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A study of starch content detection and the
visualization of fresh-cut potato based on

hyperspectral imaging

Fuxiang Wang,® Chunguang Wang 2 *2 and Shiyong Song®

Fresh-cut potatoes are popular with consumers because of their healthiness, hygiene, and convenience.
Currently, starch content is mainly detected using chemical methods, which are time-consuming and
laborious. Moreover, these methods may cause some side effects in the human body. Therefore, suitable
methods are required for the rapid and accurate detection of starch content. In this study, Zihuabai and

Atlantic potatoes were used as experimental samples. The potatoes were sliced with stainless-steel

blades, and images of these potatoes were obtained through hyperspectral imaging. The images were
preprocessed using different methods. Competitive adaptive reweighed sampling (CARS) and the
successive projection algorithm (SPA) were used to extract characteristic wavelengths. A partial least
squares regression (PLSR) model was constructed to predict the starch content from the preprocessed

full spectrum and the spectrum under the characteristic wavelength. The results indicate that the full

spectrum model constructed through standard normal variable transformation (SNV) preprocessing had

the best performance, with a correlation coefficient in the calibration set (R.) value of 0.9020, a root
mean square error of correction (RMSEC) of 2.06, and a residual prediction deviation (RPD) of 2.33. The
characteristic wavelength-based multivariate scattering correction (MSC)-CARS-PLSR model exhibited

better performance than the PLSR model constructed using the full spectrum, with an R. value of
0.9276, RMSEC of 1.76, correlation coefficient in the prediction set (R,) value of 0.9467, root mean
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square error of prediction of 1.63, and RPD of 2.95. The starch content in fresh-cut potatoes was

visualized using the best model in combination with pseudocolor technology. The results indicate that
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1 Introduction

Potatoes are one of the most nutritious crops in the world. They
contain many nutrients, such as vitamin C, vitamin B6, folic
acid, potassium, iron, and magnesium, and are an important
source of carbohydrates, vitamins, and minerals for the human
body." Potato is the fourth most important food crop in the
world according to annual production.”> Most potatoes are
consumed as fresh vegetables, with the remaining potatoes
being processed into french fries, potato chips, starch, vermi-
celli, and puffed foods.** In today's fast-paced world,
consumers prefer fresh-cut potatoes because of their freshness,
convenience, and hygiene.>®

After potatoes are subjected to mechanical cutting, the
structure of the epidermal cell wall is destroyed, the interlayer
structure of the cells is changed, and the material of the cell wall
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hyperspectral imaging is effective for mapping the spatial distribution of starch content; thus, a solid
theoretical basis is obtained for the grading and online monitoring of fresh-cut potato slices.

degrades, which results in tissue softening.” These fresh-cut
potatoes consume their own nutrients to maintain their meta-
bolic activity, which leads to a continuous decline in their
appearance, color, and quality.*™°

Mechanical cutting destroys some starch cells. The meta-
bolic activity of starch cells changes the physical properties and
content of starch. Moreover, the distribution of starch content
in potatoes is uneven, which leads to different starch contents
in multiple slices from the same potato. The starch content
affects the taste of potatoes; if the starch content is too high, the
potatoes will be rough and hard, and if the starch content is too
low, the potatoes will not be crisp. With the popularity of
science-based diets in modern society, producers and
consumers require knowledge on the starch content of potatoes
to rationalize their price for potatoes and diet plans, respec-
tively. Therefore, a method for detecting the starch content of
fresh-cut potatoes quickly is required to determine the quality
of potatoes and to provide a theoretical basis for quality
monitoring and food grading.

Starch content is determined through acidolysis, enzymatic
hydrolysis,"* and spectrophotometry.” Although these methods
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accurately and quantitatively detect starch content, the sample
preparation is complicated and the experimental process is
time-consuming and laborious.”* Moreover, high-level opera-
tion skills are required for the experimental process. Therefore,
a rapid method is required for detecting the starch content of
fresh-cut potatoes.

Hyperspectral imaging (HSI) integrates traditional imaging
and spectral techniques. It obtains spatial and spectral infor-
mation simultaneously. Each pixel in the image contains a one-
dimensional spectrum. Each pixel represents different infor-
mation, which is beneficial for analyzing the content and
distribution of components simultaneously, which in turn
makes the entire detection process more efficient. HSI, which is
a powerful analysis tool, has been widely used for studying
aspects such as fruit maturity,’***> crop variety,’*" and meat
quality.”>** Currently, HSI is used for inspecting the quality of
potatoes. Qiao* and Jiang® predicted the moisture and starch
content of potatoes, respectively, by using hyperspectral
equipment. Bai** detected residual sulfur dioxide on the surface
of fresh-cut potato chips. Rady*® detected the sugar content in
potatoes, and Sun®® predicted the moisture content of purple
sweet potato slices during the drying process by using HSI. Su*”
used HSI to monitor the moisture content of potatoes during
drying in real time. Anders*® predicted the starch, soluble sugar,
and amino acid content of potatoes. Also, Xiao et al.>* employed
HSI to predict the water content in fresh-cut potatoes, and the
visualization of water in potatoes was achieved by modelling.
Although some progress has been made in the research of
potatoes by using hyperspectral equipment, there is no report
on starch content prediction and visualization of fresh-cut
potatoes.

Therefore, by using hyperspectral image information, we
detected the starch content of fresh-cut potato chips quickly.
The objectives of this study were as follows: (1) to acquire
hyperspectral images of fresh-cut potato, (2) to determine the
optimal wavelength by using competitive adaptive reweighed
sampling (CARS) and the successive projection algorithm (SPA),
(3) to construct a calibration model by using the full spectrum
and optimal wavelength, (4) to improve the accuracy and
robustness of the model by comparing different spectral pre-
processing methods and their combinations, and (5) to observe
the distribution of starch content in fresh-cut potato.

2 Materials and methods
2.1 Preparation of experimental samples

Zihuabai and Atlantic potatoes were purchased from the
farmers' market in Hohhot, Inner Mongolia Autonomous
Region, China. Fresh round or oval potatoes with no rotting, no
mechanical damage, and little difference in shape were selected
for the experiment and maintained away from light for
approximately 24 h in the experimental environment. After
washing, the soil on the surface of the potatoes was removed,
the water was drained, and the potatoes were cut into approxi-
mately 0.2 cm-thick slices with a stainless-steel blade. The
starch on the surface was then washed off with distilled water,
and the surface was thoroughly dried with absorbent paper. A
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total of 96 potato samples were selected for hyperspectral data
collection.

2.2 Hyperspectral image acquisition

2.2.1 HSI system. A five-bell optical hyperspectral imaging
system was used in the experiment. This system included
a hyperspectral image spectrometer (ImSpector V10E, Spectral
Imaging Ltd, Oulu, Finland), a charge-coupled device camera
(IGVB1620, Imperx, USA), two 150 W halogen lamps (Type 3900,
Iluminator, Illumination Technology, USA), one DC adjustable
light source (Type 2900, Illumination Technology, USA),
a mobile control platform (IRCP0076-1 COM, Taiwan, China),
and a computer. The hyperspectral imaging system was turned
on and preheated for 30 min before image acquisition. The
spectral range of the hyperspectral camera was 382.23-
1004.78 nm. The reflection spectrum was used in this study.

2.2.2 Hyperspectral image correction. To minimize and
remove dark current noise, the original images were corrected

to black-and-white images according to the following
equation:*®
R—-B
— 0
C= —3 x 100% (1)

where C, R, B, and W are the corrected image, original image,
black reference image obtained by completely covering the
camera lens with the lens cover (approximate reflectivity of 0%),
and white calibration image (approximate reflectivity of
99.99%), respectively.

2.3 Experimental methods

2.3.1 Chemical analysis. The starch content was deter-
mined through enzymatic hydrolysis."* Briefly, the starch
content was determined by reducing sugar and converting it
into starch.

2.3.2 Spectral data acquisition. The corrected hyper-
spectral images were imported into the ENVI 5.3 software (ITT
Visual Information Solutions, Boulder, CO, USA), and a rectan-
gular region of 100 x 100 pixels was selected as the region of
interest (ROI). The average spectra of all pixels in the ROI were
extracted as the spectra of the samples. The average spectra of
the samples were obtained. The wavelength range, which
included 428 bands, was 382.23-1004.78 nm. Spectral data
matrices of each of the three regions were obtained using Excel
software.

2.3.3 Pretreatment of the spectral data. Because of
mechanical noise and baseline drift in the original spectrum,
preprocessing had to be performed to eliminate unnecessary
information. In this study, the spectral data matrices were
preprocessed using standard normal variable transformation
(SNV), multivariate scattering correction (MSC), Savitzky-Golay
convolution smoothing (SG), SG-SNV, and SG-MSC. SNV is the
most widely used spectral data preprocessing method. It helps
correct the change in path length and spectral intensity as well
as eliminate the interference due to the nonlinear light scat-
tering effect.** MSC is mainly used to eliminate the influence of
scattering on the spectrum and effectively enhance the spectral
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information related to the content of sample components.** SG
smoothing improves the smoothness of the spectrum and
reduces the interference of noise. In this study, spectral data
preprocessing was performed using Unscrambler x10.1 (Camo
Software, Oslo, Norway).

2.3.4 Characteristic wavelength selection. Hyperspectral
data contain hundreds of continuous wavelengths, which are
redundant and multicollinear. Eliminating redundant wave-
lengths and selecting optimal variables can not only simplify
the modeling process and reduce costs and running time but
also improve the performance of the model. In this study, the
improved CARS method and SPA were selected to extract the
optimal wavelengths in the Matlab (Version 2014a, MathWorks,
Natick, MA, USA) software.

Li, Liang, Xu, and Cao® simplified and improved the original
CARS method, which is based on Darwin's theory of evolution.
The aforementioned improved CARS method was adopted in
this study. In the present study, the subset with the smallest
root mean square error (RMSE) was obtained by subtracting the
wavelength points with a low regression coefficient from those
with a high regression coefficient in the partial least squares
regression (PLSR) model. The optimal variable subset was
selected using cross-validation. A total of 50 Monte Carlo
samples were obtained, and 10 runs of cross-validation were
performed.

The SPA is a positive variable selection method that uses
a simple projection operation to obtain a subset of variables
with the smallest collinearity. Thus, the characteristic wave-
length is extracted from the full band, most of the redundant
information in the original spectrum matrix is eliminated, and
the modeling conditions are improved. The basic principle of
the SPA is to simply project a set of wavelength subsets into the
vector space and select the wavelength subset with the least
redundancy.** The number of characteristic wavelengths may be
set in advance. In this study, the minimum number of variables
and the maximum number of variables selected in the SPA were
1 and 30, respectively.

2.3.5 Construction of the PLSR prediction model. In this
study, PLSR under a full spectrum and characteristic wave-
length spectrum was employed to fit the relationship between
the spectrum and the starch content.

PLSR is one of the most widely used linear regression algo-
rithms®>*® and is suitable for constructing a prediction model.
PLSR considers matrices of the spectral data (x) and starch
content (y). In addition, it resolves the problem of the presence
of many variables (including collinear variables) in the original
data. PLSR analysis is used to transform the original data into
several independent latent variables (LVs). The sum of the
RMSE values is minimized to determine the optimal number of
potential variables and thus prevent overfitting or underfitting
of the model. In the present study, the maximum number of LVs
was set as 10, and triple cross-validation was used to obtain the
optimal number of LVs.

The extraction process of the characteristic wavelength and
establishment of the PLSR model were performed using Matlab
2014a (MathWorks, Natick, MA, USA). The PLSR codes used are
contained in the libPLS_1.98 toolbox.
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2.3.6 Model performance evaluation. To evaluate the
performance of the prediction model, we employed the
following statistical parameters: the correlation coefficient
between the correction (R and prediction (R,), RMSE of
correction (RMSEC), RMSE of prediction (RMSEP), and residual
prediction deviation (RPD). In general, an accurate model
should yield high R. and R, values and low RMSEC and RMSEP
values. When the RPD is less than 2, the prediction performance
of the model is poor. When the RPD value is greater than 2 and
less than 2.5, the model can be used to evaluate the content.
When the RPD is greater than 2.5, the prediction performance
of the model is outstanding.’”

3 Results and discussion
3.1 Spectral characteristics

After correcting the hyperspectral image, we extracted the
average spectrum of each ROI in the hyperspectral image. Fig. 1
shows the spectral curves of 96 fresh-cut potatoes. Fig. 1(a)
displays the original spectrum, and Fig. 1(b)-(f), depict the
spectral curves for SNV, SG smoothing, MSC, SG-SNV, and SG-
MSC, respectively, after pretreatment. All of these models
retained the original spectral characteristics after pretreatment.
Considerable change was not observed in the spectrum after SG
pretreatment. The other pretreatment methods made the orig-
inal spectrum smoother and more convergent.

The visible-NIR spectrum of the samples depends on the
vibration of molecular bonds, such as C-H, O-H, and N-H.
Therefore, this spectrum can be used to predict the quality
attributes of samples quantitatively.*® As displayed in Fig. 1(a),
the visible spectrum curve is divided into two parts due to the
use of two varieties of potatoes. A large absorption peak is
observed at 410 nm. This peak may be attributed to the
absorption of carbohydrates.** Moreover, a small absorption
peak is observed at approximately 450 nm. This peak is
considered to be caused by a carotenoid.*” The two varieties of
potatoes used in this study were yellow meat varieties with high
carotenoid content. Clear valleys are observed around 980 nm,
which may be due to the stretching of the O-H second overtone
in water, because the water content in potatoes is over 70%.*'

@ (e )

Fig.1 Theraw and pretreated spectral curves of all potato samples via
different methods: (a) raw; (b) SNV; (c) SG; (d) MSC; (e) SG-SNV; and (f)
SG-MSC.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Wavelength selection results on the pretreated spectral data
via the CARS method. (a) SNV; (b) SG; (c) MSC; (d) SG-SNV;(e) SG-MSC.

3.2 Characteristic wavelength selection

To simplify the prediction model, we used CARS and the SPA for
filtering characteristic wavelengths. The screening results are
shown in Fig. 2 and 3 and listed in Table 1. Fig. 2(a)-(e) and
3(a)-(e) show the characteristic wavelength extraction results for
the SNV, SG, MSC, SG-SNV, and SG-MSC models, respectively.

As presented in Fig. 2 and 3 and Table 1, the number of
characteristic wavelengths selected by the SPA was lower than
that selected using CARS. The SPA outperformed CARS in terms
of the screening of characteristic variables. The screening
ability of the SPA characteristic variables varied according to the
pretreatment method employed. After variable selection, the
number of spectral variables in the spectrum reduced by
95.09%, 96.26%, 96.26%, 97.43%, and 97.43% when the SNV,
MSC, SG-SNV, and SG-MSC pretreatment methods were
employed, respectively. These results indicate the effectiveness
of the SPA in dimension reduction. After wavelength selection,
spectral reflection values at specific wavelengths were extracted,
and a simplified prediction model was constructed to replace
the full spectrum as the input for the subsequent regression
prediction model.

—
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Fig. 3 Wavelength selection results on the pretreated spectral data via
the SPA method. (a) SNV: (b) SG; (c) MSC; (d) SG-SNV:(e) SG-MSC.
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3.3 Construction of the model for predicting starch content

3.3.1 Distribution of the starch content. Table 2 lists the
statistical results of the starch content in the potato samples.
The starch content of two potato varieties in Inner Mongolia,
namely Zihuabai and Atlantic potatoes, was analyzed. The
starch content in the Zihuabai potatoes was between 47.7 and
136 g kg™, with an average starch content of 100.1 +2.68 g kg ™"
(expressed as average standard deviation). The starch content in
the Atlantic potatoes was between 172 and 228 g kg™", with an
average starch content of 188.3 + 1.29 g kg '. These results
indicate that the starch contents of the two potato varieties was
different. After the starch content test, all of the potato samples
were divided into a calibration set and prediction set. The
calibration set was used to construct the calibration model, and
the prediction set was used to verify the accuracy of the con-
structed prediction model. In this study, all of the potato
samples were randomly classified. The middle samples among
every three samples were grouped into the prediction set, and
the remaining two samples were grouped into the calibration
set. Therefore, the calibration and prediction sets comprised 64
and 32 samples, respectively. The statistical results of the starch
content in the two sample groups are listed in Table 2.

3.3.2 Construction of the full spectrum model. After pre-
treating the original spectrum by using different methods, the
corresponding full spectrum PLSR starch content prediction
model was constructed. The results of this model are listed in
Table 3.

As presented in Table 3, different preprocessing methods
had different effects on the performance of the model. Only the
full spectrum model constructed for MSC after pretreatment
had an RPD of less than 2. The models constructed using other
pretreatment methods had an RPD of more than 2. The afore-
mentioned results indicate that the model constructed using
the full spectrum can suitably predict the starch content. The
full spectrum model constructed after SNV pretreatment
exhibited the best performance, with an R. value of 0.9020,
RMSEC of 2.06, R, value of 0.9069, RMSEP of 2.06, and RPD of
2.33. However, 428 spectral bands were predicted with the full
spectrum model, which is not conducive to rapid detection.
Therefore, we used the characteristic wavelength model.

3.3.3 Characteristic wavelength model. In order to simplify
the model, shorten the running time of the model and improve
the detection accuracy. We employed CARS and SPA to extract
the characteristic wavelengths from the entire spectrum under
different pretreatment methods, after which the PLSR model
was constructed using the extracted characteristic wavelengths.
The performance of the model is presented in Table 4.

As presented in Table 4, the PLSR model constructed after
characteristic wavelength extraction exhibited high prediction
accuracy. Only the RPD of the SG-SNV-PLSR model was less than
2. The RPD of the other models was greater than 2. Further-
more, the RPD values of the SNV-CARS-PLSR, SNV-SPA-CARS,
MSC-CARS-PLSR, MSC-SPA-PLSR, SG-CARS-PLSR, and SG-SNV-
CARS-PLSR models were greater than 2.5. This result indicates
that the characteristic wavelength extraction algorithm selected
in this study can filter out useful information from the entire

RSC Adv, 2021, 11, 13636-13643 | 13639
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Table 1 Wavelength selection for starch content prediction in fresh-cut potato

Pre-processing technique Method Number of wavelengths ~ Wavelength
SNV CARS 31 382, 389, 390, 392, 393, 395, 403, 406, 419, 425, 426, 504, 535, 831,
834, 836, 843, 845, 846, 899, 902, 903, 912, 914, 915, 927, 930, 932,
945, 972, 990 nm
SPA 21 382, 386, 389, 393, 397, 399, 403, 417, 502, 677, 741, 788, 833, 846,
887, 908, 920, 927, 949, 982, 1003 nm
MSC CARS 13 386, 389, 392, 395, 403, 406, 425, 485, 864, 914, 915, 927, 964 nm
SPA 16 386, 389, 390, 392, 395, 399, 401, 408, 414, 473, 572, 717, 818, 870,
915, 927 nm
SG CARS 20 395, 404, 407, 426, 470, 471, 484, 485, 843, 845, 903, 914, 915, 929,
932, 949, 972, 973, 976, 993 nm
SPA 16 382, 395, 407, 419, 477, 505, 736, 911, 932, 954, 981, 984, 988, 993,
996, 1000 nm
SG-SNV CARS 14 395, 404, 407, 424, 426, 504, 843, 845, 912, 914, 915, 932, 973, 979 nm
SPA 11 382, 397, 407, 418, 481, 567, 817, 827, 851, 917, 932 nm
SG-MSC CARS 28 382, 389, 395, 404, 406, 407, 421, 484, 505, 666, 667, 668, 670, 842,
843, 845, 846, 900, 902, 903, 905, 906, 912, 914, 915, 929, 932, 933 nm
SPA 11 382, 392, 403, 414, 574, 695, 741, 769, 839, 902, 994 nm

Table 2 Statistics of measured starch content in different varieties and datasets®

Dataset Number of wavelengths Range (g kg™ ") Mean (g kg™ ') SD (g kg™
Purple and white 62 47.7-136 100.1 2.68
Atlantic 34 172-228 188.3 1.29
Calibration set 64 47.7-228 125.6 4.75
Prediction set 32 50.4-202 128.9 4.81

“ N: number of samples; SD: standard deviation.

spectrum and eliminate redundant information. The MSC-
CARS-PLSR model exhibited the best performance, with an R.
value of 0.9276, RMSEC of 1.76, R, value of 0.9467, RMSEP of
1.63, and RPD of 2.95.

As presented in Table 4, the models constructed with the
same preprocessing methods but different characteristic wave-
length extraction algorithms exhibited different performances.
The model constructed using CARS outperformed the model
constructed after SPA characteristic wavelength extraction,
which indicates that the characteristic band screened by CARS
was more accurate than that screened by the SPA in the
experiment.

3.4 Model comparison and discussion

In this study, different preprocessing methods were applied to
the original spectrum, and the PLSR models of the entire
spectrum and characteristic wavelengths were constructed after
preprocessing. By comparing Table 3 with Table 4, we find the
following.

The model constructed using the full spectrum indicates
that SNV is superior to MSC, SG, SG-SNV, and SG-MSC for
identifying the starch content of potato slices quickly. Although
suitable values of R, (0.9020), RMSEC (2.06), R, (0.9069), RMSEP
(2.06), and RPD (2.33) were obtained, the full spectrum model is
unsuitable for practical application due to the time-consuming
and laborious modeling process;** therefore, the characteristic

13640 | RSC Adv, 2021, 11, 13636-13643

wavelength model was established. We found that under the
same pretreatment conditions, the model based on the char-
acteristic wavelength exhibited superior performance to the
model based on the full spectrum, which indicates that devel-
oping a model based on the characteristic wavelength is ideal.
After constructing the models, we found that although the
number of bands filtered through CARS was more than that
filtered through the SPA, the number of selected wavelengths by
CARS was still greatly reduced when compared with full spectra.
However, the performance of the PLSR model constructed using
CARS was superior to that constructed using the SPA under any
pretreatment method, which indicates that the correlation
between the wavelengths extracted through CARS and the
starch content is higher than that between the wavelength
extracted through SPA and the starch content. Among all the
models investigated in this study, the MSC-CARS-PLSR model
exhibited the best performance, with an R, value of 0.9276,
RMSEC of 1.76, R,, value of 0.9467, RMSEP of 1.63, RPD of 2.95,
and RPD close to 3, which indicates that this model is ideal for
starch content prediction.

Currently, researchers mainly use NIR spectroscopy to
predict the starch content of potatoes. But few people use
hyperspectral technology to study the starch content of pota-
toes. Wei et al.*® used hyperspectral equipment and a random
frog PLSR model to detect the starch content of potatoes. This
model had an R, value of 0.8514, RMSEC of 0.3259, R,,” value of

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Results of PLSR models using the full spectrum for starch content prediction®

Calibration set

Prediction set

Pretreatment method Parameter R, RMSEC R, RMSEP RPD
SNV N =1428,LVs =7 0.9020 2.06 0.9069 2.06 2.33
MSC N =428,LVs =3 0.8641 2.38 0.8572 2.44 1.97
SG N =428,LVs =6 0.8689 2.46 0.8796 2.26 2.13
SG-SNV N =428,LVs =3 0.8685 2.36 0.8624 2.4 2.00
SG-MSC N =428,LVs =3 0.8651 2.37 0.861 2.41 2.00

“ N: number of spectral variables; LVs: number of latent variables; R.: correlation coefficient in calibration; RMSEC: root mean square errors in
calibration; R,: correlation coefficient in prediction; RMSEP: root mean square errors in prediction; RPD: residual predictive deviation in

prediction set.

Table 4 Characteristic wavelength model data®

Calibration set Prediction set

Pretreatment
method LVs R, RMSEC R, RMSEP RPD
SNV CARS 6 0.9186 1.87 0.9258 1.81 2.66
SPA 6 0.8803  2.25 0.9229 1.82 2.64
MSC CARS 9 0.9276 1.76 0.9467 1.63 2.95
SPA 10 0.8905 2.17 0.9272 1.82 2.64
SG CARS 8 0.9076  1.98 0.9242 1.81 2.66
SPA 10 0.8857 2.21 0.892 2.17 2.22
SG-SNV  CARS 7 0.9250 1.79 0.9259 1.80 2.67
SPA 5 0.8807 2.24 0.8546  2.49 1.93
SG-MSC CARS 7 0.9020 2.06 0.9069 2.06 2.33
SPA 6 0.8637 2.4 0.8970 2.18 2.21

% N: number of spectral variables; LVs: number of latent variables; R.:
correlation coefficient in calibration; RMSEC: root mean square errors
in calibration; Ry: correlation coefficient in prediction; RMSEP: root
mean square errors in prediction; RPD: residual predictive deviation
in prediction set.

0.8348, and RMSEP of 0.2906. The best model in our study
(MSC-CARS-PLSR) had an R.> value of 0.8604, R,” value of
0.8962, RMSEC of 1.76, RMSEP of 1.63, and RPD of 2.95. Thus,
the best model in the present study was similar to the model of
Wei et al. By using hyperspectral equipment, Su et al.** pre-
dicted the starch content of potatoes and sweet potatoes with
the FMCIA-Es-PLSR model. This model had an R,” value of
0.963 and an RMSEP of 0.023. The model of Su et al. had
a similar detection performance to the best model in the
present study. However, the research of the above scholars is
aimed at the whole potato, not fresh-cut potato slices. One study

by Xiao et al.*® reported the use of HSI for the prediction of water
content in fresh-cut potatoes, and the optimal model was
established on the full wavelengths, instead of characteristic
wavelengths. At present, there is no report on starch content
detection in fresh-cut potatoes.

3.5 Visualized distribution of starch

Determining the starch content distribution of fresh-cut potato
slices directly with the naked eye is difficult. After determining
the best model in our study, it is used to visualize the starch
content distribution of fresh-cut potatoes. Using pseudo-color
technology, the value of each pixel at the important wave-
length is extracted and introduced into the constructed model
to determine the starch content and automatically generate
a starch content distribution map (Fig. 4). Among them, the
starch mass fractions of (a), (b), (c) and (d) are 11.8, 13.5, 19.0,
and 21.6 g kg~ ' measured by chemical methods, respectively.

Through the distribution map, we can clearly observe the
difference of starch content among different fresh-cut potato
samples. Different colors displayed on the distribution map
represent different starch contents and correspond to different
spectral characteristics of pixels. The difference of total starch
distribution in different fresh-cut potato samples can be seen in
the generated distribution map. Therefore, the content and
spatial distribution of starch in fresh-cut potatoes can be pre-
dicted by hyperspectral imaging combined with a distribution
map, which provides a rapid method for the study of internal
component content and storage and preservation methods of
fresh-cut potatoes.

Fig. 4 Distribution maps of the starch content in fresh-cut potatoes: (a) 11.8 g kg™%; (b) 13.5 g kg™ %; (c) 19.0 g kg~%; and (d) 21.6 g kg%,

© 2021 The Author(s). Published by the Royal Society of Chemistry
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4 Conclusions

In this study, the starch content in fresh-cut potato slices was
predicted using a visible-NIR HSI system from 382.23-
1004.78 nm. By using SNV, MSC, SG, SG-SNV, and SG-MSC
pretreatment methods, we constructed a PLSR model based
on the full spectrum. To improve the performance of the model,
CARS and the SPA were used to extract the characteristic
wavelengths, after which a PLSR model was constructed for the
characteristic wavelengths. The MSC-CARS-PLSR model was
found to exhibit the best performance, with an R. value of
0.9276, RMSEC of 1.76, R, value of 0.9467, RMSEP of 1.63, and
RPD of 2.95. Subsequently, the starch content of fresh-cut
potatoes was visualized using the aforementioned model and
pseudo-color technology. The results of this study provide
a basis for the quality monitoring and preservation of fresh-cut
potatoes. In the future, we hope to realize the real-time online
detection of starch content.
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