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Herein, a coumarin fluorescent probe (Probe 1) was developed for the ratiometric detection of b-

galactosidase (b-gal) activity. The detection range was 0–0.1 U mL�1 and 0.2–0.8 U mL�1, and the

limit of detection (LOD) was 0.0054 U mL�1. Moreover, the luminous intensity of Probe 1 increased

gradually with increase in b-gal activity. It could be observed under 254 nm UV irradiation by the

naked eye. Furthermore, this method only required a small amount of sample (20 mL) and a short

analytical time (30 min) for the detection of b-gal activity with a low LOD. Probe 1 was successfully

used to detect b-gal activity in real fruit samples, and can be applied to the quantitative and qualitative

detection of b-gal activity.
1. Introduction

b-Galactosidase (b-gal, EC 3.2.1.23) is part of the glycoside
hydrolase family and has many microbial sources.1 In addition
to its hydrolysis activity, b-gal from some sources also exhibits
glycosylation activity. Food-processing applications of b-gal
mainly include the following: allowing lactose-intolerant indi-
viduals to consume dairy; improving the sweetness of dairy
products; preventing dairy products from crystallizing during
freezing; the production of galactooligosaccharides; applica-
tions in fermented dairy products; whey processing; the analysis
of lactose content in dairy products; and promoting the so-
ening and ripening of fruit and vegetables.2–4 b-gal has also been
used for improving the sweetness, digestibility, avor, and
solubility of dairy products.5

b-Galactosidase is widely found in many kinds of plants.
Generally, the content of b-gal increases when plants mature,6

and the activity of b-gal has a positive correlation with the
maturity of fruit, including tomato,7 papaya,8 apple,9

persimmon,10 kiwi fruit,11 avocado,12 pear,13 peach,14 and
mango.15 It can degrade cell-wall polysaccharides and release
free galactose, which can promote – for example – pepper
ripening and ethylene production in tomatoes.7 However, many
enzymes exist in different types of fruit. Therefore, the devel-
opment of a simple, selective, and rapid detectionmethod for b-
gal activity in fruit is important.

To date, many methods have been used for the detection of
b-gal activity. These include chemiluminescence,16 HPLC,17

colorimetric methods,18 magnetic resonance,19 UV
stry, Beijing Technology and Business
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spectrophotometry,20 positron emission tomography,21 enzyme-
linked immunosorbent assay technology,22 and electrochemical
methods.23 However, there are certain disadvantages associated
with these methods, such as long experimental duration,
complex operation conditions, and high experimental costs.
Thus, developing a selective, rapid, and simple detection
method for b-gal activity is necessary for applications in fruit
production. To this end, the development of novel uorescent
probes is very promising,24–29 and many kinds of b-gal probes
have been reported for use in biological imaging,30–32 including
two-photon uorescence probes,33,34 ratiometric probes,35,36 and
turn-on probes.37–39 However, uorescent probes used in fruit
detection are extremely rare in scientic literature.40,41

To develop a simple detection method for b-gal activity in
fruit, a ratiometric uorescent probe (Probe 1) with high accu-
racy and detection precision was developed. This ratiometric
uorescent probe has the characteristics of high accuracy and
strong anti-interference. Further, the luminous intensity of the
Probe 1 solution increased with increasing b-gal activity under
254 nm UV irradiation. In addition, Probe 1 was successfully
applied to the quantitative and qualitative detection of b-gal
activity in fruit.
2. Materials and methods
2.1 General methods

The b-gal, sodium chloride (NaCl), magnesium chloride
(MgCl2), hydrogen peroxide (H2O2), ammonium chloride
(NH4Cl), sodium bromide (NaBr), glutathione (GSH, 98%),
glycine (Gly), D-leucine (Leu), potassium iodide (KI), histidine
(His), potassium chloride (KCl), L-valine (Val), b-glucuronidase
(from Escherichia coli), lysozyme (from chicken egg whites),
lipase (from porcine pancreas), and a-galactosidase (a-gal) were
purchased from Bailingwei Co., Ltd, China.
RSC Adv., 2021, 11, 13341–13347 | 13341
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2.2 Instruments

Fluorescence spectra were obtained using the Rili F-4600 uo-
rescence spectrometer. NMR spectra were obtained using the
Bruker AV 300 MHz NMRmachine. HRMS was performed using
a Bruker Apex IV FTMS.

2.3 Synthesis of Probe 1

7-Hydroxy-4-methylcoumarin (0.18 g, 1.00 mmol), Cs2CO3

(1.63 g, 5.00 mmol), Na2SO4 (0.36 g, 2.50 mmol), galacto-
pyranosyl-1-bromide (3068-32-4, 0.31 g, 0.75 mmol), and
CH3CN (30mL) were added to a ask (Scheme 1) and reacted for
1 h at 25 �C to obtain compound 2 (0.35 g, 91% yield).

Compound 2 (0.23 g, 0.4 mmol) was dissolved in CH3OH (20
mL). A solution of K2CO3 (0.13 g, 0.09 mmol) and CH3OH (80
mL) was added and reacted for 4 h at 25 �C, aer which the
mixture was adjusted to pH 7 using an aqueous H2SO4 solution
(0.05 M). The precipitate was removed by ltration and recrys-
tallized from ethanol to obtain Probe 1 (0.11 g, 81% yield).

1H NMR (300 MHz, CDCl3) d (ppm): 7.70 (d, J ¼ 9.4 Hz, 1H),
7.03 (d, J ¼ 7.0 Hz, 2H), 6.24 (s, 1H), 5.21 (s, 1H), 4.98 (d, J ¼
7.6 Hz, 1H), 4.87 (s, 1H), 4.66 (s, 1H), 4.52 (s, 1H), 3.72 (s, 1H),
3.66 (d, J¼ 6.1 Hz, 1H), 3.60 (d, J¼ 8.1 Hz, 1H), 3.53 (s, 2H), 3.45
(s, 1H), 2.41 (s, 3H).$13C NMR (75 MHz, CDCl3) d (ppm): 160.23,
160.06, 154.39, 153.28, 126.35, 113.99, 113.40, 111.62, 103.17,
100.64, 75.69, 73.20, 70.09, 68.11, 60.37, 18.08. HRMS (ESI):
calcd for [M � H]� 337.092891, found 337.0931.

2.4 Preparation of analytes

Probe 1 was dissolved using DMSO. b-gal, b-glucuronidase,
lysozyme, lipase, and a-gal were dissolved in Tris–HCl (pH 7.3,
50 mM) and frozen in a �20 �C refrigerator. The stock solution
was diluted using a certain concentration gradient with Tris–
HCl (pH 7.3, 50 mM) before each use. NaCl, KCl, MgCl2, KI,
NH4Cl, NaBr, H2O2, GSH, Gly, Leu, His, and Val, were dissolved
in deionized water.

2.5 Preparation of samples

Pears, apples, grapes, strawberries, and kiwis were bought from
a local supermarket. Twenty grams of the abovementioned fruit
Scheme 1 Synthesis of Probe 1 and the recognition mechanism of Prob
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were centrifuged for 10 min, at 12 000 rpm, aer grinding;
subsequently, the supernatant was obtained, which was ltered
and reserved.

2.6 Fluorescence detection assays

The Probe 1 solution (1 mM, 0.02 mL) was added to a cuvette, to
which 2 mL of water was added. Then, b-gal was added; aer
40 min, the mixture was analyzed using uorescence spectra
(slit width ¼ 5 nm, lex ¼ 327 nm, voltage ¼ 500 V, and
temperature ¼ 37 �C).

3. Results and discussion
3.1 Probe preparation

Probe 1 was synthesized in two steps. First, compound 2 was
obtained through the nucleophilic substitution of 7-hydroxy-4-
methylcoumarin with galacto-pyranosyl-1-bromide (3068-32-4).
Second, the acetyl groups of compound 2 were hydrolyzed to
obtain Probe 1 (Scheme 1). Probe 1 was puried by recrystalli-
zation from ethanol, and NMR and HRMS were used to char-
acterize this probe (Fig. S1–S3, ESI†). The preparation process
was carried out at 25 �C under mild conditions; thus, the
synthesis of Probe 1 was a simple process.

3.2 Fluorescence properties

First, the uorescence response of Probe 1 with b-gal in
different solutions (CH3CN, H2O, DMSO, C2H5OH, and THF)
was determined (Fig. 1a). Aer the addition of b-gal, the
uorescence intensity was decreased at 374 nm in CH3CN,
DMSO, C2H5OH, and THF, with changes in only one uores-
cent emission. In H2O, however, the uorescence intensity was
decreased at 374 nm and signicantly increased at 444 nm. As
shown in Fig. 1b, Probe 1 displayed a uorescence emission
peak at 374 nm in an H2O solution. Aer the addition of b-gal,
the uorescence intensity at 374 nm decreased and a peak
appeared at 444 nm. The uorophore (7-hydroxy-4-
methylcoumarin, compound 1) had a peak at 444 nm in an
H2O solution. This conrmed that 374 nm was the peak of
Probe 1 and 444 nm was the uorescence-emission peak of the
uorophore. These results indicated that Probe 1 was
e 1 to b-gal.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 (a) Fluorescence spectra of Probe 1 (10 mM) and Probe 1 in the presence of b-gal (1 U mL�1) in CH3CN, H2O, DMSO, C2H5OH and THF at
37 �C. (b) Fluorescence spectra of Probe 1 (10 mM), compound 1 (10 mM) and Probe 1 in the presence of b-gal (1 U mL�1) in H2O at 37 �C.

Fig. 2 (a) Time-dependent fluorescence spectra of Probe 1 (10 mM) in the presence of b-gal (1 U mL�1) in water at 37 �C. (b) The fluorescence
emission ratio (I444 nm/I374 nm) of Probe 1 in the presence of b-gal form 0 min to 60 min. Tests were performed in triplicate.

Fig. 3 The fluorescence emission ratio (I444 nm/I374 nm) of Probe 1 (10
mM) upon addition of various species (0.8 U mL�1 for a-gal, lipase and
100 mM for others. 1, blank; 2, Na+; 3, K+; 4, Mg2+; 5, I�; 6, NH4

+; 7, Br�;
8, H2O2; 9, GSH; 10, Gly; 11, Leu; 12, His; 13, Val; 14, b-glucuronidase;
15, lysozyme; 16, lipase; 17, a-gal; 18, Cl�. 0.8 U mL�1 for b-gal). Tests
were performed in triplicate.
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a ratiometric probe, facilitating the detection of b-gal by
determining the ratio of uorescence intensity at two different
emission wavelengths.

Second, the time-response relationships of Probe 1 toward b-
gal in water were tested (Fig. 2a). The uorescence intensity at
374 nm decreased slowly with the addition of b-gal. Simulta-
neously, the uorescence intensity at 444 nm increased rapidly.
The uorescence emission ratio (I444 nm/I374 nm) decreased
rapidly from 0 to 10 min, and reached an equilibrium in 30 min
(Fig. 2b). The emission ratio remained unchanged from 30 to
60 min. This shows that 30 min were required for the identi-
cation of b-gal by Probe 1, which was set as the duration for the
subsequent experiments.

The effects of competitor ions and compounds were used to
ascertain the selectivity of Probe 1. Various competitors were
tested, including Na+, K+, Mg2+, I�, NH4

+, Br�, H2O2, Cl
�, GSH,

Gly, Leu, Val, His, b-glucuronidase, lipase, and lysozyme
(Fig. 3). In the presence of any of these competing ions and
compounds, there was minimal change in the emission ratio
(I444 nm/I374 nm). In particular, Probe 1 was almost unrespon-
sive in the presence of b-glucuronidase and a-gal. However,
with the addition of b-gal, the emission ratios (I444 nm/I374 nm)
of Probe 1 + b-gal and Probe 1 + b-gal + competitors were
© 2021 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2021, 11, 13341–13347 | 13343
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Fig. 4 (a) Fluorescence spectra of Probe 1 (10 mM) with b-gal (0, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 UmL�1). (b) Plot of
fluorescence intensity differences with 0–0.1 U mL�1 b-gal. (c) Plot of fluorescence intensity differences with 0.2–0.8 U mL�1 b-gal. Tests were
performed in triplicate. (d) Photograph of Probe 1 (10 mM) luminescent intensity subjected to b-gal (0, 1, 2, 4, 6, 8, 10 U mL�1) under 254 nm UV
light.
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almost identical. This indicates that Probe 1 has high selec-
tivity in detecting b-gal.

The uorescence-intensity changes of Probe 1 with various
activities of b-gal (0, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, and 0.8 U mL�1) were recorded and are shown
in Fig. 4a. The emission ratio (I444 nm/I374 nm) exhibited two
linear sections in response to b-gal activity: 0–0.1 U mL�1 (R2 ¼
0.9951, Fig. 4b) and 0.2–0.8 U mL�1 (R2 ¼ 0.9968, Fig. 4c). The
Probe 1 limit of detection (LOD) for b-gal activity was 0.0054 U
mL�1, based on LOD ¼ 3 SD/B. This indicated that Probe 1
could be used to detect b-gal activity with a low LOD in water.
In addition, the luminous intensity of Probe 1 gradually
increased with increases in b-gal activity, as was observed by
the naked eye under 254 nmUV irradiation (Fig. 4d). All results
showed that Probe 1 could be used as a quantitative and
qualitative tool to detect b-gal activity.
3.3 Recognition mechanism

Aer the addition of b-gal (1 U mL�1), a new peak appeared,
which was previously proven to be compound 1 (Fig. S4, ESI†).
Mass spectrometry provided further evidence that the b-galac-
tosides were hydrolyzed (Fig. S5, ESI†), with the peak at m/z ¼
174.56.00 corresponding to compound 1 (M�H); the peak atm/
13344 | RSC Adv., 2021, 11, 13341–13347
z ¼ 337.04 was that of Probe 1 (M � H). These results show that
Probe 1's mechanism for b-gal recognition is the b-gal enzy-
matic hydrolysis of b-galactosides.
3.4 Application

As b-gal activity is positively correlated with thematurity of fruit,
the development of a simple and highly selective method for b-
gal activity detection in fruit is crucial. Therefore, the ability of
Probe 1 to detect b-gal activity in fruit must be demonstrated.

Pear, apple, grape, strawberry, and kiwi (20 mL) samples were
tested using Probe 1. The b-gal activity of the kiwi (ripe) sample
was 0.0938 � 0.0027 U mL�1, and those of the kiwi (unripe),
pear, apple, grape, and strawberry samples were 0 U mL�1

(Table 1). The ripeness of the kiwi fruit was mainly determined
by the soness or hardness of the fruit (Fig. S6, ESI†).

To validate this method, the b-gal activity in these samples
was tested using the b-galactosidase spectrophotometric
method.40,41 The b-gal activity of all samples was 0 UmL�1. No b-
gal activity was detected in the kiwi (ripe) sample by the GB/T
33409-2016 method; this could be because the b-gal activity in
kiwis (ripe) and the LOD of this method are of the same order of
magnitude. Then, the addition of b-gal with different activities
(0.02, 0.04, 0.2, and 0.4 U mL�1) to the samples showed that the
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Determination of b-gal activity in real fruit samples

Sample b-gal level found (U mL�1) Added (U mL�1) Found (U mL�1) Recovery/% RSD/% (n ¼ 3)

Pear 0 0.02 0.022 108.00 0.11
0.04 0.043 106.61 0.21
0.2 0.221 101.32 1.69
0.4 0.405 101.33 1.44

Apple 0 0.02 0.022 110.29 0.07
0.04 0.044 108.94 0.33
0.2 0.192 96.13 2.09
0.4 0.387 96.71 6.31

Grape 0 0.02 0.022 108.80 0.26
0.04 0.044 109.83 0.26
0.2 0.217 108.32 1.40
0.4 0.402 100.58 0.81

Strawberry 0 0.02 0.021 104.55 0.13
0.04 0.041 101.86 0.19
0.2 0.195 97.28 3.68
0.4 0.376 94.07 1.33

Kiwi (unripe) 0 0.02 0.021 106.4 0.06
0.04 0.041 103.39 0.08
0.2 0.203 101.65 0.69
0.4 0.403 100.63 1.89

Kiwi (ripe) 0.0938 � 0.0027 — — — —
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recoveries ranged between 94.07–110.29% (Table 1). These
results indicate that Probe 1 could accurately and quickly
determine the b-gal activity in fruit.

4. Conclusions

In this study, a coumarin uorescent probe (Probe 1) was
developed for the ratiometric detection of b-gal activity. The
mechanism of b-gal recognition by Probe 1 involves the b-gal
enzymatic hydrolysis of b-galactosides. The quantitative range
of b-gal activity detected was 0–0.1 U mL�1 and 0.2–0.8 U mL�1,
with an LOD of 0.0054 U mL�1. This method exhibited good
linearity and specicity, had a short analytical time (30 min),
required a small amount of sample (20 mL), and had a low LOD.
Additionally, the luminous intensity of Probe 1 gradually
increased with increasing enzyme activity. This phenomenon
could be observed by the naked eye under 254 nm UV irradia-
tion. Furthermore, Probe 1 was a useful tool for the qualitative
and quantitative determination of b-gal activity in fruit.
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19 A. Y. Louie, M. M. Hüber, E. T. Ahrens, U. Rothbächer,
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