-refinement of CASP11 (A and
B) and CASP12 (C and D) datasets. Corresponding plots for top 1
models are presented in ESI (Fig. S7).7
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thousands of iterations and hours of CPU time are usually
necessary. It is also important to note that despite all heavy
atom in side chains other than Cg are missing in our model,
competitive accuracy is achieved when compared with state-of-
the-art full heavy atom methods. However, the superior effi-
ciency is mainly due to substitution of local sampling by
differentiation. The number of atoms in GSFE-refinement is
more than half of all heavy atoms.

GSFE-refinement performance on CASP11 and CASP12 data
set

GSFE-refinement is further evaluated on the CASP11 and
CASP12 dataset (see Methods). Based on above mentioned
results, we utilize a parameter combination LR/A/W = 0.0005/
1.2/1. In Fig. 5, we present structural change of the CAPS11
and CASP12 decoys after GSFE-refinement as measured by
AGDT-HA and ARMSD, and improvement is observed for most
of the cases. Specifically, there are 50% (17/34) and 88.2% (30/
34) successful refinement when evaluated by GDT-HA and
RMSD scores in CASP11 (as shown in Fig. 5A and B), and 64.5%
(20/31) and 100% (31/31) when evaluated by GDT-HA and RMSD
scores in CASP12 (as shown in Fig. 5C and D) (see detailed
results in Tables S3-S6 and Fig. S7 in ESI¥).

GSFE-refinement assessment in CASP14

We participated in CASP14 competition and submitted 180
models for 36 targets (we registered late and missed the first 13
targets), among which 31 are effective targets in CASP14 final
statistics. As shown in Fig. 6, we improved 38.7% targets
compared with the 24.8% of CASP14 average as measured by
AGDT-HA, and improved 38.7% targets compared with the
27.7% average as measured by ARMSD_CA. In top 1 model,
GSFE-refinement (with GR code 294) ranks 12 according to SUM
Z score (>0.0) based on GDT-TS score. And AVG Z score (>0.0)
based on GDT-TS score ranks 6 (https://predictioncenter.org/
caspl4/zscores_final refine.cgi). Specific Z scores of GSFE-
refinement is provided in ESI Fig. S9.f In particular, for 13
targets with start GDT-TS score better than 60, GSFE-refinement
ranks the first. Again, we performed 5 iterations for each target,
with computing cost ranging from 0.7 to 2.7 seconds on a single

151A i 1B
310 38.7% 38.7 %
o) CASP14:24.8% CASP14:27.7%
g
I gl
0 : ‘
-2 =1 0 1 0.00 0.05 0.10
AGDT_HA ARMSD_CA
Fig. 6 GSFE-refinement performance in CASP14. Success

(percentage of improved targets for selected indicators) rate of GSFE-
refinement and CASP14 average are shown. (A) Distribution of AGDT-
HA. (B) Distribution of ARMSD.
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CPU core (R1028 has 75 amino acids and costs 0.7 s. R1042v1
contains 276 amino acids, which takes 2.7 s).

Discussions

Optimization of molecular free energy on a computational
graph proposed and demonstrated in this work makes two
distinct contributions,

(1) Replacement of expensive local sampling by differentia-
tion w.r.t. cached LFEL realizes superb efficiency.

(2) Combination of AD and coordinate transformation real-
izes exact hard constraints with minimal computational cost.

GSFE-refinement takes a few seconds on a single CPU core
for refinement of typical decoys, in strong contrast to hours for
typical sampling and energy minimization with knowledge
based potential (e.g. FastRelax®) without explicit water repre-
sentation, and thousands or even tens of thousands hours for
refinement based on MD simulations with explicit water
representation. As backbone and Cg atoms are more than half of
all heavy atoms, speed-up due to smaller number of atoms is
relatively insignificant, and replacement of local sampling by
differentiation is the key underlying its efficiency. GSFE-
refinement is, to the best of our knowledge, the first end-to-
end differentiable algorithm that takes fully trainable parame-
ters and can generate a continuous dynamic trajectory similar
to MD simulation. This unique property make it possible to
realize physics based ab initio folding when properly trained for
both unfolded and folded states, while likely to be significantly
more efficient than MD simulation based folding.**** The
competitive accuracy of our backbone and Cg representation on
a par with mainstream all atom methods suggest that many
body correlation captured by GSFE-refinement are important.
Simple backbone and Cg representation provides additional
benefit of smoother FEL than all atom counterpart, its value in
this regard is irreplaceable despite higher expected accuracy of
all atom LFEL that is under development in our group. It is
important to note that GSFE theory is one way of implementing
LFEL for global free energy estimation and there might well be
more elegant ways. While only gradient descent optimization is
demonstrated in this work, AD is capable of calculating exact
higher ordered derivatives and therefore exploration of higher
ordered optimization algorithms in this scheme is certainly
feasible and will be carried out in the future.

To cache or to compute intermediate results on the fly is
a ubiquitous tradeoff in computation. As far as molecular free
energy is concerned, we rely far more than necessary on
computing by sampling, and much less on the inexpensive
memory. “Local” in this work is conveniently defined as specific
solvent units of each solute unit and its spatial coverage (i.e.
cutoff) need to be determined to implement GSFE for
construction of LFEL. The larger the “local” is, the more data
and the larger neural networks are needed to cache corre-
sponding LFEL, and the faster and more accurate computation
will be achieved in subsequent free energy optimization.
However, as strength of correlation decreases rapidly with
distance, when “local” extends beyond certain level of correla-
tion, the increase of data and training cost is likely to be

© 2021 The Author(s). Published by the Royal Society of Chemistry
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unworthy and negative impact of noises may rise. Input for
training LFEL may be of either computational or experimental
origin. Apart from hardware consideration for the optimization,
data availability and network architecture are of critical
importance for training. In the case of PSR presented here, the
size of the “local” is likely restricted either by the number of
available high resolution experimental structures or by effi-
ciency of network in extracting correlations. If significantly
more surrounding residues were taken as the solvent of a target
residue, reliable description of their spatial distributions would
require more data and/or more efficient network. More inves-
tigations are necessary to understand relative importance of
these two factors. When high quality experimental data is not
available or not sufficient, a potentially feasible two-step
strategy is to first utilize neural network FF to generate suffi-
ciently large number of configurations for interested composi-
tions at desired thermodynamic conditions (e.g. temperature
and pressure). This step, if done properly, may realize sampling
of reliable quantum mechanical accuracy. Secondly, these
configurations may be subsequently utilized to construct LFEL
for efficiently and reliably carrying out many free energy opti-
mization tasks with near quantum accuracy and efficiency of
traditional coarse grained methods. For proteins in particular,
complete computation driven ab initio folding of proteins
without learning from experimental structural information is
potentially possible in this framework.

In eqn (3), all local distributions seem be treated as inde-
pendent. However, this is not the case in our implementation.
Apart from direct long-range interactions, all mediated global
correlations among overlapping local regions are embodied by
the fact that they share the same coordinates. This constraint is
exactly satisfied during all iterations as only one set of coordi-
nates are utilized. At each cycle, each residue participating in
LFEL of all its solvent units and its coordinates are updated as
a result of compromise among their LFEL, result in a larger
effective cutoff than defined by “local” in training of LFEL (see
Fig. 1).

One great feature of our scheme is that coordinate update
and transformation module is separated from LFEL. Therefore,
future modification of neural network architecture for caching
LFEL is flexible. For the specific task of PSR and its potential
extension to ab initio protein folding, we indeed need such
flexibility to advance from present backbone and Cg level LMLA
treatment (eqn (3)) to incorporate all side chain heavy atoms,
local priors and direct long range interactions. Another advan-
tage of GSFE is that direct control of each comprising unit is
straight forward with well-defined physical interpretation as
demonstrated by addition of local restraints (eqn (5) and (6)).
The scheme (Fig. 2) for optimizing molecular free energy on
a computational graph is of general utility in soft matter
modeling. It is also important that while brute force caching of
LFEL is apparently specific for given constraint environmental
conditions (e.g. temperature, pressure, composition), inclusion
of these conditions within LFEL is possible and will be one
interesting future research direction.

In light of the amazing success by AlphaFold2 for protein
structure prediction, it is important to note that our algorithm
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is targeted to physical simulation and understanding of both
static distributions (i.e. structure) and dynamic processes in
complex molecular systems. This is in strong contrast to all
mapping algorithms from sequences to structures through
black-box modules as in AlphaFold2. LFEL is a new path for
accelerating molecular simulations, its connection to enhanced
sampling and coarse graining is detailed elsewhere.*®

Conclusions

In summary, we develop a novel scheme that maps molecular
free energy optimization onto a computational graph through
integrating GSFE theory, autodifferentiation and coordinate
transformation. The key contribution is to replace expensive
local sampling by differentiation w.r.t. LFEL, which is cached by
fully trainable neural networks. Overlapping among many
“local” region naturally maintains global mediated correlations
by the simple fact that only one set of coordinates are utilized
for all local regions in each iteration. As local sampling is
repetitively carried out in essentially all present free energy
simulations and consumes majority of computational
resources, replacement of which by differentiation w.r.t. LFEL is
expected to bring dramatic savings without loss of resolution.
As an exemplary implementation of this scheme, we develop
a backbone and Cg representation of PSR pipeline that relies
solely on fully trainable description of LFEL for the first time.
When compared with mainstream methods, this pipeline
demonstrates competitive accuracy and is orders of magnitude
more efficient. Further improvement in accuracy are expected
with future incorporation of more input information and better
representation of local prior term. Additionally, this is a general
free energy optimization scheme for molecular systems of soft
condensed matter. We hope our work stimulate more interest in
formulation and methodology development in utilizing LFEL.

Abbreviations

FEL Free energy landscape
FF Force fields

CHARMM Chemistry at Harvard Macromolecular Mechanics
DOFs Degrees of freedom

GSFE Generalized solvation free energy

LMLA Local maximum likelihood approximation

AD Auto differentiation

BP Back progatation

PSF Protein structure refinement

NN Neural networks

CASP Critical assessment of techniques for structure
prediction

GDT-TS  Global distance test total score

GDT-HA  Global distance test high accuracy

RMSD Root mean square deviation

DAG Directed acyclic graph

AFE Approximate free energy

AA Amino acids
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