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Dye molecules that absorb light in the visible region are key components in many applications, including

organic photovoltaics, biological fluorescent labeling, super-resolution microscopy, and energy

transport. One family of dyes, known as squaraines, has received considerable attention recently due to

their favorable electronic and photophysical properties. In addition, these dyes have a strong propensity

for aggregation, which results in emergent materials properties, such as exciton delocalization. This will

be of benefit in charge separation and energy transport along with fundamental studies in quantum

information. Given the high structural tunability of squaraine dyes, it is possible that exciton

delocalization could be tailored by modifying the substituents attached to the p-conjugated network. To

date, limited theoretical studies have explored the role of substituent effects on the electronic and

photophysical properties of squaraines in the context of DNA-templated dye aggregates and resultant

excitonic behavior. We used ab initio theoretical methods to determine the effects of substituents on the

electronic and photophysical properties for a series of nine different squaraine dyes. Solvation free

energy was also investigated as an insight into changes in hydrophobic behavior from substituents. The

role of molecular symmetry on these properties was also explored via conformation and substitution. We

found that substituent effects are correlated with the empirical Hammett constant, which demonstrates

their electron donating or electron withdrawing strength. Electron withdrawing groups were found to

impact solvation free energy, transition dipole moment, static dipole difference, and absorbance more

than electron donating groups. All substituents showed a redshift in absorption for the squaraine dye. In

addition, solvation free energy increases with Hammett constant. This work represents a first step toward

establishing design rules for dyes with desired properties for excitonic applications.
1. Introduction

The aggregation of dyes gives rise to Frenkel exciton delocal-
ization in molecular composite systems.1,2 The study of dye
aggregates can provide insight into the implementation of
aggregate systems, such as organic photovoltaics,3,4 near
infrared medical imaging5 and molecular photoswitch appli-
cations6 that draw from a well-established theoretical frame-
work exploiting unique exciton transfer properties.7 Dye
ineering, Boise State University, Boise, ID

tional Academy of Sciences of Ukraine,

ineering, Boise State University, Boise, ID

, Boise State University, Boise, ID 83725,

Falls, ID 83401, USA

the Royal Society of Chemistry
aggregate behavior is well described by the molecular exciton
model, formulated by Davydov and Kasha, in which intermo-
lecular dipole–dipole interactions lead to the mixing of excited-
state wavefunctions to access nondegenerate states.2,8,9 When
dye monomers aggregate, the monomeric excited-state energy
levels split into the excited states of the aggregate, in which
excitons are distributed in a wave-like fashion, called exciton
delocalization.10–12 The new excited-state behavior (i.e., exciton
delocalization) in the dye aggregate generally manifests as an
energy shi.13,14 The inclusion of a double-body exciton inter-
action introduces a second order molecular excitation interac-
tion, i.e., the exciton–exciton interaction energy Km,n,which is
crucial for modeling exciton–exciton interaction behavior in the
dye aggregate.14–16

It is pertinent to also discuss the environment, in which dyes
may aggregate. DNA is an attractive choice for dye templating
due to its customization at the nanoscale and an ability to
promote the exciton delocalization of dyes.17–34 DNA has been
shown to negligibly change the electronic properties of visible-
RSC Adv., 2021, 11, 19029–19040 | 19029
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light absorbing dye monomers.35 As such, the electronic prop-
erties of the dye monomers can be evaluated as free-dyes to
screen their potential utility as DNA-templated dyes. The cus-
tomizability of DNA templates and the options for binding dyes
to different sites are further enhanced via DNA origami
methods to construct multidimensional scaffolds.31,36

Expanding the number of dyes that can potentially be
incorporated will no doubt increase the functional capabilities
of DNA templating.27,29,35,37–48 Squaraine (SQ) dyes, a family of
dyes similar to the widely used cyanine dyes, but with a central
squaraine ring, have advantageous properties, such as strong
absorption in the visible spectrum49 and resistance to photo-
bleaching.50 They can potentially be structurally tailored for
a wide variety of applications.51–53 First synthesized by Treibs
and Jacobs,54 the central feature of SQ dyes includes an electron-
decient squaric moiety, combined with electron-rich groups in
a symmetric manner by means of a methine bridge.52 The
photophysical features and extensive structural tunability make
squaraines well-suited candidates for the investigation of
exciton delocalization when assembled.18,24,28,55 Although the
dipole–dipole coulombic coupling between dyes must be
considered to accurately predict aggregate absorption spectra,
monomer transition dipole moments provide estimates of the
strength of exciton delocalization for various dye congurations
via the extended dipole approximation, which can be used as
a guide for exciton applications.15,56

There is also a robust body of work demonstrating the cus-
tomizability of squaraine dyes, offering opportunities for the
tunability of dye properties through the engineering of func-
tional groups to yield desired properties.50,52,57–59 Previous work
on photophysical property engineering of squaraine dyes via
substitution is present in the literature with an emphasis on the
changing of the donor groups that ank the central squaraine
group or the netuning of dyes largely for efficient light-to-
electrical conversion and imaging.52,60,61 In the context of
promoting stronger exitonic interaction, customizing squaraine
dyes enables the introduction of substituents that may alter
their electronic structures to make them more favorable for
dipole interactions without detrimentally affecting photo-
physical properties.62–64 There has also been a research interest
in manipulating two key excitonic coupling factors, including
exciton hopping (or exchange) energy, Jm,n, and exciton–exciton
interaction energy, Km,n, by controlling the transition dipole m

and static dipole difference Dd of a dye monomer.56,65–67 The
maximization of m within a single absorption band is also
benetted by the minimization of vibronic coupling of dyes.68

Maximizing exciton–exciton interaction energy depends upon
the maximization of Dd. This should be concomitant with
maintaining or increasing m and is a primary target for the
selection of dyes and their substituents in this study. The
maximization of these quantities increases Jm,n and Km,n,
leading to a larger excitation energy.56

Substituent effects may also alter the propensity for dye
aggregation by changing dye solubility.35,39 Local environment
impacts the orientation of the dye by introducing steric effects
when hydrophobic substituents are added. In the case of DNA-
templated squaraines, the local environment can consider both
19030 | RSC Adv., 2021, 11, 19029–19040
a solvent environment as well as DNA. The balance of substit-
uents' ability to inuence electronic, photophysical, and
hydrophobic behaviors is key to the promotion of ideal dyes for
excitonic device performance. To further investigate the effect
of substituents, this study focuses on substituents that can
increase the hydrophobicity of a squaraine dye, because this is
expected to promote dye packing in order to inuence dipole
interactions.39 The study of substituent effects on the electronic,
photophysical, and solubility properties of monomers can
therefore provide information on candidates for aggregation.

In this work, rst-principles methods were used to address
the potential for indolenine-based squaraine dyes to be tuned
for excitonic applications. Specically, we used density func-
tional theory (DFT)-based methods to calculate the ground- and
excited-state properties of nine squaraine dyes, i.e., SQ-H2, SQ-
N(CH3)2, SQ-(N(CH3)2)2, SQ-CH3, SQ-(CH3)2, SQ-Cl, SQ-(Cl)2, SQ-
NO2, and SQ-(NO2)2. A range of substituents on a free squaraine
dye were studied to evaluate their inuence on m, Dd, absor-
bance, and hydrophobicity, which were subsequently validated
against experimental data for DNA-templated squaraine
monomers. By adding functional groups to an unsubstituted
squaraine, i.e., SQ-H2, its m, Dd, absorbance, and hydropho-
bicity could be altered. In addition, three different conformers
were investigated for each dye to examine the impact of struc-
tural changes.

2. Methodology
2.1 Computational methods

The Gaussian 16 soware package69 was used to perform
density functional theory (DFT) and time-dependent density
functional theory (TD-DFT) calculations. DFT has proven to
provide insight in the investigation of dye properties,65–67,70 and
there has been extensive work addressing best practices in
employing this method, such as appropriate exchange-
correlation functionals to represent electron–electron interac-
tions in the uorescing dyes similar to squaraine dyes.71–74 The
dyes were built and initially relaxed with the molecular editing
soware Avogadro75 using the UFF76 method. All calculations
were performed using the 6-31+G(d,p) basis set with the M06-
2X77 exchange-correlation functional, because this showed
a good agreement with experimental results in comparison with
sets of similar uorescent dyes.72,73 M06-2X is a hybrid meta-
generalized gradient approximation exchange-correlation
functional. This nonlocality denotes an inclusion of Hartree–
Fock (HF) exchange energy, which is advantageous for non-
metal systems. The term “meta” indicates that the functional
is constrained to be optimized using empirical data. Speci-
cally, for dipole and absorption calculations, M06-2X was found
to be the most reliable in comparison with other popular pure
and hybrid exchange-correlation functionals.72,74,78 Jacquemin
et al. also conducted an extensive survey of exchange-correlation
functionals applicable to different dyes, including squaraine
and so-called push–pull dyes.71,73,78–80 Molecules were built
according to the structures in Fig. 1. Comparisons were made to
monomers incorporated to DNA. DNA was found to negligibly
affect the absorbance data of a monomer.18,35
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Atomic structures were optimized using a tight root mean
square residual force of 1 � (10)�5 Hartree/Bohr and an ultra-
ne integration grid of 99 radial shells and 590 angular points
per shell. The ground-state optimization of these molecules was
veried by ground-state frequency calculations to ensure that
no imaginary frequencies were present, because imaginary
frequencies represent unstable geometry. Dyes exhibiting
desirable Dd (i.e., large Dd) were selected for further calcula-
tions to determine vibrationally-resolved absorption spectra. To
do so, the optimized rst excited-state geometry was used to
calculate the excited-state frequency to ensure that an opti-
mized structure was achieved. This procedure resulted in an
adiabatic transition by including the zero-point vibrational
energies, which accounted for vibrational energies at the states'
respective minima.80 The ground- and excited-state frequencies
were then used to calculate an absorption spectrum for each
molecule with the Franck–Condon (FC) approximation. The FC
approximation assumes that nuclear motion is frozen on the
timescale of the electronic transition. Our previous studies
showed that the calculated absorption spectra of cyanine dyes
with the FC approximation agreed well with experiments.35

Here, the changes in the bond lengths of ground and excited
states of squaraine dyes were analyzed. We found that the bond
lengths among the squaric moiety carbons elongated. The
methine chain lengths, connecting the trimethylindolenine
groups, and the carbon–oxygen bonds of the squaric moiety
shortened. However, all the changes between ground and
excited states were on the order of 0.01 Å. This nding indicated
that the FC approximation was adequate for squaraine dyes,
and agreed well with Bassal et al.74 The vertical excitation was
expected to be indicative of the excitation behavior of the
squaraine dyes. For dyes in solution, nonequilibrium solvent–
solute conditions were considered. Permanent dipole informa-
tion was generated by taking the vertical excitation from the
optimized ground state. This vertical excitation could result in
a difference between ground- and excited-state static dipoles,
i.e. Dd, written as:72

Dd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dES
x � dGS

x

�2 þ �
dES
y � dGS

y

�2

þ �
dES
z � dGS

z

�2r
(1)
Fig. 1 Indolenine-based squaraines. H atoms are located at the R1 and
R2 positions, forming SQ-H2. If H is replaced with substituents, it forms
either symmetric (R1 ¼ R2 ¼ substituent) or asymmetric (R1 ¼ H and R2

¼ substituent). Substituents this study focuses on include N(CH3)2,
CH3, Cl, and NO2.

© 2021 The Author(s). Published by the Royal Society of Chemistry
where dji is the Cartesian component of the permanent dipole
moment, i, in either the excited ES or ground GS state, j.

Solvation energy, DGsolv, has been shown to correspond to
hydrophobic behavior and qualitatively imply the stability of
dye aggregate.35 To investigate the likelihood of dye aggregation,
the solvation free energy DGsolv was calculated by taking
a difference in the ground state energies calculated using SMD
(i.e., SolvationModel based on Density) water and vacuum given
as:35,81

DGsolv ¼ Esolv � Ev (2)

where Esolv is the ground-state energy calculated in solvent and
Ev is the vacuum or gas-phase ground-state energy. Previous
studies have introduced squaraine conformers present in
solution. Their population percentages were calculated using
the Boltzmann distribution.58 The energies used to compare
likely populations were the ground-state energies of each
system in vacuum and in a water environment at 25 �C. In
addition to water solvent, pyridine, quinoline, and isoquinoline
were also investigated to approximate a DNA environment. In
order to reduce computational time, nitrogen heterocycle
solvents were used as suitable analogs to nitrogenous purine
and pyrimidine nucleobases in a DNA scaffold.

2.2 Experimental methods

N-Hydroxysuccinimide ester of 2-((1-(5-carboxypentyl)-3,3-
dimethylindolin-2-ylidene)methyl)-3-oxo-4-((1,3,3-trimethyl-3H-
indol-1-ium-2-yl)methylene)cyclobut-1-en-1-olate (SQ-H2-NHS)
was synthesised similar to the procedure described in Kolosova
et al.58 (Fig. 2).

3-Hydroxy-4-((1,3,3-trimethylindolin-2-ylidene)methyl)
cyclobut-3-ene-1,2-dione (1) (150 mg, 0.56 mmol) and 1-(5-car-
boxypentyl)-2,3,3-trimethyl-3H-indolium bromide (2) (200 mg,
0.56 mmol) were heated under reux in toluene (10 mL) for
10 h. The solvent was removed under reduced pressure by
a rotary evaporator. The residue was puried by a column
chromatography (Silica gel 60, 0–8% methanol–chloroform) to
give SQ-H2-COOH (190 mg, 65%) as a dark blue solid with
a golden sheen. 1H-NMR (200MHz, DMSO-d6), d, ppm: 7.52 (2H,
d, 7.3 Hz, arom.), 7.44–7.25 (4H, m, arom.), 7.25–7.04 (2H, m,
arom.), 5.79 (1H, s, CH), 5.76 (1H, s, CH), 4.06 (2H, t, 7.4 Hz,
NCH2), 3.57 (3H, s, NCH3), 2.21 (2H, t, 6.7 Hz, CH2COOH), 1.68
(12H, s, (CH3)2), 1.80–1.29 (6H, m). MALDI-TOF MS, m/z calcd.
for [C33H36N2O4] 524.27, found: 525.32 [M +H]+. Anal. calcd. (%)
for C33H36N2O4: C, 75.55; H, 6.92; N, 5.34. Found C, 75.43; H,
6.89; N, 5.31. UV-Vis: lmax (Abs) 630 nm (methanol); lmax (Em)
639 nm (methanol); lmax (Abs) 622 nm, 3 285 000 M�1 cm�1

(phosphate buffer); lmax (Em) 632 nm (phosphate buffer).
SQ-H2-COOH (30 mg, 57 mmol), N,N,N0,N0-tetramethyl-O-(N-

succinimidyl)uronium tetrauoroborate (TSTU) (26 mg, 86
mmol), and N,N-diisopropylethylamine (DIEA) (16 mL, 92 mmol)
were dissolved in acetonitrile (3 mL). The solution was stirred at
room temperature for 20 min. The solvent was removed under
reduced pressure by a rotary evaporator. The residue was puri-
ed by a column chromatography (Silica gel 60, 0–3% meth-
anol–chloroform) to give SQ-H2-NHS. Yield: 18 mg (51%). 1H-
RSC Adv., 2021, 11, 19029–19040 | 19031
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Fig. 2 Synthesis of SQ-H2.
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NMR (200 MHz, DMSO-d6), d, ppm: 7.53 (2H, d, 7.4 Hz, arom.),
7.46–7.24 (4H, m, arom.), 7.24–7.01 (2H, m, arom.), 5.79 (1H, s,
CH), 5.76 (1H, s, CH), 4.06 (2H, t, 7.4 Hz, NCH2), 3.58 (3H, s,
NCH3), 2.81 (4H, s, CH2 (NHS)), 2.67 (2H, t, 6.0 Hz, CH2-
COONHS), 1.68 (12H, s, (CH3)2), 1.80–1.29 (6H, m).

For computation-experiment validation, we assembled
a four-arm DNA Holliday junction with the unsubstituted
squaraine SQ-H2 covalently attached to one of the oligonucle-
otides. Three unlabeled oligonucleotides and one oligonucleo-
tide labeled with SQ-H2 (SETA BioMedicals, Urbana-
Champaign, IL) via the nucleosidic sequence modier C6 dT
were obtained from Integrated DNA Technologies (Coralville,
IA). Squaraine-labeled and unlabeled DNA oligonucleotides
were rehydrated in ultrapure water (Barnstead Nanopure,
Thermo Scientic) to prepare a 100 mM stock solution.
Concentrations of DNA samples were determined spectroscop-
ically on NanoDrop One Microvolume UV-Vis (Thermo Scien-
tic) using a calculated extinction coefficient. DNA Holliday
junctions were prepared by combining equimolar amounts of
Fig. 3 Three possible indolenine squaraine conformers: (a) trans,anti, (b
N(CH3)2, CH3, Cl, and NO2.

19032 | RSC Adv., 2021, 11, 19029–19040
complimentary functionalized and non-functionalized oligo-
nucleotides in 1� TBE 15 mM MgCl2 buffer solution, to a nal
DNA concentration 1.5 mM. Samples were annealed in a Mas-
tercycler Nexus PCR cycler (Eppendorf) according to the
following protocol: 4 min at 94 �C, followed by a cooling rate:
0.1 �C per 15 s from 94 �C to 64 �C, and 10 �C per minute from
64 �C to room temperature. UV-Vis spectra were recorded in
duplicates at room temperature on a dual-beam Cary 5000 UV-
Vis-NIR spectrophotometer (Agilent Technologies) in a cuvette
with a 10 mm pathlength. Absorbance spectra were monitored
over a wavelength range of 230–800 nm. Spectra were normal-
ized at dye absorption maximum in UV-Vis range using Ori-
ginPro 2019.
3 Results
3.1 Boltzmann populations of conformers

To further complement changes associated with composition
via substitution, this study considered three conformers of the
) trans,syn, and (c) cis,syn. Substituents this study focuses on include

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Experimental and calculated vibrationally-resolved absorption
spectra for SQ-H2. The calculated absorption spectra were obtained
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indolenine-based squaraine, including trans,syn with Cs

symmetry; cis,syn with C2v symmetry; and trans,anti with C2h

symmetry using a Boltzmann distribution calculation at room
temperature.58 The conformations of dyes were considered
based on previously reported indolenine-based squaraines via
photoisomerization.58,82 The energies of the optimized ground-
state squaraine dyes were used to calculate the energy differ-
ences and corresponding Boltzmann populations of three
conformers of the indolenine-based squaraine dyes, as shown
in Fig. 3. The energy differences between the optimized ground-
state conformers are shown in Table 1. For all dyes, a more
stable conformer is represented by a more negative total energy.
Comparing the differences of total energies of different
conformers shows that the trans,anti conformer is about
5 kJ mol�1 more stable than the cis,syn conformer (trans,anti–
cis,syn) and about 8 kJ mol�1 more stable than the trans,syn
conformer (trans,anti–trans,syn). The energy difference results,
when used as states for a Boltzmann distribution, demonstrate
that the two major conformers of indolenine-squaraines are
trans,anti and cis,syn. The trans,anti conformer is the most
energetically favorable for all the indolenine-based squaraine
dyes with the most negative total energy. These energy differ-
ences have been described as a result of steric strain from the
dimethyl group of the indolenine rings in agreement with
previous computational and experimental studies.58,83,84 The
trans,anti conformer further benets from a staggered conju-
gation, favoring minimized steric effects.85,86 However, we found
that substituents have a minor effect on the Boltzmann pop-
ulations with respect to the unsubstituted trans,anti squaraine
(SQ-H2) at most by only 3%. The greatest variation of conformer
population from the unsubstituted cis,syn SQ-H2 conformer
occurs from SQ-Cl by 3%. The Boltzmann populations of
different trans,syn conformers are lower than 4% and have the
greatest variation with respect to the unsubstituted trans,syn
SQ-H2 is also from SQ-Cl by 1%. Computational results show
that the cis,syn and trans,anti conformers are popular, so our
further studies focus on these conformers.
using the FC approach with the optimized ground- and excited-state
structures of a free dye in a water solvent. The experimental spectrum
was obtained for SQ-H2 covalently attached to a DNA HJ; the
concentration of SQ-H2 – DNA HJ construct was 1.5 mM in 1� TBE
15 mM MgCl2 aqueous buffer solution.
3.2 Comparison of SQ-H2 with experiment

To validate our approach for the calculations of ground- and
excited-state properties of substituted squaraines, the
Table 1 Ground-state total energy differences between trans,anti and c
well as associated Boltzmann populations calculated from the energy d

Dye

Energy difference (kJ mol�1)

trans,anti–cis,syn trans,anti–tran

SQ-(N(CH3)2)2 �4.81 �8.39
SQ-N(CH3)2 �4.78 �8.18
SQ-(CH3)2 �4.77 �8.33
SQ-CH3 �4.76 �8.32
SQ-H2 �4.81 �8.31
SQ-Cl �4.70 �8.18
SQ-(Cl)2 �4.72 �8.46
SQ-NO2 �4.69 �8.85
SQ-(NO2)2 �4.95 �8.73

© 2021 The Author(s). Published by the Royal Society of Chemistry
vibrationally-resolved absorption spectra of SQ-H2 were gener-
ated using the Franck–Condon (FC) method in the TD-DFT
framework for the trans,anti and cis,syn conformers. The
calculated absorption spectra are shown in Fig. 4 along with the
experimental absorption prole.

TD-DFT satisfactorily reproduces the lineshape of the
experimental absorption spectrum, which exhibits a strong
absorption peak at 638 nm and a smaller vibrionic shoulder
around 590 nm. The TD-DFT calculated peak absorption lmax is
found to be 647 nm for the trans,anti conformer and 651 nm for
the cis,syn conformer. Compared to the experimental data, the
absorbance data calculated by TD-DFT exhibits a peak absorp-
tion lmax within 0.027 eV of experiment (as calculated for the
trans,anti conformer). Furthermore, the calculated trans,anti
peak absorption l is closest to experiment, which suggests that
the trans,anti conformer dominates the dye populations,
agreeing well with the Boltzmann population results (Table 1).
The deviation from the theoretical calculation is a known arti-
fact in TD-DFT calculations when computing absorption
spectra for dyes. This is due to small perturbations in the
excited electronic density that the hybrid exchange-correlation
functional cannot adequately model in the TD-DFT scheme.87
is,syn conformers and between trans,anti and trans,syn conformers, as
ifferences at 25 �C in vacuum

Boltzmann populations (%)

s,syn trans,anti trans,syn cis,syn

84.93 2.88 12.2
84.58 3.12 12.3
82.14 1.31 16.54
84.65 2.95 12.39
82.69 2.57 14.74
80.49 1.49 18.02
83.02 2.54 14.44
84.84 2.38 12.78
85.83 2.53 11.63
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3.3 Solvation free energy calculations

To determine the effects of electron donating and withdrawing
substituents on the solvation energies of squaraine dyes, DFT
ground-state optimization calculations were performed in
vacuum and solvent. From the solvated and vacuum energies,
the solvation free energy, DGsolv, was determined using eqn (2)
for each dye, as shown in Fig. 5. As with other studies,88,89 the
values of DGsolv were calculated to estimate the solubility of the
dyes in the given solvent. As shown in Fig. 1, the substituted dye
structures consist of symmetrically substituted dyes (R1 ¼ R2)
and asymmetrically substituted dyes (R1 ¼ H s R2).

Unsubstituted squaraine has a DGsolv of �0.81 eV in water
for both the trans,anti and cis,syn conformers. For all dyes,
the conformer does not affect DGsolv, and, overall, the values
of DGsolv are only slightly affected by substitution. Upon
substitution, most dyes exhibit more negative DGsolv values in
water, except for SQ-Cl, which has the least negative DGsolv

value, indicating being the most hydrophobic. In contrast,
SQ-(N(CH3)2)2 has the most negative DGsolv for the water
solvated dyes and so is taken to be the most hydrophilic. The
DGsolv for the dyes in pyridine, quinoline, and isoquinoline
follow similar trends as those in water. The values of DGsolv in
pyridine, quinoline, and isoquinoline are also unaffected by
conformers. DGsolv for the dyes in water are less negative,
indicating that it is more energetically favorable for the dyes
to form solutes in pyridine, quinoline, and isoquinoline.
These three solvents are taken to mimic the molecular
structure of DNA bases.
Table 2 Substituents used in this study and their corresponding
Hammett constants,90,91 sp. The empirically derived Hammett constant
(sp) is used to quantify the strength in which a substituent is electron
withdrawing (positive) or electron donating (negative)

Substituent Hammett constant (sp) Classication

N(CH3)2 �0.83 Donating
CH3 �0.17
H 0
Cl 0.23 Withdrawing
NO2 0.78
3.4 Excited-state calculations

The optimized water-solvated ground-state structures of
unsubstituted and substituted squaraines were used for single-
step TD-DFT calculations in the rst excited singlet state to
determine the effects that electron donating and electron
withdrawing substituents have on electronic excited-state
properties (i.e., m and Dd). We introduced the empirically
derived Hammett constant (sp), which could quantify the
strength of a substituent as electron withdrawing (positive) or
electron donating (negative).90,91 A list of these constants is
Fig. 5 Solvation free energy (DGsolv) of unsubstituted and symmetrically s
calculated using eqn (2). Geometry optimizations were done using the M
the data and are not meant to infer quantitative behavior. The x-axis is in
away from SQ-H2.

19034 | RSC Adv., 2021, 11, 19029–19040
provided in Table 2. N(CH3)2 and NO2 are strong donating and
withdrawing substituents, respectively. CH3 and Cl are weak
donating and withdrawing substituents, respectively. The
Hammett constant has been shown to relate to the character-
istics of an electronic structure.67,92 To establish a relationship
between the strengths of the electron donating and electron
withdrawing substituents (as quantied with sp) and calcu-
lated properties, m, Dd, and Dlmax are plotted against the sp of
attached substituents, as discussed in the following sections.

3.4.1 Transition dipole moments. Compared to unsub-
stituted squaraine, Fig. 6 shows that substituents with the larger
magnitudes of sp yield dyes with larger m. The calculated values
of m for unsubstituted squaraine (SQ-H2) are 14.7 D for the
trans,anti conformer and 14.4 D for the cis,syn conformer and
were determined to be along the long axis of the dye. The dyes
exhibiting the largest values of m are trans,anti SQ-(N(CH3)2)2
(15.9 D) and SQ-(NO2)2 (16.3 D), which are the dyes with the
strongest electron donating and electron withdrawing substit-
uents, respectively. In general, symmetrically substituted dyes
have the larger values of m than asymmetrically substituted
ones. Furthermore, the trans,anti conformers exhibit the larger
values of m than cis,syn conformers. In comparison with the
unsubstituted squaraine, the largest change is SQ-(NO2)2 with
1.6 D, and all substituents contribute an increase in m.

3.4.2 Static dipole differences. Similar to m, the Dd of
squaraine increases with the magnitude of sp, as shown in
Fig. 7. Substitution type and conformation also inuence Dd.
ubstituted squaraine dyes in water, pyridine, quinoline, and isoquinoline
06-2X functional. The lines added to the data are to highlight trends of
order of increasing donating and withdrawing strength as its position

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Transition dipole moment magnitudes (m) for symmetrically and asymmetrically substituted squaraines plotted against the Hammett
constant of the substituent(s) attached to the dye.
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Symmetrically substituted SQ-N(CH3)2 and SQ-NO2 dyes have
the higher Dd than their asymmetrical ones. Symmetrically
substituted SQ-(CH3) and SQ-Cl dyes have the lower Dd than
their asymmetrical ones. Furthermore, symmetrically
substituted dyes in the trans,anti conformations all have Dd
values of nearly 0 D while others have non-zero Dd. In general,
trans,anti conformers, characterized by C2h type symmetry, have
the lower values of Dd compared to cis,syn conformers, char-
acterized by C2v symmetry. The largest values of Dd belong to
cis,syn SQ-Cl (0.8 D) in the asymmetrically substituted dyes and
cis,syn SQ-NO2 (3.0 D) in the symmetrically substituted dyes.
This indicates that electron withdrawing substituents have the
larger impact on Dd than electron donating substituents.

3.4.3 Absorption spectra of asymmetric squaraines. To
further test the effects of substituents on the excited-state
properties of dyes, vibrationally-resolved absorption spectra
were calculated. The asymmetrically substituted dyes in
the trans,anti conformations with the larger Dd values were
Fig. 7 Static dipole difference magnitudes (Dd) for symmetrically and
constant of the substituent(s) attached to the dye.

© 2021 The Author(s). Published by the Royal Society of Chemistry
chosen for further studies with the FC method. The normalized
results are shown in Fig. 8.

Upon asymmetric substitution, the lineshapes of the spectra
remain relatively unaffected, with a main absorption peak
between 1.97 and 1.84 eV (630 and 675 nm) and a smaller
vibrionic shoulder around 2.1 eV (600 nm). However, the lmax

values for asymmetrically substituted dyes are redshied
compared to the unsubstituted squaraine dye. SQ-Cl has the
smallest redshi of 0.04 eV. The largest redshis of 0.08 eV and
0.09 eV belong to SQ-N(CH3)2 and SQ-NO2, indicating that the
stronger electron donating or electron withdrawing substitu-
ents have a larger effect on lmax.

Like m and Dd, the values for Dlmax were plotted against the
values of sp for the substituents attached to the dyes. Dlmax is
dened as the redshi of the lmax of the dyes in Fig. 8 from
unsubstituted squaraine (SQ-H2). As shown in Fig. 9, the larger
sp values of the substituents promote the larger Dlmax.
asymmetrically substituted squaraines plotted against the Hammett

RSC Adv., 2021, 11, 19029–19040 | 19035
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Fig. 8 Vibrationally-resolved absorption spectra for trans,anti asymmetrically substituted squaraine dyes calculated using the FC method in
implicit water. The solid black line is the unsubstituted squaraine (SQ-H2) absorbance spectrum.
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4. Discussion

In regard to the changes to Dd and m upon substitution, all
substituents lead to changes in electronic structures as
compared with the reference squaraine SQ-H2. In the frame of
treating the squaraine as a donor–acceptor–donor dye, the
substituents modify the donating behavior of the trimethy-
lindolenine groups attached to the accepting squaric moiety.
The electron withdrawing substituents in this study appear to
have a stronger effect on the change of Dd and m. Electronically,
this may be the result of decreasing the donating ability of the
indolenine groups towards the squaraine center. In contrast to
the withdrawing substituents, the donating substituents are
Fig. 9 Maximum absorption wavelength differences from unsubstitute
against the Hammett constant of the substituent(s) attached to the dye.

19036 | RSC Adv., 2021, 11, 19029–19040
expected to increase the donating strength of the indolenine
groups. The contribution of the electron donating substituents
to an increase in Dd and m is relatively smaller than that of the
electron withdrawing substituents (Fig. 6 and 7).

DGsolv is sensitive to solvent and becomesmore negative with
the nitrogen heterocyclic solvents pyridine, quinoline, and iso-
quinoline, as shown in Fig. 5. This trend increases from pyri-
dine to quinoline and isoquinoline and can be attributed top–p
interactions between the solvent and the solute.93 The magni-
tude of DGsolv also increases with sp. An increase in the
magnitude of DGsolv indicates a greater stability in a solvent
environment. This would suggest that the dyes have
d squaraine (Dlmax) for asymmetrically substituted squaraines plotted

© 2021 The Author(s). Published by the Royal Society of Chemistry
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a propensity for a DNA environment and are more likely to
aggregate in a DNA template rather than dissolve in aqueous
solution.

Recent squaraine dye applications have revealed the effect of
conformers on device performance. These effects are due to the
alteration of energy transfer pathways.53,82,94–97 Conformers have
also been shown to change transition dipole orientation,
further potentially affecting exciton delocalization.98 Certain
applications may benet from different conformers, such as
dye-sensitized solar cells in part because of accommodation of
different anchoring options on substrates.53 Boltzmann distri-
bution calculations have been used to predict the population of
conformers existing in solution.58 Squaraine dyes with unal-
tered central squaric moieties have been found most likely to
exist in a trans,anti (C2h) symmetry state.

Upon both symmetric and asymmetric substitution, m is
relatively unaffected by the type of substitution. Because of this,
the exciton hopping interaction occurring between dyes in an
aggregate should remain unchanged and may be slightly
augmented with substituents. For symmetric substitution, most
dyes in the trans,anti conformations exhibit a Dd of �0 D. As
shown in Fig. 3, dyes in the trans,anti conformations have C2h

symmetry, which, along with the donor–acceptor–donor elec-
tronic pattern of squaraine, results in small changes in Dd. In
contrast, dyes in the cis,syn conformations are characterized by
C2v symmetry and exhibit a non-zero Dd. By only including
a single substituent on the dye (i.e. asymmetric substitution),
the structural symmetry is distorted. Furthermore, substituents
with non-zero sp would increase Dd. Specically for the sub-
situents studied in this work, the electron withdrawing
substituent NO2 increases Dd the most. Our computational
results suggest that sp can guide the selection of dye candidates
with desired electronic and photophysical properties.

Based on the results of this study, the substitution of the
squaraine indolenine rings can enhance the dye's excitonic
properties. Upon substitution, m is slightly increased for most
dyes, indicating that the excitonic hopping interaction between
dyes in an aggregate should be enhanced rather than dimin-
ished. Similarly, substituents can promote an increase in Dd,
which could improve the exciton-exciton interaction energy of
the squaraine aggregate.

5. Conclusion

Squaraine dyes with varied substituents were investigated to
compare their solvation free energy DGsolv, static dipole differ-
ence Dd, transition dipole moment m, and absorption wave-
length lmax using DFT and TD-DFT. Changes in these values
upon substitution were compared to the empirically derived
Hammett constant sp and experimental absorption proles for
the unsubstituted squaraine dye. It was found that the magni-
tude of sp correlated with DGsolv, m, Dd,and lmax. DGsolv

becomes more negative with a larger sp value in water and in
solvents similar to a DNA environment. m increases with sp for
symmetric substitution patterns. Dd increases with asymmetric
substitution and sp. lmax also increases with sp. These ndings
on the electronic, photophysical, and hydrophobic properties of
© 2021 The Author(s). Published by the Royal Society of Chemistry
squaraine dyes can guide the selection of substituted dyes. The
ability to control dye properties, when coupled with DNA scaf-
folding, may make it possible to tailor the performance of dye
aggregate materials for excitonic systems and applications.
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86 R. F. Quijano-Quiñones, M. Quesadas-Rojas, G. Cuevas and
G. J. Mena-Rejón, The rotational barrier in ethane:
a molecular orbital study, Molecules, 2012, 17, 4661–4671.

87 B. Le Guennic and D. Jacquemin, Taking Up the Cyanine
Challenge with Quantum Tools, Acc. Chem. Res., 2015, 48,
530–537.

88 S. Md. Abdur Rauf, et al., The effect of N-methylation of
amino acids (Ac-X-OMe) on solubility and conformation:
a DFT study, Org. Biomol. Chem., 2015, 13, 9993–10006.

89 M. R. Mananghaya, G. N. Santos and D. N. Yu, Solubility of
amide functionalized single wall carbon nanotubes:
a quantum mechanical study, J. Mol. Liq., 2017, 242, 1208–
1214.

90 H. C. Brown and Y. Okamoto, Electrophilic Substituent
Constants, J. Am. Chem. Soc., 1958, 80, 4979–4987.

91 C. Hansch, A. Leo and R. W. Ta, A Survey of Hammett
Substituent Constants and Resonance and Field
Parameters, Chem. Rev., 1991, 91, 165–195.

92 Y. Mao, M. Head-Gordon and Y. Shao, Unraveling
substituent effects on frontier orbitals of conjugated
molecules using an absolutely localized molecular orbital
based analysis, Chem. Sci., 2018, 9, 8598–8607.

93 M. H. Rahman, et al., Aggregation of Conjugated Polymers in
Aromatic Solvent, Langmuir, 2009, 25, 1667–1674.

94 C. Qin, et al., A near-infrared cis-congured squaraine co-
sensitizer for high-efficiency dye-sensitized solar cells, Adv.
Funct. Mater., 2013, 23, 3782–3789.

95 S. F. Völker, et al., Singlet-singlet exciton annihilation in an
exciton-coupled squaraine-squaraine copolymer: a model
toward hetero-J-aggregates, J. Phys. Chem. C, 2014, 118,
17467–17482.

96 T. G. Pedersen, P. M. Johansen and H. C. Pedersen,
Characterization of azobenzene chromophores for
reversible optical data storage: molecular quantum
calculations, J. Opt. A: Pure Appl. Opt., 2000, 2, 272–278.

97 M. K. Etherington, et al., Regio- and conformational
isomerization critical to design of efficient thermally-
activated delayed uorescence emitters, Nat. Commun.,
2017, 8, 14987.

98 C. Brand, W. L. Meerts and M. Schmitt, How and why do
transition dipole moment orientations depend on
conformer structure?, J. Phys. Chem. A, 2011, 115, 9612–9619.
© 2021 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1ra01377g

	First-principles studies of substituent effects on squaraine dyes
	First-principles studies of substituent effects on squaraine dyes
	First-principles studies of substituent effects on squaraine dyes
	First-principles studies of substituent effects on squaraine dyes
	First-principles studies of substituent effects on squaraine dyes

	First-principles studies of substituent effects on squaraine dyes
	First-principles studies of substituent effects on squaraine dyes
	First-principles studies of substituent effects on squaraine dyes
	First-principles studies of substituent effects on squaraine dyes
	First-principles studies of substituent effects on squaraine dyes
	First-principles studies of substituent effects on squaraine dyes
	First-principles studies of substituent effects on squaraine dyes
	First-principles studies of substituent effects on squaraine dyes

	First-principles studies of substituent effects on squaraine dyes
	First-principles studies of substituent effects on squaraine dyes
	First-principles studies of substituent effects on squaraine dyes
	First-principles studies of substituent effects on squaraine dyes
	First-principles studies of substituent effects on squaraine dyes


