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Preparation of 1,2-substituted benzimidazoles via
a copper-catalyzed three component coupling
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1,2-Substituted benzimidazoles were prepared by simply stirring a mixture of copper catalysts, N-
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substituted o-phenylenediamines, sulfonyl azides and terminal alkynes. Particularly, the intermediate N-

sulfonylketenimine occurred with two nucleophilic addition and the sulfonyl group was eliminated via

DOI: 10.1039/d1ra00650a

rsc.li/rsc-advances benzimidazoles.

Introduction

Owing to their diverse biological activity and clinical applica-
tions,' benzimidazole derivatives are the potential candidates
for a diverse set of biological activities including antiviral,
antifungal,® antibacterial,* antiamoebic,’ anti-HIV,® antiulcer,*”
antihypertensive.*® One subset of such compounds are 1,2-
substituted benzimidazole derivatives, such as 5-nitro-
benzimidazoles (I) that exhibit antitumor activity against
melanoma and breast cancer,' telmisartan (II) that acts as AT1
receptor antagonists and tentative angiotensin receptor blocker
therapeutic for COVID-19," and bendamustine (III) that acts as
an antileukemia agent** (Fig. 1). The observed activity depends
upon the functional group attached to the moiety. In order to
obtain novel effective chemotherapeutic agents, more synthetic
methods and routes are required.

Classical types of reactions have focused on the preparation
of benzimidazole structural frameworks, such as metal cata-
lysed reaction, metal-free catalysed/reagent-based reaction,
green synthesis and photocatalyzed reaction.’®” The main
synthesis reaction of benzimidazole drug candidates is the
condensation of o-phenylenediamine with aldehydes, acyl
chloride, carboxylic acids and esters.'*** However, most of these
protocols suffer from strong acidic conditions (HCIl, H,SO,, or
polyphosphoric acid), readily oxidized or unstable substrate, or
presence of numerous oxidative catalytic reagents. Therefore,
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cyclization. In a way, sulfonyl azides and copper catalysts activated the terminal alkynes to synthesize

a catalytic approach without using oxidant and stable substrate
would overcome the above-mentioned disadvantages.

Previous studies reported that the multicomponent reac-
tions (MCRs) of Cu'-catalyzed terminal alkyne, sulfonyl azide,
and nucleophiles”® were applied to synthesize numerous
oxygen-containing and nitrogen-containing heterocyclic
compounds.™ The ketenimine intermediate generated by
copper-catalyzed terminal alkyne and sulfonyl azide could be
take reaction simultaneous employing of pronucleophiles (Nu-
H) and electrophiles (E) by designing the substrates. The o-
hydroxy or o-amino electrophiles-containing benzene was the
best strategy for the substrates, such as salicylaldehydes/o-
hydroxyl-acetophenones,'® 2-acetyl aniline,' phenolic schiffs’
bases,"”  o-(ortho-hydroxyphenyl)-a,B-unsaturated ketones/o-
hydroxy-phenylpropiolates,'® o-hydroxybenzonitrile® (Scheme
1a) etc. However, two pronucleophiles (Nu-H) simultaneous
nucleophilic addition with the ketenimine intermediate is rare.

The compounds of above MCRs contain the sulfonyl group,
which is stable and difficult to eliminate. Only a few examples
could eliminate the sulfonyl group, including the hydrolysis of
N-sulfonyl imidates with catalytic amounts of DBU,"” or N-
sulfonyl acetimid amide treated with 2% H,SO, under reflux
conditions.”® However, previous studies reported that N-
sulfonyl imidates can be hydrolyzed through in situ generated
H,0 (Scheme 1b).** Considering these facts, our study
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Fig. 1 Some 1,2-substituted benzimidazole drug candidates.
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(a) ketenimine reacted with Nu-H and E R®
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Cul, Et;N, solvent A
* Rl= * R®SON;, ————
XH X7 NSO,R?

X =0 or NH; E = aldehyde ketone, nitrile, imine or alkyne

(b) eliminate the sulfonyl group through hydrolysis
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(c) this work: eliminate the sulfony! group through cyclization
R
1 1
A NHR! — [Cu], Base NHR g3 cyclization ~-N
R20L + B i) O /E Rl )
ZSNH,  TsN, N2 NSNS TsNH,, = N: Re

Scheme 1 MCR of sulfonyl azides and terminal alkynes.
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developed a novel strategy to eliminate the sulfonyl group
through the power of cyclization reaction (Scheme 1c).

Results and discussion

We began our investigation by examining the synthesis of (2-
benzyl-1H-benzo[d]imidazol-1-yl)(phenyl)methanone 3a via N-
(2-aminophenyl)benzamide 1a, tosylazide and ethynylbenzene
2a. The reaction was carried out in the presence of Cul and Et;N
in CHCI; at 80 °C for 3.5 h, and 3a was isolated in 73% yield
(Table 1, entry 1). Based on this finding, the reaction conditions

Table 1 Optimization of catalytic conditions®

Cat. (10 mol%), Base (1.2 eq.)

NHCOPh 1.y
e, o
NH, Ph—=

COPh

solvent, 80 °C, 3.5 h
- . (:[ > + TsNH,
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were screened. Several other solvents were screened first, and
a lower or comparable yield was obtained when toluene, THF,
DMF, DCE were used as solvents, while the MeCN gave 3a the
highest yield of 95% and the side product TsNH, (Table 1,
entries 2-6). Thus, the optimal solvent was determined to be
MeCN. Encouraged by this promising result, numerous cata-
lysts were screened. Among the copper catalysts used, most Cu-
catalysts exhibited high catalytic reactivity in this reaction
whether Cu'-catalysts or Cu'-catalysts (Table 1, entries 7-11).
Other catalysts such as AgTFA failed to produce the desired
product (Table 1, entry 12). The effects of different bases were
evaluated. Screening results revealed that the use of Et;N ach-
ieved superior results than DMAP, DIPEA, ‘BuONa and other
bases (Table 1, entries 13-16). When the reaction temperature
was changed to 90 °C, the reaction yield decreased and
produced side-products (Table 1, entries 17). It is worth noting
that the other sulfonyl azides such as MsN; or PhSO,N; were
also suitable for this reaction (Table 1, entries 18).

With the optimized reaction conditions obtained, the
substrate diversity with the N-substituted o-phenylenediamines
1 were tested first. As shown in Table 2, the electron effects of
the substituents R' had slight influences. For example,
substrates bearing 4-Me-C¢H,CO-, 4-OMe-C4H,CO-, 4-F-
C¢H,CO-, and 2-thienyl-C¢H,CO-groups were examined, and
90-86% yield of 3b-3e were obtained. The substrates R* bearing
the (CH;),CHCO- and p-tosyl (Ts-) groups also can obtain 3f in
moderate yield of 54% and 3g in good yield of 86%. Next, the
scope and limitation of substrates R®> were examined by
employing 3,4-dimethyl and 3,4-dichloro groups, which
provided the corresponding benzimidazole derivatives, 3h and
3i, in moderate yield of 65% and 60%. It is noteworthy to
mention that when R' was changed for methyl instead of
electron-withdrawing group acyl, the reaction also could

1a 2a 3a
Entry Cat. Base Solvent vield” (%) 3a  Table 2 Substrate scopes®
1 Cul Et;N CHCI, 73 - Cul, 0.1 eq), EN, (1.2 eq),
2 Cul Et;N DCE 90 Rz@ + R—= TsN; (1.2 €9 MeCN, 80 °C, 35 h C[ >_\
3 Cul Et;N Toluene 31 NHz
4 Cul Et3N MeCN 95 1 (0.5 mmol) 2(1.2eq) 3
5 Cul Et;N THF 84
6 Cul Et;N DMF 15 ot @ @
7 CuBr Et;N MeCN 92 @[”h @ @E N @ N
8 Cucl Et;N MeCN 94 N = I
9 CuBI‘Z Eth MeCN 90 3a 95% 3b90 % 3c80% 3d87%
10 Cu(OAc), Et;N MeCN 86 g "
11 Cu(OTf), Et;N MeCN 82 el . com o Gomn
N N Me. N
12 AgTFA EtN MeCN nd* o, ol o T o BOeW
13 Cul DMAP MeCN 15 N e = PHNsRE
14 Cul DIPEA MeCN 75 3e 86% 3f 54% 39 86% 3h65 % 3160 %
15 Cul Pyridine MeCN 43
16 Cul ‘BuONa MeCN 30 F F B
17 Cul Et;N MeCN 88? i ,};_Q e i Nt
18 Cul Et;N MeCN 95¢ o Oy e L oy

¢ Reaction conditions: 1a (0.5 mmol), Cat. (10 mol%), base (1.2 eq.) in
the solvent (3 mL) was added TsN; (1 2 eq.), 2a (1.2 eq.) stirring at
80 °C for 3.5 h. ?Isolated yields. nd = not detected the target
product. 4 The reaction temperature was 90 °C. ¢ MsN; or PhSO,N;
was used instead of TsN;.
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3j82% 3k 86% 3192% 3m 91% 1k complex

¢ Unless otherwise noted, the reaction conditions were as follow: 1 (0.5
mmol), Cul (10 mol%), Et;N (1.2 eq.) in the MeCN (3 mL) was added
TsN; (1.2 eq.), 2 (1.2 eq.) stirring at 80 °C for 3.5 h.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Substrate scope of the terminal alkynes 2¢

NHCOPh
©i + R—=
NH,

1a (0.5 mmol)

Cul, (0.1 eq.), E;N, (1.2 eq.), COPh

TsN; (1.2 eq.),MeCN, 80 °C, 3.5 h N
2 /> \
N R3

2(1.2eq) 3

COPh COPh COPh COPh

N N, N N,
g
v Xy Coy, oy, Gy
4 »—Me () ¢
\_\M =/ \:<F
.

3n87% 3089% 3p91%

COPh COPh COPh COPh

@Fb @2 @ﬁ@ .

/

<] Br OMe

3r84% 3s 96% 3t80% 3u92%

COPh COPh COPh COPh

Clm,, Gl Gy O
\ Vi Vi /
N CeHis N \ N>_\ N
Y >
3x 12h 68% 3y complex

3w 12 h 58%

\
COOEt

3VT77%

“ Unless otherwise noted, the reaction conditions were as follow: 1a (0.5
mmol), Cul (10 mol%), Et;N (1.2 eq.) in the MeCN (3 mL) was added
TsN; (1.2 eq.), 2 (1.2 eq.) stirring at 80 °C for 3.5 h.

smoothly obtain corresponding methyl-substituted products
3j-3m. However, interestingly, unsubstituted o-phenylenedi-
amines 1k could not obtain the desired product and gave
complex compounds.

Finally, the scope and limitation of terminal alkynes 2 were
examined. As shown in Table 3, the steric effects were clearly
observed for two groups of products, namely 3n-30 and 3p-3r,
in which both the substituents led to high yields and got
influenced slightly. The electronic effects of substituents had an
obvious impact on the efficiency of this transformation. The
analogues R® bearing an electron-withdrawing group (e.g., 4-Cl-
CeH,- and 4-Br-C¢H,-) and strong electron-donating group
(e.g., ~OMe) substituents produced a good yield of 3s, 3t and 3u.
The aliphatic alkynes were also suitable for this reaction
obtaining 3v, 3w, 3x in moderate yields of 77%, 58% and 68%,
respectively. However, the other functional groups of terminal
ynones such as the ethyl propiolate, propiolamide, propiolic
acid made the reactions less effective, which obtained complex
compounds or no corresponding desired products because the
terminal ynones undergo self-condensation under the alkaline
conditions.*

According to the above-mentioned experiments, there was
no sulfonyl group in the target product and detected only the
side product TsNH,. In addition, it could not obtain the desired

Cul, (0.1 eq.), ELN, (1.2 eq.),
TsNj (without), MeCN, 80 °C, 3.5 h

no reaction

NHCOPh
@ @ + Ph—=
NH,

1a (0.5 mmol) 2(12eq)
1, (0.1 LN, (1
NHCOEh T 'f" : (2 eq:IVIEC3 'éo fceq;é
(b) @ + Ph——=—= SN (12 eq)). MeCN, 350 no reaction
NHCOPh
11 (0.5 mmol) 2(12eq)

Scheme 2 Control experiments.
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COPh
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Scheme 3 Plausible reaction mechanism.

product when test the unsubstituted o-phenylenediamines 1k
(Table 2). To confirm the effects of tosylazide and elucidate the
mechanism of eliminating the sulfonyl group, few control
experiments were performed under the standard conditions. As
shown in Scheme 2, the reaction of 1a and 2a, without tosyla-
zide under the standard conditions was performed, and the
corresponding products 3a failed to generate. Other test was
carried out using the reactant of N,N'-(1,2-phenylene)dibenza-
mide 11, which could not detect the target product 3a.

On the basis of these above experimental results, a possible
reaction pathway for the synthesis of (2-benzyl-1H-benzo[d]
imidazol-1-yl)(phenyl)methanone 3a was proposed (Scheme 3).
According to the previous proposal, ketenimine A was generated
first by the reaction of TsN; and 2a. Then, similar to the pub-
lished work by Wang,* ketenimine A was attacked by the
nucleophile to generate intermediate B. Subsequently, inter-
mediate B underwent an intramolecular cascade addition to
form intermediate C. At last, the desired product 3a and side
product TsNH, were obtained by the cyclization of intermediate
C. Irrespective of change in the conditions, intermediates B and
C could not be detected. Therefore, the procedure from B to 3a
was fast and almost simultaneous. The sulfonyl group was
eliminated via cyclization and activated the terminal alkynes to
decompose into TsNH, and N,.

Conclusions

We developed a novel and an effective three-component
coupling approach to synthesize 1,2-substituted benzimid-
azoles in the presence of N-substituted o-phenylenediamines,
terminal alkynes, copper catalyst and TsN;. TsN; activated the
terminal alkynes to generate ketenimine, took two nucleophilic
addition in the process, and eliminated through cyclization.
Nonetheless, we expect that this methodology could be applied
to build more 1,2-substituted benzimidazole block facility.

Experimental
General

All the melting points were determined on a Yanaco melting
point apparatus and were uncorrected. IR spectra were recorded
as KBr pellets on a Nicolet FT-IR 5DX spectrometer. All the
spectra of "H NMR (400 MHz) and >C NMR (100 MHz) were
recorded on a JEOL JNM-ECA 400 spectrometer in DMSO-d or

RSC Adv, 2021, 11, 8701-8707 | 8703
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CDCl; (otherwise as indicated) with TMS was used as an
internal reference and J values are given in Hz. HRMS were
obtained on a Bruker micrOTOF-Q II spectrometer. All the o-
phenylenediamines (1a-1j, see ESI section 1}) were prepared by
previously reported methods.*

Preparation and characterizations of compounds 3a-3x

(2-Benzyl-1H-benzo[d]imidazol-1-yl)(phenyl)methanone (3a).
To a solution of N-(2-aminophenyl)benzamide (1a, 106 mg, 0.5
mmol) and Cul (9.5 mg, 0.05 mmol) in MeCN (3 mL) was added
ethynylbenzene (2a, 61 mg, 1.2 mmol), TsN; (118 mg, 1.2
mmol), Et;N (61 mg, 1.2 mmol). After the mixture was stirred at
room temperature for 10 min, and then at 80 °C for 3.5 h
(monitored by TLC), the solvent was removed. The residue was
purified via flash chromatography (silica gel, 9% EtOAc in
petroleum ether) to give 148 mg (95%) of product 3a as a white
solid, mp 88-89 °C (lit.** 308-310 °C). 'H NMR (400 MHz,
CDCly) 6 7.76 (d, J = 7.8 Hz, 1H), 7.64-7.60 (m, 1H), 7.56-7.54
(m, 2H), 7.44-7.40 (m, 2H), 7.27-7.17 (m, 5H), 7.15-7.11 (m,
1H), 7.02-7.03 (m, 1H), 6.63 (d, J = 8.6 Hz, 1H), 4.52 (s, 2H); *C
NMR (100 MHz, CDCl;) 6 168.6, 155.1, 142.2, 136.3, 134.1, 133.9,
133.0, 129.8 (2C), 128.80 (2C), 128.77 (2C), 128.4 (2C), 126.8,
123.8, 123.7, 119.9, 113.1, 35.9.

The products 3b-3x were prepared by the similar procedure.

(2-Benzyl-1H-benzo[d]imidazol-1-yl)(p-tolyl)methanone (3b).
147 mg (90%), white solid, mp 104-105 °C. IR (KBr) » 3048,
2930, 1691, 1451 cm ™~ *; *H NMR (400 MHz, CDCl;) 6 7.76 (d, J =
8.2 Hz, 1H), 7.48 (d,J = 8.2 Hz, 2H), 7.27-7.17 (m, 7H), 7.15-7.12
(m, 1H), 7.08-7.04 (m, 1H), 6.68 (d, J = 8.2 Hz, 1H), 4.52 (s, 2H),
2.43 (s, 3H); "*C NMR (100 MHz, CDCl;) 6 168.5, 155.2, 145.2,
144.2,136.4 (2C), 134.2, 130.1 (2C), 129.5 (2C), 128.8 (2C), 128.4
(2C), 126.7, 123.65, 123.62, 119.8, 113.1, 35.8, 21.8; HRMS (ESI-
TOF) (m/z). Caled for C,,H;gN,O, [M + H]" 327.1492; found
327.1494.

(2-Benzyl-1H-benzo| d]imidazol-1-yl)(4-methoxyphenyl)
methanone (3c). 137 mg (80%), white solid, mp 113-114 °C. IR
(KBr) v 3067, 2935, 2840, 1692, 1450 cm *; 'H NMR (400 MHz,
CDCly) 6 7.77 (d,J = 8.2 Hz, 1H), 7.56 (d, J = 8.7 Hz, 2H), 7.27-
7.16 (m, 5H), 7.14-7.06 (m, 2H), 6.89 (d, ] = 8.7 Hz, 2H), 6.75 (d, ]
= 8.2 Hz, 1H), 4.51 (s, 2H), 3.87 (s, 3H); >*C NMR (100 MHz,
CDCl3) 6 167.8, 164.4, 155.1, 144.2, 136.4, 134.4, 132.6 (2C),
128.8 (ZC), 128.4 (ZC), 126.7, 124.9, 123.6, 123.5, 119.8, 114.1
(2C), 112.9, 55.6, 35.7; HRMS (ESI-TOF) (m/z). Caled for
C,,H15N,0,, [M + H]" 343.1441; found 343.1444.

(2-Benzyl-1H-benzo[d]imidazol-1-yl)(4-fluorophenyl)
methanone (3d). 144 mg (87%), white solid, mp 112-113 °C. IR
(KBr) » 3050, 2836, 2882, 1703, 1426 cm ™ *; 'H NMR (400 MHz,
CDCl;) 6 7.78 (d, J = 8.2 Hz, 1H), 7.61-7.58 (m, 2H), 7.30-7.26
(m, 1H), 7.20-7.18 (m, 4H), 7.16-7.07 (m, 4H), 6.65 (d, J =
8.3 Hz, 1H), 4.52 (s, 2H); "*C NMR (100 MHz, CDCl;) 6 167.3,
166.0 (d, ] = 255.5 Hz, 1C), 155.1, 142.2, 136.2, 134.0, 132.6 (d, J
= 9.5 Hz, 2C), 129.0 (d, J = 2.8 Hz, 1C), 128.7 (2C), 128.4 (2C),
126.8, 123.82, 123.76, 120.0, 116.1 (d, J = 21.9 Hz, 2C), 112.8,
35.7; HRMS (ESI-TOF) (m/z). Caled for C,,H;sFN,O, [M + H]"
331.1241; found 331.1242.
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(2-Benzyl-1H-benzo[d]imidazol-1-yl)(thiophen-2-yl)
methanone (3e). 137 mg (86%), white solid, mp 115-117 °C. IR
(KBr) v 3062, 2924, 2520, 1940, 1633, 1378 cm™*; *"H NMR (400
MHz, CDCl;) 6 7.78-7.73 (m, 2H), 7.38-7.37 (m, 1H), 7.29-7.25
(m, 1H), 7.22-7.10 (m, 6H), 7.06-7.02 (m, 2H), 4.49 (s, 2H); **C
NMR (100 MHz, CDCl,) 6 161.7, 154.5, 142.2, 136.2, 136.1, 136.0,
135.8, 134.2, 128.8 (2C), 128.4 (2C), 128.0, 126.7, 123.64, 123.58,
119.8, 112.5, 35.4; HRMS (ESI-TOF) (m/z). Calcd for C1oH;4N,08S,
[M + H]" 319.0900; found 319.0904.

1-(2-Benzyl-1H-benzo[d]imidazol-1-yl)-2-methylpropan-1-one
(3f). 75 mg (54%), white solid, mp 136-137 °C. IR (KBr) » 3049,
2836, 2683, 1623, 1426 cm ™ '; "H NMR (400 MHz, CDCI;) 6 7.80-
7.77 (m, 1H), 7.54-7.51 (m, 1H), 7.36-7.31 (m, 2H), 7.27-7.22
(m, 4H), 7.20-7.17 (m, 1H), 4.58 (s, 2H), 3.41-3.36 (m, 1H), 1.10
(s, 3H), 1.08 (s, 3H); *C NMR (100 MHz, CDCl;)  177.1, 155.1,
142.6, 136.4, 132.3, 129.0 (2C), 128.3 (2C), 136.7, 124.4, 124.0,
120.4, 112.8, 36.9, 35.8, 18.6 (2C); HRMS (ESI-TOF) (m/z). Caled
for C;5H;5N,0, [M + H]" 279.1492; found 279.1493.

2-Benzyl-1-tosyl-1H-benzo[d]imidazole (3g). 156 mg (86%),
yellow solid, mp 142-143 °C (lit.* 118—120 °C). *H NMR (400
MHz, CDCl;) 6 7.96-7.94 (m, 1H), 7.72-7.69 (m, 1H), 7.37-7.32
(m, 4H), 7.30-7.25 (m, 5H), 7.05 (d, J = 8.2 Hz, 2H), 4.64 (s, 2H),
2.29 (s, 3H); **C NMR (100 MHz, CDCl;) § 152.9, 145.5, 141.8,
135.9,134.9, 132.9, 129.8 (2C), 129.2 (2C), 128.6 (2C), 126.9 (2C),
126.8, 124.8, 124.6, 120.1, 113.6, 35.6, 21.5.

(2-Benzyl-5,6-dimethyl-1H-benzo[d]imidazol-1-yl)(phenyl)
methanone (3h). 119 mg (70%), white solid, mp 130-132 °C. IR
(KBr) » 3058, 2854, 1639, 1450 cm ™ '; "H NMR (400 MHz, CDCl;)
6 7.64-7.60 (m, 1H), 7.56-7.52 (m, 3H), 7.44-7.40 (m, 2H), 7.20~
7.10 (m, 5H), 6.43 (s, 1H), 4.47 (s, 2H), 2.31 (s, 3H), 2.13 (s, 3H);
3C NMR (100 MHz, CDCl;) 6 168.6, 154.2, 140.8, 136.5, 133.7,
133.2, 132.8, 132.7, 132.6, 129.8 (2C), 128.71 (2C), 128.70 (2C),
128.4 (2C), 126.6,119.9, 113.6, 36.0, 20.4, 20.0; HRMS (ESI-TOF)
(m/z). Caled for C,3H,0N,0, [M + H]' 341.1649; found 341.1650.

(2-Benzyl-5,6-dichloro-1H-benzo[d]imidazol-1-yl)(phenyl)
methanone (3i). 133 mg (60%), white solid, mp 114-115 °C. IR
(KBr) » 3053, 2925, 2851, 2626, 1630, 1458 cm™*; *"H NMR (400
MHz, CDCl;) 6 7.84 (s, 1H), 7.70-7.66 (m, 1H), 7.55-7.52 (m,
2H), 7.49-7.45 (m, 2H), 7.22-7.12 (m, 5H), 6.89 (s, 1H), 4.44 (s,
2H); *C NMR (100 MHz, CDCl;) 6 167.8, 167.0, 141.7, 135.6,
134.5,133.3,132.2, 129.9 (2C), 129.1 (2C), 128.8 (2C), 128.6 (2C),
128.0, 127.9, 127.0, 121.0, 114.5, 35.9; HRMS (ESI-TOF) (m/z).
Caled for C,,H,,Cl,N,0, [M + H]" 381.0556; found 381.0557.

2-Benzyl-1-methyl-1H-benzo[d]imidazole (3j). 91 mg (82%),
white solid, mp 71-73 °C (lit.** 72 °C). '"H NMR (400 MHz,
CDCl;) 6 7.78-7.75 (m, 1H), 7.29-7.19 (m, 8H), 4.29 (s, 2H), 3.54
(s, 3H); "*C NMR (100 MHz, CDCl;) 6 153.2, 142.4, 136.0, 135.9,
128.7 (2C), 128.3 (2C), 126.8, 122.2, 121.8, 119.3, 108.9, 34.3,
29.9.

2-(4-Fluorobenzyl)-1-methyl-1H-benzo|d]imidazole (3k). 103 mg
(86%), yellow oil. IR (KBr) » 3054, 2944, 1894, 1602, 1506 cm ™ *; 'H
NMR (400 MHz, CDCl;) 6 7.76-7.73 (m, 1H), 7.26-7.15 (m, 3H),
7.19-7.15 (m, 2H), 6.97-6.92 (m, 2H), 4.24 (s, 2H), 3.53 (s, 3H); **C
NMR (100 MHz, CDCl;) 6 161.6 (d, J = 244.1 Hz, 1C), 152.9, 142.2,
135.8, 131.6 (d, J = 2.9 Hz, 1C), 129.8 (d, J = 8.6 Hz, 2C), 122.3,
121.9, 119.2, 115.5 (d, J = 21.9 Hz, 2C), 109.0, 33.3, 29.8; HRMS

© 2021 The Author(s). Published by the Royal Society of Chemistry
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(ESI-TOF) (m/z). Caled for Cy5Hy3FN,, [M + H]" 241.1136; found
241.1137.
2-(4-Chlorobenzyl)-1-methyl-1H-benzo[d]imidazole (3D.
118 mg (92%), white solid, mp 115-116 °C (lit.” 117119 °C).
'H NMR (400 MHz, CDCl3) § 7.76-7.74 (m, 1H), 7.26-7.22 (m,
5H), 7.12 (d, ] = 8.7 Hz, 2H), 4.22 (s, 2H), 3.51 (s, 3H); >*C NMR
(100 MHz, CDCl;) 6 152.5, 142.2, 135.8, 134.4, 132.6, 129.6 (2C),
128.8 (2C), 122.3, 121.8, 119.2, 109.0, 33.4, 29.8.
2-(4-Bromobenzyl)-1-methyl-1H-benzo[d]imidazole (3m).
136 mg (91%), white solid, mp 119—121 °C (lit.?® no report). 'H
NMR (400 MHz, DMSO-d¢) ¢ 7.58-7.56 (m, 1H), 7.51-7.46 (m,
3H), 7.25-7.14 (m, 4H), 4.28 (s, 2H), 3.69 (s, 3H); **C NMR (100
MHz, DMSO-dg) 6 153.1, 142.1, 136.3, 135.8, 131.4 (2C), 131.0
(2C), 121.7, 121.4, 119.7, 118.5, 109.9, 32.3, 29.8.
(2-(4-Methylbenzyl)-1H-benzo[d]imidazol-1-yl)(phenyl)
methanone (3n). 142 mg (87%), white solid, mp 164-166 °C. IR
(KBr) v 3049, 2738, 2621, 1624, 1432 cm ™ *; 'H NMR (400 MHz,
CDCl;) 6 7.76 (d, J = 7.8 Hz, 1H), 7.64-7.56 (m, 3H), 7.45-7.41
(m, 2H), 7.27-7.22 (m, 1H), 7.10-6.99 (m, 5H), 6.64 (d, J =
8.2 Hz, 1H), 4.48 (s, 2H), 2.22 (s, 3H); **C NMR (100 MHz, CDCl5)
0 168.6, 155.4, 142.2, 136.3, 134.1, 133.9, 133.2, 133.1, 129.8
(2€), 129.1 (2C), 128.8 (2C), 128.6 (2C), 123.748, 123.67, 119.8,
113.1, 35.9, 20.9. HRMS (ESI-TOF) (m/z). Caled for C,,H;4N,O,
[M + H]" 327.1492; found 327.1495.
(2-(3-Methylbenzyl)-1H-benzo[d]imidazol-1-yl)(phenyl)
methanone (30). 119 mg (89%), white solid, mp 111-113 °C. IR
(KBr) » 3055, 2836, 2684, 1655, 1429 cm™*; 'H NMR (400 MHz,
CDCl;) 6 7.78 (d, J = 7.8 Hz, 1H), 7.65-7.61 (m, 1H), 7.58-7.56
(m, 2H), 7.45-7.41 (m, 2H), 7.28-7.24 (m, 1H), 7.10-7.04 (m,
2H), 6.99-6.93 (m, 3H), 6.66 (d, ] = 8.2 Hz, 1H), 4.48 (s, 2H), 2.21
(s, 3H); *C NMR (100 MHz, CDCl;) 6 168.6, 155.2, 142.2, 138.0,
136.1, 134.1, 133.9, 133.0, 129.9 (2C), 129.4, 128.8 (2C), 128.3,
127.5, 125.8, 123.8, 123.7, 119.8, 113.1, 35.9, 20.9. HRMS (ESI-
TOF) (m/z). Caled for C,,HsN,O, [M + H]" 327.1492; found
327.1493.
(2-(4-Fluorobenzyl)-1H-benzo[d]imidazol-1-yl)(phenyl)
methanone (3p). 150 mg (91%), white solid, mp 78—79 °C. IR
(KBr) » 3047, 2870, 2616, 1635, 1508 cm*; 'H NMR (400 MHz,
CDCly) 6 7.77 (d, J = 8.2 Hz, 1H), 7.67-7.63 (m, 1H), 7.59-7.57
(m, 2H), 7.47-7.43 (m, 2H), 7.28-7.24 (m, 1H), 7.22-7.18 (m,
2H), 7.08-7.04 (m, 1H), 6.92-6.87 (m, 2H), 6.62 (d, J = 8.3 Hz,
1H), 4.50 (s, 2H); *C NMR (100 MHz, CDCl;) 6 168.5, 161.7 (d, J
=244.1 Hz, 1C), 155.0, 142.2, 134.05, 134.00, 132.9, 131.9 (d, ] =
2.9 Hz, 1C), 130.4 (d, J = 7.6 Hz, 2C), 129.8 (2C), 128.9 (2C),
123.9,123.8, 119.9, 115.3 (d, J = 37.7 Hz, 2C), 113.2, 35.1; HRMS
(ESI-TOF) (m/z). Caled for C,;HysFN,O, [M + H]" 331.1241;
found 331.1243.
(2-(3-Fluorobenzyl)-1H-benzo[d]imidazol-1-yl)(phenyl)
methanone (3q). 140 mg (85%), white solid, mp 71—73 °C.IR
(KBr) » 3060, 2873, 2635, 1653, 1454 cm ™ *; *H NMR (400 MHz,
CDCly) 6 7.77 (d, J = 7.8 Hz, 1H), 7.67-7.63 (m, 1H), 7.60-7.58
(m, 2H), 7.48-7.44 (m, 2H), 7.29-7.25 (m, 1H), 7.20-7.15 (m,
1H), 7.09-7.05 (m, 1H), 7.01 (d, J = 7.8 Hz, 1H), 6.96-6.93 (m,
1H), 6.87-6.82 (m, 1H), 6.63 (d, J = 8.3 Hz, 1H), 4.53 (s, 2H); *C
NMR (100 MHz, CDCl,) 6 168.5, 162.7 (d, J = 245.0 Hz, 1C),
154.4,142.2,138.7 (d, ] = 7.6 Hz, 1C), 134.1, 134.0, 132.9, 129.9,
129.8 (2C), 128.9 (2C), 124.5 (d, J = 2.9 Hz, 1C), 123.95, 123.92,
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120.0, 115.8 (d,J = 21.9 Hz, 1C), 113.8 (d,J = 21.0 Hz, 1C), 113.2,
35.6; HRMS (ESI-TOF) (m/z). Caled for C,,H;sFN,O, [M + HJ'
331.1241; found 331.1242.

(2-(2-Fluorobenzyl)-1H-benzo[ d]imidazol-1-yl)(phenyl)
methanone (3r). 139 mg (84%), mp 82—83 °C. IR (KBr) v 3054,
2738, 2620, 1702, 1451 cm™'; "H NMR (400 MHz, CDCl;) 6 7.74
(d,J = 8.2 Hz, 1H), 7.66-7.62 (m, 3H), 7.48-7.44 (m, 2H), 7.26-
7.13 (m, 3H), 7.09-6.94 (m, 3H), 6.70 (d, J = 8.2 Hz, 1H), 4.52 (s,
2H); *C NMR (100 MHz, CDCl,) 6 168.5, 160.7 (d, ] = 246.0 Hz,
1C), 154.0, 142.3, 134.0, 133.9, 133.0, 130.7 (d, J = 3.8 Hz, 1C),
129.9 (2C), 128.9 (2C), 128.7 (d, J = 8.6 Hz, 1C), 124.11, 124.07,
123.84, 123.80 (d, J = 15.2 Hz, 1C), 119.9, 115.3 (d, / = 21.9 Hz,
1C), 113.2, 29.4 (d, J = 3.8 Hz, 1C); HRMS (ESI-TOF) (m/z). Caled
for C,yH;5FN,0, [M + H]' 331.1241; found 331.1244.

(2-(4-Chlorobenzyl)-1H-benzo[ d]imidazol-1-yl)(phenyl)
methanone (3s). 166 mg (96%), white solid, mp 111-113 °C. IR
(KBr) v 3059, 2744, 2624, 1628, 1491 cm ™ '; "H NMR (400 MHz,
CDCly) 6 7.76 (d, J = 7.8 Hz, 1H), 7.66-7.63 (m, 1H), 7.58 (d, ] =
7.3 Hz, 2H), 7.47-7.43 (m, 2H), 7.27-7.23 (m, 1H), 7.20-7.16 (m,
4H), 7.08-7.04 (m, 1H), 6.61 (d, J = 8.2 Hz, 1H), 4.49 (s, 2H); **C
NMR (100 MHz, CDCl;) 6 168.4, 154.6, 142.2, 134.8, 134.0, 133.9,
132.9, 132.6, 130.2 (2C), 129.8 (2C), 128.9 (2C), 128.5 (2C), 123.9,
123.8, 119.9, 113.2, 35.3. HRMS (ESI-TOF) (m/z). Calcd for
C,1H;5CIN,O, [M + H]" 347.0946; found 347.0944.

(2-(4-Bromobenzyl)-1H-benzo[d]imidazol-1-yl)(phenyl)
methanone (3t). 156 mg (80%), white solid, mp 91—-92 °C. IR
(KBr) v 3089, 2872, 2683, 1657, 1428 cm ™ '; "H NMR (400 MHz,
CDCly) 6 7.76 (d, J = 8.2 Hz, 1H), 7.66-7.62 (m, 1H), 7.60~7.57
(m, 2H), 7.47-7.43 (m, 2H), 7.34-7.31 (m, 2H), 7.27-7.23 (m,
1H), 7.12 (d, J = 8.7 Hz, 2H), 7.08-7.03 (m, 1H), 6.61 (d, ] =
8.2 Hz, 1H), 4.47 (s, 2H); "*C NMR (100 MHz, CDCl;) é 168.4,
154.4, 142.1, 135.2, 134.0, 133.9, 132.8, 131.5 (2C), 130.5 (2C),
129.8 (2C), 128.9 (2C), 123.9, 123.8, 120.7, 119.9, 113.2, 35.3.
HRMS (ESI-TOF) (m/z). Caled for C,;H;5;CIN,O, [M + HJ'
391.0441; found 391.0442.

(2-(4-Methoxybenzyl)-1H-benzo[d]imidazol-1-yl)(phenyl)
methanone (3u). 157 mg (92%), yellow oil. IR (KBr) » 3301, 3068,
2836, 2626, 1628, 1512 cm ™ '; 'H NMR (400 MHz, CDCl;) 6 7.76
(d,J = 8.3 Hz, 1H), 7.66-7.61 (m, 1H), 7.58-7.56 (m, 2H), 7.46-
7.42 (m, 2H), 7.27-7.23 (m, 1H), 7.12 (d, J = 9.1 Hz, 2H), 7.08-
7.04 (m, 1H), 6.76-6.73 (m, 2H), 6.64 (d, J = 8.2 Hz, 1H), 4.45 (s,
2H), 3.70 (s, 3H); *C NMR (100 MHz, CDCl;) 6 168.6, 158.3,
155.6, 142.2, 134.1, 133.9, 133.1, 129.8 (4C), 128.8 (2C), 128.3,
123.8, 123.7, 119.8, 113.8 (2C), 113.1, 55.1, 35.0. HRMS (ESI-
TOF) (m/z). Caled for C,,H;gN,0,, [M + H]" 343.1441; found
343.1443.

(2-Heptyl-1H-benzo[d]imidazol-1-yl)(phenyl)methanone (3v).
123 mg (77%), yellow oil. IR (KBr) » 3061, 2928, 2626, 1712,
1538 cm™'; 'H NMR (400 MHz, CDCl;) 6 7.77-7.67 (m, 4H),
7.54-7.50 (m, 2H), 7.28-7.22 (m, 1H), 7.08-7.04 (m, 1H), 6.73 (d,
J = 8.2 Hz, 1H), 3.08-3.04 (m, 2H), 1.90-1.82 (m, 2H), 1.40-1.26
(m, 8H), 0.87-0.84 (m, 3H); >*C NMR (100 MHz, CDCl;) 6 168.6,
157.0, 142.3, 133.9, 133.7, 133.3, 129.9 (2C), 128.9 (2C), 123.6,
123.2,119.5, 113.1, 31.5, 29.8, 29.2, 28.8, 27.8, 22.4, 13.9; HRMS
(ESI-TOF) (m/z). Caled for Cy,H,4N,0, [M + H]" 321.1962; found
321.1964.
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(2-(Cyclohexylmethyl)-1H-benzo[d]imidazol-1-yl)(phenyl)
methanone (3w). 92 mg (58%), white solid, mp 77-78 °C. IR
(KBr) v 3056, 2925, 2625, 1711, 1449 cm ™ '; "H NMR (400 MHz,
CDCl;) § 7.76-7.67 (m, 4H), 7.54-7.50 (m, 2H), 7.26-7.22 (m,
1H), 7.08-7.04 (m, 1H), 6.73 (d, J = 8.2 Hz, 1H), 2.98 (d, J =
7.3 Hz, 2H), 1.92-1.86 (m, 1H), 1.73-1.60 (m, 5H), 1.26-0.99 (m,
5H); "*C NMR (100 MHz, CDCl;) 6 168.7, 155.8, 142.3, 134.0,
133.8, 133.3, 129.9 (2C), 128.9 (2C), 123.6, 123.3, 119.5, 113.0,
37.4, 36.9, 33.0 (2C), 26.1, 25.9 (2C); HRMS (ESI-TOF) (m/z).
Caled for C,1Hy,N,0, [M + H]' 321.1962; found 321.1964.

(2-(Cyclopropylmethyl)-1H-benzo[d]imidazol-1-yl)(phenyl)
methanone (3x). 94 mg (68%), yellow oil. IR (KBr) » 3065, 2925,
2623, 1709, 1538 cm™'; "H NMR (400 MHz, CDCl;) 67.78-7.74
(m, 3H), 7.70-7.66 (m, 1H), 7.53-7.49 (m, 2H), 7.26-7.22 (m,
1H), 7.07-7.03 (m, 1H), 6.67 (d, J = 8.2 Hz, 1H), 3.05 (d, J =
7.4 Hz, 2H), 13.1-1.26 (m, 1H), 0.57-0.52 (m, 2H), 0.30-0.26 (m,
2H); "*C NMR (100 MHz, CDCl;) 6 168.6, 156.6, 142.3, 134.0,
133.8, 133.2, 129.9 (2C), 128.9 (2C), 123.6, 123.3, 119.6, 113.0,
34.4, 9.3, 4.7 (2C); HRMS (ESI-TOF) (m/z). Caled for C;3H;6N,0,
[M + H]" 277.1336; found 277.1337.

All the NMR spectra please see ESI section 3.t
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