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Mercury has complex biological toxicity and can cause a variety of physiological diseases and even death, so
it is of great importance to develop novel strategies for detecting trace mercury in environmental and
biological samples. In this work, we designed a new coumarin-based colorimetric and fluorescent probe
CNS, which could be obtained from inexpensive starting materials with high overall yield in three steps.
Probe CNS could selectively respond to Hg?* with obvious color and fluorescence changes, and the
presence of other metal ions had no effect on the fluorescence changes. Probe CNS also exhibited high
sensitivity against Hg?*, with a detection limit as low as 2.78 x 10~8 M. More importantly, the behavioral
tracks of zebrafish had no obvious changes upon treatment with 10 uM probe CNS, thus indicating its
low toxicity. The probe showed potential application value and was successfully used for detecting ng+

rsc.li/rsc-advances

1. Introduction

Mercury (Hg) is one of the most toxic heavy-metal ions in the envi-
ronment and has attracted increasing attention due to its accumu-
lation in natural ecosystems.>* Generally, mercury exists as elemental
mercury, oxidized mercury (Hg”") and mercury particles in air, soil
and water.>” All these mercury species are not biodegradable and can
be concentrated in the human body, thereby causing irreversible
damage to the liver, kidneys, brain, and endocrine and central
nervous systems.*™ In particular, Hg>" can be easily converted into
the lipophilic methyl mercury, which exhibits good membrane
penetrating ability and can be easily absorbed by aquatic organ-
isms.”*™ Recently, mercury chloride and methyl mercury have been
classified as potentially carcinogenic agents by the Environmental
Protection Agency.® Therefore, development of novel strategies for
selectively and sensitively detecting trace mercury in environmental
and biological samples is of great importance.

Several methods have been developed for detecting mercury
species, such as atomic absorption-emission spectrometry,*>'®
inductively coupled plasma-atomic emission spectrometry,"”
and anodic stripping voltammetry."* However, these methods
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in a test strip, Hela cells and living zebrafish larvae.

always suffer from complicated manipulation procedure and
expensive instrumentation." In contrast, fluorescent probes have
attracted increasing attention because of their low cost, high
sensitivity and selectivity, noninvasiveness, and experimental
convenience.”? In the past several years, great efforts have been
made on the development of fluorescent probes for mercury ions
based on the heteroatom-based coordination reaction, and Hg>"-
promoted elimination and desulfurization reactions.”*** A portion
of them exhibit excellent selectivity and sensitivity, fast response
time, and low detection limits. However, these reported fluores-
cent probes still have limitations including complex synthesis
routine, using expensive chemical regents, high toxicity, and poor
biocompatibility, thus being not applicable for detecting Hg>" in
biological systems and environmental samples.

Coumarin is a well-known secondary metabolite found in
different parts of plants.* Structural modification of coumarin can
afford various derivatives with various pharmacological activities
and low toxicity to human body.* Some of these coumarin deriv-
atives exhibit strong fluorescent emission and can be used as
fluorescent probes for imaging different metal ions and metabo-
lites in living biological systems.*?® Coumarin derivatives can also
be used as fluorescent tags or imaging agents for discriminating
tumor lesions and investigating the subcellular localization of
drugs.”* In our research, a novel intramolecular charge transfer
(ICT)-based fluorescent probe CNS (Scheme 1), employing
coumarin as the fluorophore and thioacetals as the reacting site
for Hg>", was constructed by a facile and highly efficient synthesis
strategy. The probe should be highly selective and sensitive to
Hg*", because the electron-rich dithioacetal group can be specifi-
cally and rapidly cleaved in the presence of Hg>". The optical
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properties and probing behaviors of CNS against Hg**, and its
applications in living cells and zebrafish were investigated.

2. Experimental
2.1 Materials and measurements

All chemical reagents were obtained commercially and used
without further purification. "H NMR and *C NMR spectra were
recorded on a Bruker AV-400 spectrometer using TMS as
internal standard. Electrospray ionization (ESI) mass spectra
were recorded by an LC-MS 2010A (Shimadzu) instrument. The
high-resolution mass spectrum (HRMS) was measured using
a Q-TOF6510 spectrograph (Agilent). The UV-vis absorption
spectra were analyzed by a UV-2600 PC spectrophotometer
(Shimadzu, Japan). The fluorescence spectra were recorded on
a F-7000 Fluorescence Spectrophotometer (Hitachi, Japan).

2.2 Synthesis of probe CNS

2.2.1 Synthesis of compound 1. To a solution of 4-dieth-
ylaminosalicylaldehyde (3.86 g, 20 mmol) in ethyl alcohol (120 mL)
was added diethyl malonate (7 mL, 25 mmol), piperidine (2.0 mL,
0.02 mmol) and two drops of acetic acid. The reaction was heated to
reflux and stirred for 6 h. Then all volatiles were evaporated under
reduced pressure, and then concentrated. HCI (40 mL) and acetic
acid (40 mL) were added and the reaction was continued at 110 °C
temperature for 24 h. This solution was cooled to room temperature
and poured into ice water (150 mL). NaOH solution (30%) was
added dropwise to adjust the pH to 6, and a brown precipitate
formed immediately. After stirring for 1 h, the mixture was filtered,
washed with water, purified through a flash silica gel column by the
using DCM as eluent to afford compound 1. 'H NMR (400 MHz,
DMSO-d) 6 7.69 (d, ] = 9.3 Hz, 1H), 7.29 (d, ] = 8.8 Hz, 1H), 6.55 (dd,
J = 8.8,2.5 Hz, 1H), 6.38 (d, ] = 2.4 Hz, 1H), 5.85 (d, ] = 9.3 Hz, 1H),
3.29 (q,J = 7.0 Hz, 4H), 0.98 (t, ] = 7.0 Hz, 6H) (Fig. S17).

2.2.2  Synthesis of compound 2. Dry DMF (3 mL) was added
dropwise to POCl; (3 mL) 0 °C, the mixture was stirred for
10 min and slowly added to a solution of 1 (2.17 g, 10 mmol) in
dry DMF (20 mL). The resulting mixture was stirred at 60 °C for
24 h and then poured into ice water (150 mL). NaOH solution
(30%) was added to adjust the pH to 7, and a large amount of
precipitate was formed. The mixture was filtered and thor-
oughly washed with water, purified through a flash silica gel
column to give compound 2 as an orange solid. "H NMR (400
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Scheme 1 Synthesis step of probe CNS.
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MHz, DMSO-dg) ¢ 9.77 (s, 1H), 8.29 (s, 1H), 7.56 (d, J = 9.0 Hz,
1H), 6.70 (dd, J = 9.0, 2.4 Hz, 1H), 6.48 (d, J = 2.4 Hz, 1H), 3.38
(q,J = 7.1 Hz, 4H), 1.02 (t, ] = 7.0 Hz, 6H), 0.13 (s, 3H) (Fig. S2).

2.2.3 Synthesis of CNS. Compound 2 (0.245 g, 1 mmol) was
added to a 100 mL three-necked flask and dissolved in 20 mL ethyl
alcohol. Then, to the mixture was added propane-1,3-dithiol (0.1
mL, 0.99 mmol) followed by a catalytic amount of BF;-Et,0O. The
reaction was heated to reflux and stirred for 2 h. The resulting
mixture was cooled to room temperature and refrigerated for 30
minutes. The solvent was evaporated and the crude product was
recrystallized by ethyl alcohol to afford CNS as a pale yellow solid
(0.311 g. 75.05% for three steps). "H NMR (400 MHz, DMSO-d)
07.94 (s, 1H), 7.55 (d,J = 8.9 Hz, 1H), 6.71 (dd, ] = 8.9, 2.5 Hz, 1H),
6.52 (d, J = 2.4 Hz, 1H), 5.35 (s, 1H), 3.44 (q, ] = 7.0 Hz, 4H), 3.11
(ddd, ] = 14.6, 12.3, 2.3 Hz, 2H), 2.89 (dt, ] = 14.0, 3.7 Hz, 2H), 2.12
(ddd, J = 14.0, 4.5, 2.3 Hz, 1H), 1.79-1.52 (m, 1H), 1.12 (t, ] =
7.0 Hz, 6H) (Fig. S37). ">*C NMR (101 MHz, DMSO-d,) 6 156.11,
151.31, 142.59, 130.16, 118.40, 109.69, 107.96, 96.71, 44.57, 43.31,
31.52, 25.23, 12.74 (Fig. S41). HRMS (ESI): calced for Cy;H,,NO,S,:
335.1014, found: 336.1157 for [M + H]'(Fig. S57).

2.3 Preparation of stock solutions

The CNS (3.51 mg, 1.0 mmol) was dissolved in THF and the
volume was set to 100 mL to give the probe stock solution (1.0 x
1072 M). The stock solutions of the metal ions with the concen-
tration of 1.0 x 10> M were prepared by dissolving 1.0 mmol of
each inorganic salt (AgNO;, Ba(NO3),, Cd(NO3),-4H,0, Co(NO3),-
-6H,0, Cu(NO3),-3H,0, FeSO, - 7H,0, Fe(NO,);-9H,0, Hg(NO,),-
“H,0, KNO;, NaNO;, Ni(NO;),-6H,0,Pb(NO;),, Sr(NOs),,
Zn(NOj3),-6H,0) in water and the volume was set to 100 mL.

2.4 The UV-vis absorption spectra of CNS in the presence of
different metal ions

The solution of CNS (1 mL) was placed in a 100 mL volumetric flask,
and added 1.0 equiv. metal ions (Ag", Ba®*, Cu**, Co**, Cd*", Fe*",
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Fig.1 The absorption spectra of CNS upon addition of various metal
ions in THF/H,O (1:1, V/V) solution (1.0 x 107> M). Inset: The
photograph of CNS solution (1.0 x 107> M) in the presence of 1.0 x
107° M of Hg?*.
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Fe*', K', Na*, Ni**, Pb*", Sr**, Zn>* and Hg""), constant to 100 mL
with THF/H,O (1 : 1, v/v) solution, then get the 1.0 x 10~> M fluid to
be tested. The fluid to be tested were added to the quartz cell, and
the corresponding ultraviolet spectrum was measured.

2.5 The fluorescence spectra of CNS in the presence of
different metal ions

The solution of CNS (1 mL) was placed in a 100 mL volumetric flask,
and added 1.0 equiv. metal ions (Ag*, Ba**, Cu®*, Co*, Cd*", Fe**,
Fe**, K', Na*, Ni**, Pb*", Sr**, Zn** and Hg""), constant to 100 mL
with THF/H,O (1 : 1, v/v) solution, then get the 1.0 x 10~> M fluid to
be tested. The fluid to be tested were added to the quartz cell, and
the corresponding fluorescence spectrum was measured.

2.6 Competition experiments

The solution of CNS (1 mL) was placed in a 100 mL volumetric
flask, 1 mL Hg>" was added to the volumetric flask, and then
added 1.0 equiv. other metal ions (Ag", Ba>*, Cu®*, Co*", Cd**, Fe**,
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Fig. 2 (A) The fluorescence spectra of CNS upon addition of various

metal ions in THF/H,O (1 : 1, V/V) solution (1.0 x 10~° M). (B) Comparison
of Hg?* and other metal ions detected by probe CNS. Inset: The photo-
graph of CNS solution (1.0 x 107> M) in the presence of 1.0 x 107> M
Hg?* under the UV light. Excitation wavelength = 460 nm.
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Fe®*, K*, Na*, Ni**, Pb**, Sr**, Zn®"), constant to 100 mL with THF/
H,O (1: 1, v/v) solution. The fluid to be tested were added to the
quartz cell, and the fluorescence spectrum was measured.

2.7 Cell culture and fluorescence imaging

HeLa cells were grown in Dulbecco's Modified Eagle Medium
(DMEM) containing 10% fetal bovine serum (FBS) and 1% peni-
cillin-streptomycin. After incubating at 37 °C in a humidified
atmosphere with 5% CO, for 24 h, cells were washed with PBS buffer
(phosphate buffered saline, pH = 7.2) and incubated with fresh
medium containing 10 uM probe CNS for 30 min. Then, cells were
treated with different concentrations of Hg>* (0, 10, 20, and 50 uM)
for 10 min and the fluorescence spectra were measured on a laser
confocal microscopy (Olympus, Japan). For the control group, HeLa
cells were grown in DMEM for 30 min without any treatment.

2.8 Zebrafish maintenance and fluorescence imaging

The wild type zebrafish eggs were grown in 24-well plate with E3
water containing 0.2 mM 2-phenylthiourea. After incubating in
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Fig.3 (A) The relative fluorescence intensity of CNS THF/H,O solution

(107°M,1: 1, V/V) as a function of Hg®* concentration in the range of 1
x 107%to 1 x 107> M. (B) Job's plot of CNS with Hg®* (ICNS] + [Hg®'] =
10 M), THF/H,O (1:1, V/V) solution (1.0 x 107> M). Excitation wave-
length = 460 nm.
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Fig.4 Competitive tests for Hg detection by probe CNS. Red indicates
probe detection of other metal ions, blue indicates probe detection of
CNS + other metal ions + Hg?*, THF/H,O solution (107> M, 1: 1, V/V).
Excitation wavelength = 460 nm.

a light incubator at 28 & 0.5 °C for 5 days, the zebrafish larvae were
treated with new medium containing 10 tM probe CNS for 30 min.
Then, different concentrations of Hg>" (0, 5, 10, and 20 uM) were
added to the medium, and the fluorescence spectra were
measured on a laser confocal microscopy after 10 min of incuba-
tion. For the control group, the zebrafish larvae were grown in E3
water for 30 min without any treatment. The toxicity of probe CNS
was measured using 5 days zebrafish larvae. Zebrafish larvae were
treated with E3 water containing different concentrations of CNS
(0, 5, and 10 uM) for 24 h, and the behavioral tracks of zebrafish
were analyzed on an automated computerized video-tracking
system (Viewpoint, Lyon, France).

3. Results and discussion
3.1 Selective recognition of Hg>"

The absorption spectra of probe CNS under the influence of
various metal ions (Ag", Ba>*, Cu®>", Co**, Cd*", Fe**, Fe’', K', Na",
Ni**, Pb*", Sr**, Zn** and Hg"") were investigated in THF/H,O
(1:1, V/V) solution (1.0 x 10~> M), and the results were depicted
in Fig. 1. The free probe CNS exhibited a strong absorption peak
centered at 395 nm, which was shifted to 459 nm after adding 2.0
x 107> M Hg>" ions. In contrast, addition of other metal ions (Ag",
Ba>", Cu™, Co™, Cd*', Fe*', Fe**, K', Na*, Ni**, Pb*", Sr*" and Zn>")
showed no effect on the absorption spectrum of CNS at the same
concentration and under analogous test conditions. In addition,
the probe solution turns yellow after adding Hg**, while adding
other metal ions induced no obvious color changes.

The fluorescence spectra of probe CNS upon treatment of various
metal ions including Ag", Ba®*, Cu**, Co*", Cd*', Fe**, Fe*', K, Na*,
Ni**, Pb**, Sr**, Zn®* and Hg>" were tested tin THF/H,O (1 : 1, V/V)
solution (1.0 x 10> M). As shown in Fig. 24, addition of Hg>" ion
to the solution of CNS in THF/H,O resulted in obvious fluorescence
improvement and the maximum emission wavelength was 505 nm,
whereas adding other metal ions resulted in negligible fluorescence

23600 | RSC Adv, 2021, 11, 23597-23606
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Fig. 5 Fluorescence intensity of probe CNS (107> M) and CNS + Hg?*
(107° M) at different pH,2"* THF/H,O solution (1 : 1, V/V). Excitation
wavelength = 460 nm.

improvement Fig. 2B. These results indicated the high selectivity of
CNS toward Hg”" over other tested metal ions.

3.2 Sensitivity studies

The fluorescence titration experiments of CNS in THF/H,O (1: 1,
V/V) solution (1.0 x 10~> M) against increasing concentrations of
Hg”" was carried out to investigate the fluorescence change of CNS
under the influence of Hg*". As depicted in Fig. 3A, probe CNS
showed almost no fluorescence in THF/H,O (1 : 1, V/V) solution
(1.0 x 10~° M). After adding increasing concentrations of Hg>" (0-
14 uM), a significant fluorescence improvement could be observed
around 505 nm, and the fluorescence intensity become stable
when the concentration of Hg”* was above 4 uM. These results
proved the 1 : 1 response of probe CNS to Hg”". The Job's plot of
probe CNS with Hg>" was further investigated in THF/H,O (1 : 1, V/

3000 /-I—I—I—I—I—I—I—I—I
22500 -
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£ 2000 45s
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Fig. 6 Response time and stability of probe CNS. Fluorescence
intensity of CNS + Hg?* (10~° M), THF/H,O solution (1 : 1, V/V). Exci-
tation wavelength = 460 nm.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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V) solution (1.0 x 107> M), and the result was shown in Fig. 3B.
The maximum fluorescence intensity was detected to be 0.5 (molar
fraction of [Hg>*]/[CNS + Hg”"]), which proved a 1 : 1 stoichiometry
for the reaction of probe CNS with Hg>",

3.3 Competition experiments

It is very necessary to study the anti-interference of probe CNS,
as various metal ions are generally presented in environmental
and biological samples. Consequently, the competition experi-
ment was carried out to examine the binding ability of CNS
toward other metal ions in THF/H,O (1 : 1, V/V) solution (1.0 x
107" M). As shown in Fig. 4, the fluorescence intensity increased
significantly after the addition of Hg”". In contrast, there were
no obvious changes on the fluorescence intensity of CNS after

Table 1 Comparison of CNS with other related fluorescent probes

View Article Online

RSC Advances

adding various metal ions, which proved again the high selec-
tivity of probe CNS toward Hg>".

3.4 pH effects

Next, we studied the fluorescent intensity of probe CNS in the
presence and absence of Hg®" under different pH conditions
(Fig. 5). In the absence of Hg>", the solution of probe CNS exhibited
negligible fluorescence changes under a wide pH range,”™ which
indicated its high stability under acidic and basic conditions. After
addition of Hg”", the fluorescence intensity of probe CNS was
significantly changed. However, the solution of probe CNS showed
the maximum fluorescence intensity in the pH range from 3 to 8.
This information revealed that probe CNS showed high stability
and applicable to the biological scope.

Probe LOD (uM) pH range Response time Cell imaging Zebrafish imaging Ref.
N
Z N 2.1 No data No data No No 47
OH
°w~%
\ 4.42 4-8 No data No No 48
\_/ v
s/>
O s 1.65 No data No data No No 49
Q NC N8
S ~"N 8 .
N Q | 8 No data 6 min Yes No 50
S
s,R
S’R
“ 1.74/1.53 3-7.4 30 min Yes No 51
o._oO
N A S 9 No data No data Yes No 39
"
~_N o0._0
\CQ/I(S\/ 2.2 4-10 2 min Yes No 52
M
\] 0. _0
\Qi)\:/s 2.78 3-8 45s Yes Yes This work
I

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 The *H NMR of CNS, CNS + Hg?* and compound 2.

Scheme 2 Recognition mechanism of CNS for Hg?*

3.5 Response time of CNS

The response time of CNS to Hg”" in THF/H,O solution (10> M, 1 : 1,
V/V) was investigated and the results were depicted in Fig. 6. Clearly,
the fluorescence intensity of probe CNS reached its maximum in 1
minute and remained stable for 5 minutes after adding Hg>,
demonstrating the fast responding time of CNS against Hg”".

Compared with other probes (Table 1), our probe has the fastest
response time, and has a lower detection limit and a wider pH
range. In terms of application, we have done cell experiments and
zebrafish experiments, which fully demonstrates that our probe
has a good application in biological detection.

A CNS Hg» Ag' Ba? [Cd** [Co™ Cu? Fe? Fe* Kk
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Ctrl

CNS
(10 um)

CNS
(10 pm)
+
ng+
(10 uM)

CNS
(10 pM)
+
H92+
(20 uM)

CNS
(10 puMm)
+
ng*
(50 pm)

Fig. 9 Confocal fluorescence images of Hg?' in living cells: cells
incubated with CNS (10 uM) for 30 min; probe-loaded cells incubated
with different concentrations of Hg?" (10 puM, 20 uM, 50 pM) for
10 min. Then the fluorescence spectra were measured on a laser
confocal microscopy. Green channel images: 490 nm-550 nm.

3.6 Detection mechanism

To investigate the proposed sensing mechanism of probe CNS
for Hg>", we measured the "H NMR spectra of probe CNS before
and after reacting with Hg>". As shown in Fig. 7, after adding
Hg2+ to the solution of CNS in DMSO-dg, the original peaks at
3.48-3.27 and 3.23-3.12 ppm ascribed to the methylene protons
of the thioacetal group disappeared, and a new peak at
9.65 ppm assigned to the aldehyde proton was observed. These
results proved that the thioacetal group had been successfully

Na* N2t Pb?* Sr2t Znp2

Fig. 8 The selectivity of the metal ions was tested with a filter paper, (A) in sunlight and (B

23602 | RSC Adv, 2021, 11, 23597-23606

) in UV light at 365 nm.
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Fig. 10 The improvement of fluorescence intensities from Hela cells
(fluorescence intensity was analyzed by Image J software).

eliminated under the promotion of Hg>", which gave the cor-
responding aldehyde group and induced the intramolecular
charge transfer (ICT) process, as shown in Scheme 2.

3.7 Paper test of probe CNS

A filter paper strip test was performed to study the convenience
of probe CNS in practical application. Firstly, the filter paper
was immersed in a probe solution (1.0 mM) and dried in air.
Then the filter paper was immersed in a metal ion solution (1.0
mM). As shown in Fig. 8, the filter paper showed obvious color
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change only under the induction of Hg**. The color change
could be distinguished both under sunlight and 365 nm UV
lamps. Therefore, the test bar can be used to test Hg>" ion
selectivity at any time.

3.8 Analytical applications in living cells

To investigate the biological applications of probe CNS, fluo-
rescent imaging experiments were carried out in HeLa cells in
the presence of 10 uM probe CNS and different concentrations
of Hg”" (0, 10, 20, and 50 uM). As depicted in Fig. 9, HeLa cells
treated with 10 uM probe CNS for 30 min gave very weak fluo-
rescence, which could be ascribed to the auto-fluorescence of
probe CNS. To the medium was added 10 uM Hg>" and the cells
were incubated for 10 min, the fluorescence in HeLa cells were
obviously improved, thereby indicating the chemical reaction
between probe and Hg>*. With the increasing of Hg>" concen-
tration (20 uM and 50 pM), the fluorescence intensity in HeLa
cells were significantly enhanced (Fig. 10). These results proved
that CNS was a promising probe used for detecting Hg>" in
living cells, it could penetrate into HeLa cells in 30 min and
rapidly respond to low concentrations of Hg”".

3.9 Toxicity of probe CNS in zebrafish

The toxicity of probe CNS was investigated in zebrafish larvae by
measuring their behavioral tracks on an automated computer-
ized video-tracking system (Fig. 11). Generally, high toxicity
compound can dramatically affect the behavioral tracks of
zebrafish larvae, including swimming duration, movement
distance, and swimming speed. In our experiments, the zebra-
fish larvae treated with 5 uM and 10 uM probe CNS for 24 h, and
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Fig. 11 Effect of different concentrations of CNS (0, 5, and 10 uM) on behavioral tracks of zebrafish. (A) Behavioral tracks. Red, green, and black
lines depict fast, medium, and slow movement, respectively. (B) Swimming duration, (C) movement distance, and (D) swimming speed of

zebrafish larvae.
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Fig. 12 Confocal fluorescence images of ng+ in zebrafish: zebrafish incubated with CNS (10 pM) for 30 min; probe-loaded zebrafish incubated
with different concentrations of ng+ (5 uM, 10 puM, 20 uM) for 10 min. Then the fluorescence spectra were measured on a laser confocal

microscopy. Green channel images: 490 nm-550 nm.

it seemed that probe CNS had no obvious effect on behavioral
tracks of zebrafish larvae (Fig. 11A). There were no obvious
decrease on the swimming duration (Fig. 11B), movement
distance (Fig. 11C), and swimming speed (Fig. 11D). These data
demonstrated that probe CNS exhibited very low toxicity at low
concentrations.
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Fig. 13 The improvement of fluorescence intensities from zebrafish
larvae (fluorescence intensity was analyzed by Image J software).
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3.10 Analytical applications in zebrafish

We further investigated the biological applications of probe CNS in
zebrafish before and after addition of difference concentrations of
Hg”". The 5 days zebrafish larvae were incubated in E3 water
containing 10 uM probe CNS and different concentrations of Hg>"
(0, 5,10, and 20 uM), then the fluorescence spectra were measured
on a laser confocal microscopy. As shown in Fig. 12, the 5 days
zebrafish larvae treated with E3 water containing 10 pM probe CNS
for 30 min emitted weak fluorescence generated by the probe itself.
After incubation with 5 pM Hg>" for 10 min, the zebrafish larvae
gave strong green fluorescence improvement, and the fluorescence
intensity was significantly enhanced with the increasing of Hg>"
concentration (Fig. 13). All these results indicated that probe CNS
could be used for monitoring low concentrations of Hg”" in living
zebrafish model.

4. Conclusions

In summary, we have obtained a new coumarin-based colori-
metric and fluorescent probe CNS by a low cost and high yield
synthesis route. Probe CNS exhibited excellent selectivity and
sensitivity, fast response time, as well as good stability under
physiological pH condition. In filter paper strip test, an obvious
color change could be observed upon addition of Hg>". The
color change could be distinguished both under sunlight and
365 nm UV lamps, and the presence of other competitive metal

© 2021 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1ra01408k

Open Access Article. Published on 05 July 2021. Downloaded on 2/11/2026 3:11:09 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

ions had no obvious interference on the background. The probe
showed low toxicity to zebrafish larvae, and was successfully
used for detecting increasing concentrations of Hg>" in HeLa
cells and zebrafish model. All these results indicated that probe
CNS should be a promising fluorescent agent for detecting Hg>"
in environmental samples and living biological systems.
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