RSC Advances

View Article Online

View Journal | View Issue

REVIEW

Check for updates

Cite this: RSC Adv., 2021, 11, 11549

2-Amino-3,5-dicarbonitrile-6-sulfanylpyridines: synthesis and multiple biological activity – a review

Nail S. Akhmadiev, Vnira R. Akhmetova¹ * and Askhat G. Ibragimov

This review integrates the published data of the last decade (from 2010 to 2020) on the synthesis of the 2amino-3,5-dicarbonitrile-6-sulfanylpyridine scaffold, the derivatives of which are widely used in the synthesis of biologically active compounds. Currently, no systematic accounts of synthetic routes towards this class of heterocyclic compounds can be found in the literature. The present-day trends in the catalytic synthesis of 2-amino-3,5-dicarbonitrile-6-sulfanylpyridines are considered using pseudofour-component reaction (pseudo-4CR) by condensation of malononitrile molecules with thiols and aldehydes, and alternative three-component (3CR) condensations of malononitrile with 2arylidenemalononitrile and S-nucleophiles.

Received 15th January 2021 Accepted 8th March 2021

DOI: 10.1039/d1ra00363a

rsc.li/rsc-advances

1. Introduction

The pyridine skeleton is a structural part of numerous natural alkaloids, metal complexes, and organic compounds,¹ including drug molecules.² A method for the design of highly functionalized pyridine compounds is based on the condensation involving malononitrile, aldehydes, and thiols. The attraction of this method is the simple introduction of accessible reagents giving a pyridine ring with various functional groups, which can be used to perform further transformations.³ Previously, these reactions were considered in the context of classical multicomponent transformations and were included as single examples in some relevant reviews.⁴

Therefore, in this review we give a systematic account of original approaches developed in the last decade to the synthesis of 2-amino-3,5-dicarbonitrile-6-sulfanylpyridine scaffold, derivatives of which are highly functionalized heterocyclic compounds with a potential biological activity. The synthesis is based on two approaches to the target products, first, cyclo-condensation of two malononitrile molecules with aromatic aldehydes and thiols (pseudo-4CR) and, second, three-component cyclocondensation of malononitrile with 2-arylide-nemalononitrile and thiols (3CR). Analysis of published data on the synthesis of 2-amino-6-sulfanylpyridine-3,5-dicarbonitrile derivatives I performed using the SciFinder®⁵ database demonstrated that the year of 2012 was the most effective period for this subject (Fig. 1).

The library of synthesized 2-amino-6-sulfanylpyridine-3,5dicarbonitriles with various substituents at the C-2, C-4, or C-6 positions of the pyridine scaffold shows unique therapeutic properties. For example, non-nucleoside agonists for the treatment of cardiovascular diseases were proposed on the basis of substituted pyridines. There are quite a few non-ribose compounds possessing low nanomolar activity and improved selectivity towards adenosine receptors (ARs) of A1, A2A, and A2B subtypes; this subject is addressed in a number of reviews.⁶ Fig. 2 depicts the structural diversity of such molecules, in particular, LUF5853, a partial hA1AR agonist, with the ligand receptor binding affinity K_i hA1 of 11 \pm 2 nM;⁷ LUF5834, a partial adenosine A2B receptor agonist (EC₅₀ hA2B of 12 \pm 2 nM);⁸ P453, a strong hA2B receptor agonist (EC₅₀ hA2B of 9.5 \pm 0.9 nM);9 BAY60-6583, an adenosine A2B receptor agonist (EC₅₀ = 3 nM);⁶ and LUF-5831, an adenosine A1 receptor agonist ($K_i =$ 144 nM).¹⁰ Also, noteworthy is the therapeutic agent capadenoson (completed Phase II clinical trials), which is a highly efficient selective partial adenosine A1 receptor agonist (A1AR) (EC₅₀ of 0.1 nM), and adenosine A2B receptor agonist (EC₅₀ of 8.94 ± 0.33 nM),¹¹ developed by Bayer pharmaceutical company for the use in atrial fibrillation and stable angina patients. Previously, capadenoson was shown to decrease the electrically induced tachycardia in rats by 45%.12 Neladenoson bialanate hydrochloride (phase II clinical trials) was used as a watersoluble partial A1 receptor agonist for oral administration in patients with chronic cardiac insufficiency.11,13

2-Amino-6-sulfanylpyridine-3,5-dicarbonitrile Cp-60 inhibits accumulation of PrP^{Sc} in scrapie-infected mouse neuroblastoma cells ScN2a (IC₅₀ 18.0 \pm 1.5 mM).¹⁴ The molecule of **II** exhibits inhibitory activity *in vitro* against HIV-1 integrase (IC₅₀ = 4 μ M).¹⁵

In addition, polyfunctional pyridines with structure I exhibit anticorrosion properties. According to electrochemical impedance spectroscopy, potentiodynamic polarization, and weight loss measurements, the studied pyridines (the substituent Ar contains –H, -OMe, or –NO₂ in the C-4 position) behave as mixed-type corrosion inhibitors in 1 M HCl; the lead compound is 2-amino-4-(4-methoxyphenyl)-6-(phenylsulfanyl)pyridine-3,5-

Institute of Petrochemistry and Catalysis, Russian Academy of Science, 141 Prospekt Octyabrya, 450075 Ufa, Russian Federation. E-mail: vnirara@mail.ru; Fax: +7 3472 842750; Tel: +7 3472 842750

Fig. 1 Number of results from SciFinder® concerning the synthesis of 2-amino-3,5-dicarbonitrile-6-sulfanylpyridine derivatives I, depending on the year of publication (altogether 1086 results). The blue color marks the publications discussed in this review.

dicarbonitrile III with inhibition efficiency of 97.6% when present in 1.22 mmol L^{-1} concentration. 16

Antimicrobial activity was found for a series of new pentasubstituted pyridine derivatives bearing a quinoline moiety in the C-4 position of the pyridine ring. Among them, compound **IV** exhibited activities against *Escherichia coli* (MIC = 62.5 µg mL⁻¹), *Bacillus subtilis* (MIC = 200 µg mL⁻¹), *Clostridium tetani* (MIC = 250 µg mL⁻¹), and *Salmonella typhi* (MIC = 100 µg mL⁻¹), the activities being higher than or equal to those of ampicillin used as the reference substance.¹⁷

2. One-pot synthesis of 2-amino-6sulfanylpyridine-3,5-dicarbonitrile scaffold

The catalytic synthesis of 2-amino-6-sulfanylpyridine-3,5dicarbonitrile **4** with spectroscopic evidence for the structures of products was performed for the first time in 1981 by S. Kambe and co-workers according to one-pot 3CR protocol (Scheme 1). The target product 4 was prepared in two ways: by the reaction of 2-arylidenemalononitrile 1 with thiol 2 (pathway I) and by the reaction of thiol 2 with malononitrile 3 (pathway II), which resulted in the formation of intermediate imines A and B. Triethylamine was used as the catalyst; reaction proceeded in ethanol and gave pyridines in 17% to 49% yields depending on the nature of Ar substituents in the starting compound 1.¹⁸

The following catalysts were proposed earlier for the synthesis of pyridines 4 and their analogues using the pseudo-four-component reaction (pseudo-4CR) of malononitrile, alde-hydes, and thiols: Et_3N ,¹⁹ diazabicycloundecene (DBU),²⁰ 1,4-diazabicyclo[2.2.2]octane (DABCO),²¹ 1-butyl-3-methylimidazolium hydroxide ([bmim]OH) ionic liquid,²² KF·Al₂O₃,²³ tetrabutylammonium hydroxide (TBAH) or piperidine,²⁴ nano-SiO₂,²⁵ piperidine/MW,²⁶ ZnCl₂/MW,²⁷ and KF-Al₂O₃/MW.²⁸ Highly functionalized bis-pyridines **8** were

Fig. 2 Skeletal diversity of biologically significant 2-amino-6-sulfanylpyridine-3,5-dicarbonitrile structures.

Scheme 1 Two approaches to one-pot of the synthesis of 2-amino-6-sulfanylpyridine-3,5-dicarbonitrile derivatives 4 via 3-CR.

 $(H_{+}^{CH} + R_{+} + H_{+}^{C}) + H_{+}^{CH} + H_{+}^{C} + H_{+}^{C}) + H_{+}^{CH} + H_{+}^{C} + H_$

Scheme 2 One-pot synthesis of highly functionalized bis-pyridines 8 by using different thiolating agents 6 and 7.

prepared using bis-isothiuronium salt **6** or 1,2-ethanedithiol 7 as thiolating agents (Scheme 2).^{19,29}

Meanwhile, most of the cited methods suffer from number of drawbacks such as low yields of target products, long time and drastic conditions of the synthesis, and high catalyst toxicity or complex catalyst preparation procedure.

Over recent years, considerable progress has been made in the catalysis of this reaction, which increases the product yields or allows conducting the reactions under mild conditions. The most recent achievements in the synthesis of 2-amino-6sulfanylpyridine-3,5-dicarbonitriles **4** by condensation of two moles of malononitrile **3**, thiols **2**, and aldehydes **5** (pseudo-4CR, Scheme 3) are summarized in Table 1, which gives 60 examples of target compounds of type **4** with indicated conditions of synthesis, yields of products, and practical applications of the products.

Analysis of the results of the last decade presented in the Table 1 indicates that methods for the synthesis of 2-amino-3,5-dicarbonitrile-6-sulfanylpyridines are developing towards green chemistry principles: the use and regeneration of catalysts, including nanocomposites (examples 17–26), Bronsted and Lewis acids and bases (examples 27–46), and heterogeneous catalysts (examples 47–56, Table 1); the use of green solvents

(altogether 14 examples of using water), in particular, together with ionic liquids (examples 57–60); physicochemical treatment (microwave and ultrasonic irradiation) together with catalysts (altogether 8 examples). The catalytic activation is still the major trend (60 examples, Table 1). A particular place belongs to organocatalysts taken in minor quantities, which illustrates a metal-free strategy (examples 1–16, Table 1).

In most of the synthesized 2-amino-6-sulfanylpyridine-3,5dicarbonitriles, ethanol, water, or their mixtures are proposed as solvents. The use of an ionic liquid together with a catalyst and ultrasonic irradiation $(ZrOCl_2 \cdot 8H_2O/NaNH_2, ultrasonic$ $irradiation)))))), [bmim]BF_4) at room temperature induces$ a synergistic effect, giving substituted pyridines in more than90% yields within 5 minutes (example 46, Table 1).⁷⁴ A fairlypromising is the use of a deep eutectic solvent (DES) (cholinechloride : urea (1 : 2)) as a green reaction medium and a catalyst(example 4, Table 1).³² An additional advantage of using DES isthe possibility of reuse (three cycles without the loss of activity)with a simple recovery procedure.

Bayat and co-workers used nitroketene dithioacetal **9** as the S-nucleophile (CH_3S^-) in the pseudo-4-CR to prepare the desired pyridines **4** in 55%–76% yields (Scheme 4). A drawback of the method is the formation of an equimolar amount of 2-(nitromethylene)imidazolidine **10** by-product formed in the condensation.⁸⁹

2-(Phenylseleno)pyridines **12**, selenium analogues of sulfanylpyridines **4**, were synthesized from malonodinitrile **3**, aldehydes **5**, and PhSeH **11** in polyethylene glycol (PEG-400) as the solvent under ultrasonic irradiation (Scheme 5). The authors assumed that PEG-400 is favorable for *in situ* formation of arylmethylenemalononitriles **1**.⁹⁰

Scheme 3 Construction of 2-amino-3,5-dicarbonitrile-6-sulfanylpyridine scaffold 4 by pseudo-4CR with the participation of 2 moles of malononitrile, 1 mol of aldehydes and 1 mol of thiols.

 Table 1
 Conditions of one-pot condensation involving malononitrile, aldehydes, and thiols

fe
e

No.	Catalyst [M], mol% or mol eq.	Solvent	Temperature, °C	Reaction time, min	Yield 4, %	Activity	Substitutes R or Ar/Alk	Reference
Organc	catalysts						ī	
	Et ₃ N 3 drops on 1 mmol 5, nano-	C_2H_5OH	t ³	180-420	44-50		R = Ph	3
	sized MgU 50 mg on 1 mmol 5		50 2	60-300 222	c/-co		$Ar = Pn; 4-CI-C_6H_4; 4-OMe-C_6H_4; 4-Me-C_6H_4$	
2	e numoi a drops on 1 mmoi 3	C2H5UH	Kenux	300	45-72	a-	R = Pn Ar = Ph; 3-NO ₂ -C ₆ H ₄ ; 4-C ₆ H ₅ -C ₆ H ₄ ; 2-Me-C ₆ H ₄ ; 3-	30
						Glucosidase	Py; 2-Cl-C ₆ H ₄ ; 2-F-C ₆ H ₄ ; 4-Cl-C ₆ H ₄ ; 4-OH-C ₆ H ₄ ; 3- OH-C ₆ H ₄ ; 3-OH-4-OMe-C ₆ H ₅ ; 2-Cl-3-OMe-C ₆ H ₅ ; 3-	
							OMe-4-OH-C ₆ H ₃ ; 3-OMe-4-F-C ₆ H ₃ ; 3-OMe-4-OH-5-I-	
							C ₆ H ₂ ; 3-OMe-4-Br-5-OMe-C ₆ H ₂ ; 2-Br-4-OMe-5-OMe- C ₆ H ₂ ; 3-Br-4-OMe-5-OMe-C ₆ H ₂ ; 2-OMe-3-OMe-4-	
							OMe-C ₆ H ₂ ; 2-OMe-3-OMe-4-OMe-C ₆ H ₂ ; 3,4,5-	
							(OMe) ₃ -C ₆ H ₂ ; 2-OMe-4-OMe-C ₆ H ₃ ; 4,5-(OMe) ₂ - С	
							U6H3; 3; 3;3-[UME]2-U6H3; 1-1411; 2-1411; 3-U6H5UH2U-4- OMe-C6H4; 4-C6H5CH2O-C6H4	
3	Diethylamine 20 mol%	C_2H_5OH	rt	240-360	67-82		$R = C_2H_4OH$; Ph; Bn; 2-NH ₂ -C ₆ H ₄ ; 4-Cl-C ₆ H ₄ ; 4-Me-	31
							C_6H_4 ; 4-OMe- C_6H_4 ; 4-OMe- $CH_2C_6H_4$	
							AT = PII; 3,4- $(OMe)_2$ - G_{6H_3} ; 4-BF- G_{6H_4} ; 4- $C_{-}G_{6H_4}$; 4- OMe- G_{cH_4} : 3-NO ₂ - G_{cH_4} : 4-Me- G_{cH_4} : 4-OH- G_{cH_4} : 2-	
							thienyl; 4-CN-C ₆ H ₄ ; 4-(CH ₃) ₂ CH-C ₆ H ₄ ; <i>cyclo</i> -3,4-	
							(OCH ₂ O)-C ₆ H ₃ ; 2-furyl; 2,6-(CH ₃) ₂ -C ₆ H ₃ ; 2,6-(Cl) ₂ -	
~	Deen entectic colvent (DFC)	DFS	60	80-240	60-87		$\mathrm{C_6H_3}$ $\mathrm{P}=\mathrm{Dh}$: A-Me-C H - A-Br-C H	37
۲	(obolisco oblosido :		00	047 00	70 00		M = 1.01, 3.000 , 0.014 , 3.000 , $0.014M[1/A = 0.011 - 0.011 + 0.010 - 11 - 0.000 - 0.011 - 0.0000$	10
	(cnoine chioriae : urea (1 : 2)), 0.5 m1. on 1 mmol 5						AIK/AT = n - C_7H_{15} ; PT; 4-CI- C_6H_4 ; 3-NO ₂ - C_6H_4 ; 3-BF- C_H $\cdot \cdot 2$ -thienvir 2 -furvir 4-Me- $C_5H_{\cdot} \cdot 4$ -Br- $C_5H_{\cdot} \cdot 3$ -	
							OMe-C ₆ H ₄ ; 4-OMe-C ₆ H ₄ ; 1-Nh	
5		Water-choline	Reflux	15 - 50	85-94		R = Ph	33
		hydroxide (1:4)					$Ar = Ph; 4-OMe-C_6H_4; 4-NO_2-C_6H_4; 2-furyl; 4-Cl-$	
							C ₆ H ₄ ; 4-Br-C ₆ H ₄ ; 4-Me-C ₆ H ₄ ; 4-OH-C ₆ H ₄ ; 2-thienyl;	
	- - - - -						3-NO ₂ -C ₆ H ₄ ; 2-NO ₂ -C ₆ H ₄ ; 2-Nh	
9	Baker's yeast, 1 g on 9.4 mmol 5	C_2H_5OH	rt	40	82-93		$\mathbf{R} = \mathbf{P}\mathbf{h}$	34
							Ar = Ph; 4-Br-C ₆ H ₄ ; 4-F-C ₆ H ₄ ; 4-Cl-C ₆ H ₄ ; 4-OMe- C $\mathbf{U} : A - OU - C \mathbf{U} : A - N(Ma_{0}) - C \mathbf{U} : 2 A - C$	
							06114, 7 OIL 06114, 2 11/02 06114, 7 11(1112)2 06114, 0,7 (OMe),-CcH2, 4-Me-CcH,	
7	Water extract of banana	C ₂ H ₅ OH	65	10 - 45	80–90		$R = Ph; 4-Cl-C_6H_4; n-C_4H_6; n-C_8H_{17}$	35
		2					Alk/Ar = Ph; $3-OH-C_6H_4$; $4-OH-C_6H_4$; $4-OMe-C_6H_4$;	
							4-Me-C ₆ H ₄ ; 3-Br-C ₆ H ₄ ; 4-Cl-C ₆ H ₄ ; 2-Cl-C ₆ H ₄ ; 4-F-	
	- - - -	;	0				C_6H_4 ; 4-NO ₂ - C_6H_4 ; 4-Py; 2-thienyl; 2-Nh	
×	Tetra- <i>n</i> -butylammonium fluoride	H_2O	80	45 - 630	62-96		$\mathbf{R} = \mathbf{Ph}; 2-\mathbf{NH}_2-\mathbf{C_6H_4}$	36
							$AIK/AI = INE; EU; FII; 4-01-0_6\Pi_4; 4-F-0_6\Pi_4; 4-0ME-C-H \cdot A_{-}OH_{-}C_{-}H \cdot A_{-}NO_{-}C_{-}H \cdot A_{-}Me_{-}C_{-}H \cdot A_{-}OH_{-}2-$	
							Me-C ₆ H ₃ ; 3,4-(OMe) ₂ -C ₆ H ₃ ; 2-furyl; 2-thienyl;	
							piperonyl	
6	<i>o</i> -lodoxybenzoic acid, 10 mol%	H_2O	70	90-150	69-83		$R = Ph; 2-Br-C_6H_4; 2,4,6-Me_3-C_6H_2; 2-Me-C_6H_4; 4-Cl-C_6H_4$	37
							* •	

No.	Catalyst [M], mol% or mol eq.	Solvent	Temperature, °C	Reaction time, min	Yield 4, %	Activity	Substitutes R or Ar/Alk	Reference
							$ \begin{aligned} Ar &= Ph; 4\text{-}Me\text{-}C_6H_4; 4\text{-}OMe\text{-}C_6H_4; 3,4\text{-}(OMe)_2\text{-}C_6H_3; \\ 4\text{-}NO_2\text{-}C_6H_4; 4\text{-}Br\text{-}C_6H_4; 4\text{-}Cl\text{-}C_6H_4; 2,6\text{-}(Cl)_2\text{-}C_6H_4; \\ 3,4\text{-}Me_2\text{-}C_6H_3 \end{aligned} $	
10	Diethylamine, 20 mol% \rightarrow Dess- Martin periodinane (DMP) (1	$C_2H_5OH \rightarrow DMF$	Ħ	1.5 - 2.5	96-06		$\label{eq:rescaled} \begin{split} R &= Et; \ n\text{-}Bu; \ C_6H_{11}; \ Ph; \ 4\text{-}Br\text{-}C_6H_4; \ 4\text{-}Cle_H_4; \ 4\text{-}Cle_H_4; \ 4\text{-}OMe\text{-}C_6H_4; \ 4\text{-}Me\text{-}C_6H_4; \end{split}$	38
	mmol)			$5{-}10$			Ar = $2, 6.(Me)_2$ -C ₆ H ₃ ; 2,6-(OMe)_2-C ₆ H ₃ ; 2,6-Cl ₂ -C ₆ H ₃ ; 2, 5,5-Cl ₂ -Cl ₂ -C	
11	Piperidine	C ₂ H ₅ OH, CH ₃ CN	Reflux	180 - 1440	5-86		$z_{1}^{2} - z_{2}^{2} - z_{6}^{2} - z_{6}^{2}$ R = Ph; 4-Cl-C ₆ H ₄	39
	MW^a		06	0.5-60	6-97		$\label{eq:alpha} \begin{split} Alk/Ar &= t\text{-}Bu; Ph; 4\text{-}F\text{-}C_6H_4; 4\text{-}Cl\text{-}C_6H_4; 2\text{-}chienyl; \\ 2,6\text{-}(Cl)_2\text{-}C_6H_3; 2,6\text{-}(F)_2\text{-}C_6H_3; 2\text{-}Cl\text{-}6\text{-}F\text{-}C_6H_3; 2\text{-}F\text{-}6\text{-}CF_3; C_6H_3; 2\text{-}F\text{-}6\text{-}CF_3 \\ CF_3\text{-}C_6H_3 \end{split}$	
							R = Ph; 4-Me-C ₆ H ₄ ; 4-Cl-C ₆ H ₄ ; 4-OMe- C ₆ H ₄ Ar =	
12	Piperidine, 0.03 mL on 5 mmol 5	C ₂ H ₅ OH	Reflux	180	57–86	Anti- microbial activity ^b		17
							R ₁ = R ₂ = H; R ₁ = Me, R ₂ = H; R ₁ = OMe, R ₂ = H; R ₁ = Cl, R ₂ = H; R ₁ = H, R ₂ = Me;	
13	Imidazole, 0.2 mmol on 1 mmol 5	C_2H_5OH	Reflux	30-120	81–92	I	$\begin{split} \mathbf{R} &= \mathbf{C}_6\mathbf{H}_{11}; \ \mathbf{Ph}; \ 2\text{-}\mathbf{Me}\mathbf{-C}_6\mathbf{H}_4\\ \mathbf{Alk}(\mathbf{Ar} &= \mathbf{C}_6\mathbf{H}_{11}; \ \mathbf{Ph}; \ 4\text{-}\mathbf{OMe}\mathbf{-C}_6\mathbf{H}_4; \ 4\text{-}\mathbf{CN}\mathbf{-C}_6\mathbf{H}_4; \ 2\text{-}\mathbf{Nh}; \\ \mathbf{Ar} &= \mathbf{C}_6\mathbf{H}_{11}; \ \mathbf{Ph}; \ 4\text{-}\mathbf{OMe}\mathbf{-C}_6\mathbf{H}_4; \ 4\text{-}\mathbf{CN}\mathbf{-C}_6\mathbf{H}_4; \ 2\text{-}\mathbf{Nh}; \end{split}$	40
14	L-Arginine, 20 mol%	H_2O	Reflux	30-90	81-96		$\begin{array}{l} \mathbf{F}^{-1} - \mathbf{C}_{6} \mathbf{H}_{4} \\ \mathbf{R} = \mathbf{C}_{6} \mathbf{H}_{11}; \mathbf{P}_{1}; \mathbf{B}_{1}; \mathbf{S}_{1} - \mathbf{N}_{2} - \mathbf{C}_{6} \mathbf{H}_{4}; \mathbf{J}_{2} - \mathbf{C}_{1} \mathbf{H}_{3} - \mathbf{C}_{6} \mathbf{H}_{4}; \mathbf{J}_{2} - \mathbf{L}_{1} - \mathbf{C}_{6} \mathbf{H}_{4}; \mathbf{J}_{2} \\ \mathbf{A}_{1} \mathbf{K} / \mathbf{A}_{1} = \mathbf{C}_{6} \mathbf{H}_{11}; \mathbf{P}_{1}; \mathbf{J}_{2} \mathbf{N}_{1} \mathbf{J}_{1} + \mathbf{B}_{1} - \mathbf{C}_{6} \mathbf{H}_{4}; \mathbf{J}_{2} - \mathbf{C}_{6} \mathbf{H}_{4}; \mathbf{J}_{2} - \mathbf{C}_{6} \mathbf{H}_{4}; \mathbf{J}_{2} - \mathbf{C}_{6} \mathbf{H}_{4}; \mathbf{J}_{2} - \mathbf{C}_{6} \mathbf{H}_{3}; \mathbf{J}_{6} - \mathbf{C}_{6} \mathbf{H}_{6}; \mathbf{J}_{7} - \mathbf{C}_{6} \mathbf{H}_{7}; \mathbf{J}_{7} - \mathbf{C}_{7} \mathbf{C}_{7} \mathbf{H}_{7}; \mathbf{J}_{7} - \mathbf{C}_{7} \mathbf{C}_{7} \mathbf{H}_{7}; \mathbf{J}_{7} - \mathbf{C}_{7} \mathbf{H}_{7}; \mathbf{J}_{7} - \mathbf{C}_{7} \mathbf{D}_{7}; \mathbf{L}_{7} - \mathbf{C}_{7} \mathbf{D}_{7}; \mathbf{L}_{7} + \mathbf{C}_{7} \mathbf{D}_{7}; \mathbf{D}_{7} \mathbf{D}_{7}; \mathbf{D}_{7} - \mathbf{C}_{7} \mathbf{D}_{7}; \mathbf{D}_{7}; \mathbf{D}_{7} - \mathbf{C}_{7} \mathbf{D}_{7}; \mathbf{D}_{7}; \mathbf{D}_{7} + \mathbf{C}_{7} \mathbf{D}_{7}; \mathbf{D}_{7}; \mathbf{D}_{7}; \mathbf{D}_{7} + \mathbf{D}_{7}; D$	41
15	N,N'-Di(1H-tetraazol-5-yl)- 6H,12H-5,11- ethanedibenzo [b,f][1,5]diazocine-3,9-	EtOH	Reflux			Antitumor activity ^c	C_{6H_3} ; 5,4-(UMe) ₂ - C_{6H_3} ; 2,0-(U) ₂ - C_{6H_3} R = Ph; C_{2H_4} OH; 4-Me- C_{6H_4} ; 4-Cl- C_{6H_4} Ar = Ph; 4-Me- C_{6H_4} ; 4-Cl- C_{6H_4} ; 4-OMe- C_{6H_4} ; 4-NO ₂ - C_{6H_4} ; Pr; quinoline; 4-CN- C_{6H_4} ; 4-Br- C_{6H_4} ; 2-Me-2-fuenyl; 2-CH ₃ -Pr; 2-Br-Pr	42
16	dicarboxamide, 5 mol% Choline methoxide, 5-10 mol%	H ₂ O-C ₂ H ₅ OH (7 : 3)	50-60	20-40	I	I	$\begin{split} R &= Ph \\ Ar &= Ph; 4-NO_2-C_6H_4; 4-Cl-C_6H_4; 4-Me-C_6H_4; 4-OMe-C_6H_4; 4-OMe-C_6H_4; 4-DH-C_6H_4 \\ \end{split}$	43
Nanon	naterial-based catalysts							
17	Nano-CaO, 0.01 g on 1 mmol 5	$H_2O-C_2H_5OH$ (1:1)	50	80-150	70–92		$\label{eq:rescaled} \begin{split} R &= Ph; 4\text{-Me-C}_6H_4 \\ Ar &= Ph; 4\text{-Br-C}_6H_4; 4\text{-Cl-C}_6H_4; 4\text{-OMe-C}_6H_4; 3\text{-NO}_{2^-} \end{split}$	44

46

 C_6H_4 ; 4-NO₂- C_6H_4 ; 3-Me- C_6H_4 ; 4-Me- C_6H_4 ; 4-CN-

 C_6H_4 ; 3-OH- C_6H_4 ; 4-OH- C_6H_4

79–92

54 - 142

60

C₂H₅OH (abs.)

SnO nanoparticles, 6 mol%

18

70-94

85-200

60

 C_2H_5OH

Cul nanoparticles, 10 mol%

19

45

Table 1 (Contd.)

No.	Catalyst [M], mol% or mol eq.	Solvent	Temperature, °C	Reaction time, min	Yield 4, %	Activity	Substitutes R or Ar/Alk	Reference
							$\begin{aligned} Alk/Ar &= CH_{3i} n\text{-}C_4H_{9i}; Ph, 3\text{-}Me\text{-}C_6H_4; 4\text{-}Me\text{-}C_6H_4; 3\text{-}\\ OH\text{-}C_6H_4; 4\text{-}OH\text{-}C_6H_4; 4\text{-}OMe\text{-}C_6H_4; 3\text{-}NO_2\text{-}C_6H_4; 4\text{-}\\ NO_2\text{-}C_6H_4; 4\text{-}Br\text{-}C_6H_4; 4\text{-}Cl\text{-}C_6H_4; 4\text{-}SMe\text{-}C_6H_4; 4\text{-}CN\text{-}\\ C_6H_4 \end{aligned}$	
20	ZnO nanoparticles, 0.015 g on 1 mmol 5, 20 mol%	C ₂ H ₅ OH	50	80-150	75-94		$\begin{split} R &= Ph; 4\text{-Me-}C_6H_4 \\ Ar &= Ph; 3\text{-Me-}C_6H_4; 4\text{-Me-}C_6H_4; 3\text{-OH-}C_6H_4; 4\text{-OH-}C_6H_4; 4\text{-OH-}C_6H_4; 4\text{-OH-}C_6H_4; 4\text{-NO}_2\text{-}C_6H_4; 3\text{-NO}_2\text{-}C_6H_4; 4\text{-}C\text{-}H_2; 4\text{-}C_2H_2; 4\text{-}C_2H_3; 4$	47
21	Nanocrystalline MgO (NAP-MgO), 0.1 g on 1 mmol 5	C ₂ H ₅ OH	50	120–540	41-69		$\begin{array}{l} R = C_{6}H_{11}; \ Pi); \ Bn; \ 4-Me-C_{6}H_{4}; \ 4-Cl-C_{6}H_{4}; \ 2-furyl\\ Ar = Ph; \ 4-OMe-C_{6}H_{4}; \ 4-Me-C_{6}H_{4}; \ 4-NO_{2}-C_{6}H_{4}; \ 4$	48
22	Heterogeneous nanocatalyst Cu(n)/r-His@Fe ₃ O ₄	H_2O	80	60	86–95		$ \begin{array}{l} R = Ph \\ Ar = Ph; \ 4-Cl-C_6H_4; \ 4-Me-C_6H_4; \ 4-Br-C_6H_4; \ 4-OMe-C_6H_4; \ 4-OMe-C_6H_4; \ 4-OH-C_6H_4; \ 4-OH-C$	49
23	Nano-TiO ₂ , 5 mol% 0.06 g on 1 mmol 5	C ₂ H ₅ OH	Reflux	14-27	89-97		$\begin{split} R &= 4 \text{-Me-C}_6 H_4 \\ Ar &= Ph; \ 3 \text{-Cl-C}_6 H_4; \ 4 \text{-Cl-C}_6 H_4; \ 3 \text{-Br-C}_6 H_4; \ 4 \text{-Br-C}_6 H_4; \ 4 \text{-OMe-C}_6 H_4; \ 4 \text{-OMe-C}_6 H_4 \end{split}$	50
	Nano-TiO2, 5 mol%	C ₂ H ₅ OH	ť	60	81-87		$ \begin{array}{l} R = 4 \text{-Me-C}_{6}H_{4} \\ Ar = Ph; \ 3 \text{-Cl-C}_{6}H_{4}; \ 4 \text{-Cl-C}_{6}H_{4}; \ 4 \text{-Cl-C}_{6}H_{4}; \ 3 \text{-Br-C}_{6}H_{4}; \ 4 \text{-NO}_{2}\text{-C}_{6}H_{4}; \ 4 \text{-OMe-C}_{6}H_{4} \\ R = Bn \\ R = A \text{-NO}_{2}\text{-C}_{2}H_{2}; \ A \text{-OMe-C}_{2}H_{2} \\ \end{array} $	51
24	1,4-Dinitropyrazine-1,4-diium trinitromethanide {[1,4-pyrazine- NO2][C(NO2)3]2} nanostructured molten salt (NMS), 2 mol%	Solvent free reaction conditions	ť	20-40	83–93		2,4-Cl ₂ -Cl ₃ : 3,4-(OMe) ₂ -Cl ₃ : 3-NO ₂ - Cl ₄ : 2,5-(OMe) ₂ -Cl ₃ : 3-NO ₂ - Cl ₄ : 2,5-(OMe) ₂ -Cl ₃ : 4-N(Me) ₂ -Cl ₄ : 1- Nh; Cl ₄ :-Cl ₄ : 2-Furyl; 2-Thienyl; 4-Py; 4- OH-Cl ₆ H ₄ : -Cl ₆ H ₄ : Me	22
25	Covalently bonded sulfonic acid nano magnetic graphene oxide (Fe ₃ O ₄ @GO-Pr-SO ₃ H), 0.06 g on 1 mmol 5	ЕtOH	Reflux	19–27	89-95		$\begin{split} R &= Ph; 4\text{-Me-C}_6H_4 \\ Ar &= Ph; 3\text{-Cl-C}_6H_4; 3\text{-Br-C}_6H_4; 4\text{-Br-C}_6H_4; 4\text{-Cl-}\\ C_6H_4; 4\text{-NO}_2\text{-C}_6H_4; 3\text{-NO}_2\text{-C}_6H_4; 4\text{-NO}_2\text{-C}_6H_4; 4\text{-OMe-C}_6H_4; 2\text{-furil}; 2-fu$	53
26	Co^{II} (macrocyclic Schiff base ligand containing 1,4-diazepane) immobilized on Fe_3O_4 nanoparticles (Fe_3O_4 ($\textcircled{B}Co^{II}$), 0.02 g on 1 mmol 5	1	100	11-25	86-06	I	$\begin{array}{l} R = Ph \\ Ar = Ph; \ 3-Py; \ 4-N(Me)_2-C_6H_4; \ 3-NO_2-C_6H_4; \ 4-NO_2-C_6H_4; \ 4-OH-C_6H_4; \ 2-thienyl; \ 4-F-C_6H_4 \end{array}$	54

11554 | RSC Adv., 2021, 11, 11549-11567

No.	Catalyst [M], mol% or mol eq.	Solvent	Temperature, °C	Reaction time, min	Yield 4, %	Activity	Substitutes R or Ar/Alk	Reference
Bronsto 27	ed and Lewis acids and basic catalysis NH₄OH, 12 mol%	: MeOH (abs.)	rt	360	75-90	I	$\label{eq:R} \begin{split} R = Ph \\ Ar = Ph; \ 4\text{-Cl-C}_6H_4; \ 2\text{-Cl-C}_6H_4; \ 4\text{-OMe-C}_6H_4; \ 2\text{-NO}_2\text{-} \\ OU_2 & OU_3 & OU_4 & OU_6\text{-} \\ OU_6 & OU$	55
28	NH4OH, 12 mol%	MeOH (abs.)	Ħ	360	06-09		$C_{6}H_4$ R = Ph Ar = Ph; 4-0H-C_6H_4; 4-0Me-C_6H_4; 2-0Me-C_6H_4; 3,4-	56
29	H ₃ BO ₃ , 15 mol%, CTAB, 10 mol% H ₃ BO ₃ , 15 mol%, CTAB, 10 mol%,)))))) (35 kHz, 200 W)	H_2O	80	25-50 8-15	79–92 83–74		$(OMe)_2-G_6H_3; 2-NO_2-G_6H_4$ $R = Ph; 2-NH_2-G_6H_4$ $Ar = Ph; 4-Cl-G_6H_4; 4-F-G_6H_4; 4-OMe-G_6H_4; 4-HO-G_6H_4; 4-HO-G_6H_4; 4-HO-2-G_6H_4; 4-HO-2-G_6H_3;$ $3.4-(OMe)_3-G_2H_3$; piperonul: 2-furyl: 2-thienvl	57
30	$H_3BO_3, 15 mol\%, CTAB, 10 mol\%,$	H_2O	80	I	I	Adsorption and anti- corrosion	$R = \iint_{A} C_{BH_1} + 1-O_2 - C_{BH_2} + 2-O_2 + 2-O_$	58
31	Phosphotungstic acid, 2 mol%, cetrimonium bromide, 10 mol%	H_2O	80	30-50	70-93	مريبين	$\begin{split} R = Ph, \; 4\text{-}NH_2\text{-}C_6H_4 \\ Ar = Ph, \; 4\text{-}Ol-C_6H_4; \; 4\text{-}OH-C_6H_4; \; 4\text{-}NO_2\text{-}C_6H_4; \; 4\text{-}Me-\\ C_6H_4; \; 4\text{-}OMe-C_6H_4; \; 4\text{-}OH-C_6H_4; \; 4\text{-}OH-3\text{-}OMe-C_6H_3 \end{split}$	59
32	KOH, 10 mol%	C ₂ H ₅ OH	rt	60	25-40	Anti- bacterial and anti- neoplastic	$R_3 = Ph; 4-Me-Ce_{H_4}; 4-Cl-Ce_{H_4}$ $A_2 = R_2 = R_2 = R_2$ $A_2 = R_2 = R_2$	60
33	KOH, 10 mol%	C ₂ H ₅ OH	ť	30-90	71–90	activities ^d	$\begin{split} R_1 \mbox{ and } R_2 \mbox{ set scheme } 7 \\ R &= C_6 H_{11}; \mbox{ Ph}; \mbox{ Bn}; \mbox{ 2-NH}_2-C_6 H_4; \mbox{ 2-Me-} C_6 H_4 \\ Alk/Ar &= C_6 H_{11}; \mbox{ Ph}; \mbox{ Bn}; \mbox{ 4-OMe-} C_6 H_4; \mbox{ 3-CI-} C_6 H_4; \mbox{ 4-Me-} C_6 H_4$	61
34	NaOH, 1 mol eq.,))))) (40 kHz, 250 W)	C ₂ H ₅ OH	tı	90-120	96-06		C_6H_4 ; β - $C_{10}H_7$; 4-CN- C_6H_4 R = Bn Ar = Ph; 4-OMe- C_6H_4 ; 4-Br- C_6H_4 ; 4-OH- C_6H_4 ; 4-	62
35	NaCl, 15 mol% NaCl, 15 mol%,))))) ⁴	H_2O	Reflux Reflux	2-180 20-35	18–90 22–92		$N(Me_{D^2}-C_6H_4)$ R = Ph $Alk/Ar = CH_3; n-Pr; Ph, 4-Cl-C_6H_4; 4-NO_2-C_6H_4; 4-OM-C_6H_4; piperonyl; 4-OH-3-OMe-C_6H_3; 3,4-OMe-C_6H_3; 3,4-OMe-C_6H_4; 4-Me-COME_0, 2-C_6H_4; 2-C_0H_4; 4-OH-C_6H_4; 4-Me-COME_0, 2-C_0H_4; 4-OH-C_6H_4; 4-OH-C_6H_6H_4; 4-OH-C_6H_6H_6H_6H_6H_6H_6H_6H_6H_6H_6H_6H_6H_$	63
36	K ₂ CO ₃ , 20 mol%, KMnO ₄ 1.1 mol eq.	$H_2O-C_2H_5OH$ (1:1)	Reflux	45-180	06-00		$\begin{array}{l} C_{6}H_{4} \\ R=C_{2}H_{4}OH; \ Ph; \ 4\text{-Cl-}C_{6}H_{4}; \ 4\text{-Me-}C_{6}H_{4}; \ 4\text{-NH}_{2}\text{-}\\ C_{6}H_{4} \\ Alk/Ar=CH_{3}(CH_{2})_{6}; \ 4\text{-OMe-}C_{6}H_{4}; \ 3, 4\text{-}(OMe)_{2}\text{-}C_{6}H_{3}; \\ 3, 4, 5\text{-}(OMe)_{3}\text{-}C_{6}H_{3}; \ 3\text{-}OH\text{-}C_{6}H_{4}; \ 4\text{-Pl-}C_{6}H_{4}; \ 2, 6\text{-}\\ (Cl)_{2}\text{-}C_{6}H_{4}; \ 4\text{-}Cl\text{-}C_{6}H_{4}; \ 4\text{-}F\text{-}C_{6}H_{4}; \ 4\text{-}F\text{-}C_{6}H_{4}; \ 4\text{-}CN\text{-}\\ \end{array}$	64
37	K ₂ CO ₃ , 10 mol%,	PEG-400	40	1-60	82–92		$C_{6}H_{4}$; 3-NO ₂ - $C_{6}H_{4}$; 2-thienyl; 3-Py R = Ph; 4-Br- $C_{6}H_{4}$; 4-OMe- $C_{6}H_{4}$; 2-NH $_{2}$ - $C_{6}H_{4}$	65

No.	Catalyst [M], mol% or mol eq.	Solvent	Temperature, °C	Reaction time, min	Yield 4, %	Activity	Substitutes R or Ar/Alk	Reference
							$\begin{aligned} Alk/Ar &= Ph; 4-Me-C_6H_4; 4-OMe-C_6H_4; 4-Cl-C_6H_4; 4-Br-C_6H_4; 3-NO_2-C_6H_4; 4-NO_2-C_6H_4; 2-thienyl; 2-finyl: 3-HO-C_1H_: 4-OH-C_1H \end{aligned}$	
38	K ₂ CO ₃ , 1 mol eq., grinding in a pestle	Solvent free reaction conditions	t	20-35	82–92	Antibacterial activity ^e	R = 2-mercaptopyridine R = 2-mercaptopyridine Ar = Ph; 3,4-F_2-G_6H_3; 4-F-G_6H_4; 4-Br-G_6H_4; 4-OMe-G_6H_4; 3-OH-G_6H_4; 4-NO_2-G_6H_4; 3,4,5-(OME)_3-G_6H_5;	66
39	NaHCO ₃ , 10 mol%	$H_2O-C_2H_5OH$ (1:1)	110	œ	87–93		4-Py R = 2-NH ₂ -C ₆ H ₄ Ar = Ph; 4-Me-C ₆ H ₄ ; 4-F-C ₆ H ₄ ; 4-OMe-C ₆ H ₄ ; 4-Ol- C ₆ H ₄ : 3.4-IOMe ₁ -C ₆ H ₂ : 2.4-OlC ₇ H ₄ : 3-Ol-C ₆ H ₄ : 2-	67
							Cloch, $(1, 2, 3, 3) = (1, 2, 3) = (1, 2, 3) = (1, 2, 3) = (1, 2, 3) = (1, 2, 3) = (1, 2, 3) = (1, 2, 3) = (1, 3,$	
40	10% aqueous suspension of aluminum oxide	H_2O	rt	50-100	06-62		anumacyi R = Ph; $2\text{-NH}_2\text{-C}_6\text{H}_4$ Ar = Ph; $4\text{-Cl-C}_6\text{H}_4$; $4\text{-F}\text{-C}_6\text{H}_4$; $4\text{-OH}\text{-C}_6\text{H}_4$; $4\text{-OH}\text{-C}_6\text{-H}$, $3\text{-A}_6\text{-OM}\text{-C}_6\text{-H}$, 3-A_6-O	68
41	Sc(OTf)2, 5 mol%	C ₂ H ₅ OH	Reflux	120	65-85		c_{pr4} , c_{rrv2} , c_{pr4} , d_{rrv2} ,	69
42	CH ₃ COONa, 12 mol%, MW (280	MeOH (abs.)	I	3-12	62-92		4-OMe-G ₆ H ₄ ; 3,4-(OMe) ₂ -G ₆ H ₃ ; 2-Cl-6-F-G ₆ H ₃ ; 2- OMe-3-Br-G ₆ H ₃ ; 2-Cl-6-Cl-G ₆ H ₃ ; 2-F-6-F-G ₆ H ₃ R = Ph; C ₂ H ₄ OH	70
	m)(M						$\begin{split} Ar &= Ph; \; 4\text{-}Cl-C_6H_4; \; 2\text{-}OMe-C_6H_4; \; 4\text{-}OMe-C_6H_4; \; 2\text{-}OMe-C_6H_4; \; 2\text{-}OMe-C_6H_4; \; 4\text{-}OH-C_6H_4; \; 4\text{-}OH-3\text{-}OMe-C_6H_3; \; 2\text{-}OH-4\text{-}OMe-C_6H_3; \; 3\text{-}OH-4\text{-}OMe-C_6H_3; \; 2\text{-}OH_2\text{-}C_6H_3; \; 3\text{-}OH-4\text{-}OMe_2\text{-}C_1\text{-}H_2; \; 3\text{-}OH_2\text{-}OH_2\text{-}OH_3\text{-}C_1\text{-}H_2; \; 3\text{-}OH_2\text{-}OH_3\text{-}OH$	
43	C ₆ H ₅ COONa, 10 mol%	$\begin{array}{l} \operatorname{PEG-400}:\mathrm{H_2O}\\ (1:1) \end{array}$	$50 \rightarrow 70$	90-110	82-88		$ \begin{array}{l} \text{(Constraints)} & \text{(Constraints)} \\ \text{(Constraints)} & \text{(Constraints)} \\ (Co$	71
44	Cs ₂ CO ₃ , 5 mol% and tetra- <i>n</i> - butylammonium bromide, 5 mol %	СН ₃ ОН	ť	180	85–92		$ \begin{array}{l} \text{Cl} \mathbf{G}_{\mathbf{r},\mathbf{q}}, \mathbf{f}, \mathbf{r}, \mathbf{r}$	72
45	Zn(1) or Cd(1) metal-organic frameworks, 2 mol%	Solvent free reaction	100	30-60	61-88	I	C_{614} , 2 rup.1, 2 run.1, 7 C_{614} , 4 C_{614} , 2 C_{616} , 4 C_{616} , 4 C_{616} , 2	73
46		$[Bmim]BF_4$	rt	5 - 20	90–98		$C_{6,14}$, T_{10} , $C_{6,14}$, Z_{11} , C_{11} , C_{211} , $R = Ph$; $C_{6,15}$; 4-Br- $C_{6}H_4$; 2-Nh	74

11556 | RSC Adv., 2021, 11, 11549-11567

© 2021 The Author(s). Published by the Royal Society of Chemistry

No.	Catalyst [M], mol% or mol eq.	Solvent	Temperature, °C	Reaction time, min	Yield 4, %	Activity	Substitutes R or Ar/Alk	Reference
	ZrOCl ₂ ·8H ₂ O/NaNH ₂ , 20 mol%,))))) ^a						$\label{eq:action} \begin{split} Ar = Ph; \ 2\text{-}NO_2\text{-}C_6H_4; \ 2,4\text{-}(NO_2)_2\text{-}C_6H_3; \ 4\text{-}Me\text{-}C_6H_4; \\ 4\text{-}Br\text{-}C_6H_4; \ 4\text{-}F\text{-}C_6H_4; \ 4\text{-}CF_3\text{-}C_6H_4; \ 2\text{-}Nh; \ 2\text{-}furyl \end{split}$	
Heterog 47	encous catalysts Functionalized organosilane with spherical mesoporous silica nanoparticles with grafted piperidine, 20 mg on 1 mmol 5	H ₂ O	Reflux	180-360	76–95		$\begin{split} R = Ph, \ 3\text{-}Cl\text{-}C_6H_4; \ 2\text{-}Nh; \ 4\text{-}Me\text{-}C_6H_4 \\ Ar = 4\text{-}OMe\text{-}C_6H_4; \ 4\text{-}Cl\text{-}C_6H_4; \ 4\text{-}Br\text{-}C_6H_4; \ 4\text{-}CN\text{-}C_6H_4; \\ 4\text{-}Py; \ 4\text{-}N(Me)_2\text{-}C_6H_4 \end{split}$	75
48	Propylphosphonium hydrogen carbonate ionic liquid supported on nano-silica (PPHC–nSiO ₂) (0.7 mol%)	Solvent free reaction conditions	20	20-33	80-95	I	R = Ph, 4-Me-C ₆ H ₄ ; 3-OMe-CH ₂ C ₆ H ₄ ; 2- Nh Ar = Ph, 3-NO ₂ -C ₆ H ₄ ; 4-NO ₂ -C ₆ H ₄ ; 3-Br- C ₆ H ₄ ; 4-(CH ₃) ₂ CH-C ₆ H ₄ ; 3-OMe-C ₆ H ₄ ; 3,4- (OMe) ₂ -C ₆ H ₃ ; 2-CI-C ₆ H ₄ ; 3-Br-C ₆ H ₄ ; 2,4- (OMe) ₂ -C ₆ H ₃ ; 2-CI-C ₆ H ₄ ; 3-Br-C ₆ H ₄ ; 2,4- (CI) ₂ -C ₆ H ₃ ; 2-CI-C ₆ H ₄ ; 3-Br-C ₆ H ₄ ; 2,2- Mod CH ₃ -Furfural;	76
49	Silica-bonded <i>N</i> - propyldiethylenetriamine, 0.1 g on 1 mmol 5	C ₂ H ₅ OH	ť	30-45	75-90	I	$\begin{split} R &= 2\text{-}NH_2\text{-}G_6H_4; \ 4\text{-}Me\text{-}G_6H_4 \\ Ar &= Ph; \ 4\text{-}Br\text{-}G_6H_4; \ 3\text{-}Cl\text{-}G_6H_4; \ 4\text{-}Cl\text{-}G_6H_4; \ 4\text{-}OMe\text{-}G_6H_4; \ 4\text{-}OMe\text{-}G_6H_4; \ 4\text{-}NO_2\text{-}G_6H_4; \ 4\text{-}NO_2\text{-}G_6H_4; \ 4\text{-}NO_2\text{-}G_6H_4; \ 4\text{-}OMe\text{-}G_6H_4; \ 4\text{-}OMee\text{-}OMeee\text{-}OMeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee$	77
50	2-Hydroxyethylammonium sulphonate immobilized on γ - Fe ₂ O ₃ nanoparticles (γ -Fe ₂ O ₃ -2-	Solvent free reaction conditions	20	5-20	79–91		$\begin{array}{l} C_{6}H_{4}; \ 4\text{-}CN\text{-}C_{6}H_{4} \\ R = n\text{-}Bu \ Ph; \ 4\text{-}Cl\text{-}C_{6}H_{4}; \ 4\text{-}Me\text{-}C_{6}H_{4}; \ 4\text{-}OMe\text{-}C_{6}H_{4} \\ Alk/Ar = Me; \ Ph; \ 4\text{-}Me\text{-}C_{6}H_{4}; \ 4\text{-}Cl\text{-}C_{6}H_{4}; \ 2\text{-}Nh; \ 3\text{-}Py; \\ 3\text{-}C_{6}H_{4}(CH_{2})_{2} \end{array}$	78
51	PHEAS), 0.08 g on 1 mmol 5 2-Hydroxyethylammonium acetate immobilized on Fe ₂ O ₃ nanoparticles (Fe ₃ O ₄ -2-HEAA), 1	Solvent free reaction conditions	70	5-15	0608		$\begin{split} \mathbf{R} &= n\text{-Bu}; \ \mathbf{Ph}; \ 4\text{-}\mathbf{Cl}\text{-}\mathbf{C}_{6}\mathbf{H}_{4}; \ 4\text{-}\mathbf{Me}\text{-}\mathbf{C}_{6}\mathbf{H}_{4}; \ 4\text{-}\mathbf{OMe}\text{-}\mathbf{C}_{6}\mathbf{H}_{4}; \ 4\text{-}\mathbf{Me}\text{-}\mathbf{C}_{6}\mathbf{H}_{4}; \ 2\text{-}\mathbf{Nh}; \ 3\text{-}\mathbf{C}_{6}\mathbf{H}_{4}; \ 2\text{-}\mathbf{Nh}; \ 3\text{-}\mathbf{C}_{6}\mathbf{H}_{6}\mathbf{H}_{2}; \ 3\text{-}\mathbf{C}_{6}\mathbf{H}_{7}\mathbf{H}_{6}\mathbf{H}_{7}\mathbf{H}_$	79
52	mol ^{7%} , 0.016 g on 1 mmol 5 Molecular sieves (MS 4A), 200 mg on 1 mmol 5,))))) (35 kHz, 200 W)	H_2O	Reflux	40–120 30–60	78–91 81–90		$\begin{split} R = Ph; \ 2\text{-}NH_2\text{-}C_6H_4 \\ Ar = Ph; \ 4\text{-}Cl-C_6H_4; \ 4\text{-}F\text{-}C_6H_4; \ 4\text{-}NO_2\text{-}C_6H_4; \ 4\text{-}OH\text{-}\\ C_6H_4; \ 4\text{-}Me\text{-}C_6H_4; \ 3,4\text{-}(OMe)_2\text{-}C_6H_3; \ piperonyl; \ 2\text{-} \end{split}$	80
53	Na ₂ SiO ₂ 5 mol%	C ₂ H ₅ OH	rt	60	78-82		furyl; 2-thienyl; 4-OMe-C ₆ H ₄ ; 3-OMe-4-OH-C ₆ H ₃ R = 4-Me-C ₆ H ₄ Ar = Ph; 3-Cl-C ₆ H ₄ ; 4-Cl-C ₆ H ₄ ; 4-Br-C ₆ H ₄ ; 3-NO ₂ -	81
54	Graphene oxide-TiO ₂ (GO-TiO ₂), 20 mg on 1 mmol 5	H_2O	rt	60-120	81–89		$C_6H_4; 4-NO_2-C_6H_4; 4-OMe-C_6H_4$ R = Ph	82

Table 1 (Contd.)

ומחוב ד	- (COLIGA.)							
No.	Catalyst [M], mol% or mol eq.	Solvent	Temperature, ∘C	Reaction time, min	Yield 4, %	Activity	Substitutes R or Ar/Alk	Reference
							$\begin{split} Ar &= Ph; 4\text{-}Br\text{-}C_6H_4; 2\text{-}OH\text{-}C_6H_4; 4\text{-}OMe\text{-}C_6H_4; 4\text{-}\\ CHO\text{-}C_6H_4; 2\text{-}NO_2\text{-}C_6H_4; 2\text{-}OH\text{-}5\text{-}Br\text{-}C_6H_3; 2,3\text{-}(OH)_2\text{-}\\ C_6H_3; 4\text{-}CF_3\text{-}C_6H_4 \end{split}$	
55	Ceramic glass, 20 mg on 1 mmol 5	H ₂ O	Reflux	120	76–95		$\begin{split} R &= Ph; \ 3\text{-}Cl\text{-}C_6H_4; \ 4\text{-}Cl\text{-}C_6H_4; \ 4\text{-}Br\text{-}C_6H_4; \ 2\text{-}Nh \\ Ar &= Ph; \ 4\text{-}OMe\text{-}C_6H_4; \ 2\text{-}Br\text{-}C_6H_4; \ 3\text{-}Br\text{-}C_6H_4; \ 4\text{-}Br\text{-}C_6H_4; \ 4\text{-}Br\text{-}C_6H_4; \ 4\text{-}Br\text{-}C_6H_4; \ 4\text{-}Br\text{-}C_6H_4; \ 4\text{-}Cl\text{-}C_6H_4; \ 3\text{-}4\text{-}Br\text{-}C_6H_4; \ 4\text{-}Cl\text{-}C_6H_4; \ 4\text{-}Br\text{-}C_6H_4; \ 4\text{-}Br\text{-}Br\text{-}C_6H_4; \ 4\text{-}Br\text{-}Br\text{-}C_6H_4; \ 4\text{-}Br\text{-}C_6H_4; \ 4\text{-}Br\text{-}$	83
56	Dolomite limestone, 5.0 mass%,))))) (35 kHz, 160/640 W)	$H_2O-C_2H_5OH$ (1:1)	45-50	30-45	9098		$\begin{split} \ddot{R} &= 2\text{-}Py; \ Ph \\ Ar &= Ph; \ 3.0\text{H-}C_6H_4; \ 4.0\text{Me-}C_6H_4; \ 3.4,5\text{-}(\text{OMe})_3\text{-}\\ C_6H_2; \ 4.00_2\text{-}C_6H_4; \ 4.\text{F-}C_6H_4; \ 3.8\text{F-}C_6H_4; \ 4.8\text{F-}C_6H_4; \ 4.8\text{F-}C_6H_6; \ 4.8\text{F-}C_6H_6; \ 4.8F-$	84
Ionic li	iquids [bmim]br 1.0 mm.ol		007	C 7	20		د بر	L
/0	1.2 mmol	I	071	4-12	0 <u>8</u> -c/		$\mathbf{r} = \mathbf{r}$ II Ar = Ph; 3-Br-C ₆ H ₄ ; 4-Br-C ₆ H ₄ ; 4-Cl-C ₆ H ₄ ; 4-OH-C ₆ H ₄ ; 4-OMe-C ₆ H ₄ ; 4-Me-C ₆ H ₄	CQ
58	1-(2-Aminoethyl)pyridinium hydroxide, 1.0 mmol	$H_2O-C_2H_5OH$ (1:1)	۲	30-60	76–89		$\begin{split} R &= Ph; \ 2-NH_2-C_6H_4 \\ Ar &= Ph; \ 4-OMe-C_6H_4; \ 4-Me-C_6H_4; \ 4-OH-C_6H_4; \ 4-Cl-C_6H_4; \ 4-FC_6H_4; \ 3-Sh-C_6H_4; \ 3-OMe-4-OH-C_6H_3; \ 4-NO_2-C_6H_4; \ 4-Cl-C_6H_4; \ 4$	86
59	I	$[Bmim]BF_4$	50	20-30	78-89		$\begin{split} R &= Ph; \ 2-NH_2-C_6H_4 \\ Ar &= Ph; \ 3-Br-C_6H_4; \ 4-Cl-C_6H_4; \ 4-F-C_6H_4; \ 4-NO_2-C_6H_4; \ 4-OH-C_6H_4; \ 4-OH-C_$	87
60	2-Hydroxyethylammonium acetate, 0.5 mL on 1 mmol 5	H_2O	ť	ى ا	70-96		$\begin{split} R &= Ph; n\text{-}Bu, 4\text{-}OMe\text{-}C_6H_4; 4\text{-}Me\text{-}C_6H_4; 4\text{-}Cl\text{-}C_6H_4 \\ Ar &= Me, Ph, Bn, 2\text{-}Nh, 3\text{-}Py, 4\text{-}Cl\text{-}C_6H_4; 4\text{-}Me\text{-}C_6H_4; 4\text{-}CHO\text{-}C_6H_4; \end{split}$	88

^a No information about the frequency and power of the device. ^b Bacillus subtilis, Clostridium tetani, Streptococcus Pneumonia, Escherichia coli, Salmonella typhi, Vibrio cholera, Aspergillus Fumigates, Candida albicans. ^c A549 (adenocarcinomic human), MCF-7 (breast cancer cell), MDA-MB-231 (human breast cancer), HBE (human bronchial epithelial). ^d Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa; MCF-7 (adenocarcinoma), SNB-19 (glioblastoma), HCT-116 (colon colorectal carcinoma), HSF (human foreskin fibroblast). ^e Micrococcus aureus, Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia.

3. Design, synthesis of biologically active compounds with 2-amino-6-sulfanylpyridine-3,5-dicarbonitrile scaffold

Grigor'ev and co-workers⁹¹ developed an original approach for the synthesis of privileged scaffolds, 4-acyl-2-amino-3,5dicarbonitrile-6-sulfanylpyridines **14**, by heterocyclization of potassium 2-acyl-1,1,3,3-tetracyanopropenides **13** with thiols **2** in superbasic medium, DMSO-Na or DMSO-NaH,⁹² in which the target products were formed in more than 60% yields (Scheme 6).

In the case where thioglycolic acid esters **15** were used as the starting reactants, it was impossible to isolate the target pyridines **17**. However, the synthesis of compounds **17** from 2-chloropyridines **16** follows the S_N Ar mechanism and proceeds under milder conditions, involving thioglycolates **15** and arylthiols **2**.⁹³

The mentioned research group continued these studied by the synthesis of a combinatorial series of functionalized 2amino-6-sulfanylpyridine-3,5-dicarbonitriles with a pyridoxine moiety **21** (Scheme 7).⁶⁰ The proposed one-pot synthesis is based on the pseudo-4CR of pyridoxine derivative **20**, two moles of malononitrile **3**, and thiols **2** in the presence of 10 mol% KOH, giving the target pyridine-3,5-dicarbonitriles **21** in more than 25% yield. For increasing the solubility and enhancing the antimicrobial activity, the resulting sulfanylpyridines were

Scheme 5 Ultrasonic synthesis of 2-(phenylseleno)pyridines 12 in PEG-400 as the solvent.

regioselectively converted to quaternary salts **22** and **23**. The compounds exhibited pronounced antimicrobial activity against *Staphylococcus aureus* (MIC = 2 μ g mL⁻¹), *Staphylococcus epidermidis* (MIC = 1 μ g mL⁻¹), and *Bacillus subtilis* (MIC = 1 μ g mL⁻¹), which exceeded the activity of reference samples (myramistin, benzalkonium chloride). The activity of compounds depends on their lipophilicity and decreases in the series R¹, R² = octyl > pentyl > ethyl.

Some of compounds **19** had a cytotoxic activity against some types of tumor cells: MCF-7 (IC₅₀ = 2.8 μ M) (human breast cancer cell line), SNB-19 (IC₅₀ = 5.1 μ M) (glioblastoma cell line), and HCT-116 (IC₅₀ = 2.8 μ M) (human colon cancer cell line), being inferior to the activity of doxorubicin used as the ref. 60 The authors also noted that these compounds do not show selectivity to the HSF normal cells (human foreskin fibroblasts), *e.g.*, for the lead compound, IC₅₀ = 2.8 μ M, which indirectly attests to poor selectivity of their action and toxicity in experiments *in vivo*.

Scheme 6 Synthesis of 4-acyl-2-amino-3,5-dicarbonitrile-6-sulfanylpyridines 14, 17 based on potassium 2-acyl-1,1,3,3-tetracyanopropenides 13.

Scheme 7 Design of 2-amino-6-sulfanylpyridine-3,5-dicarbonitriles 23 with pyridoxine moiety exhibiting antimicrobial and antineoplastic activity.

In order to enhance the biological activity of target sulfanylpyridines, the aldehyde or thiol component was modified by introducing the pharmacophore groups. As an example, consider the synthesis of pyridine **29** from amino acid **24** (Scheme 8).⁹⁴ Primary screening for the *in vitro* antimicrobial activity revealed the highest activity (MIC = $15.625 \ \mu g \ mL^{-1}$)

Scheme 8 Synthesis of 2-amino-3,5-dicarbonitrile-6-sulfanylpyridines 29 containing 1,3,4-oxadiazole moiety exhibiting antimicrobial activity.

against *Escherichia coli*, *Pseudomonas aeruginosa*, *Candida albicans*, and *Aspergillus niger* for compounds with phenyl and 3-chlorophenyl substituents at the sulfur atom in pyridine **29**.

A proposed route towards antimicrobial agents includes the synthesis of hybrid structures **31** containing 2-(ArS)-amino-3,5dicyanopyridine and 2-(ArS)-quinoline moieties (Scheme 9).⁹⁵ For this purpose, 3-formyl-2-phenylsulfanylquinoline **30**, obtained by the reaction of 2-chloro-3-formylquinoline **5** with thiols **2**, was used as the aldehyde component in pseudo-4-CR. The resulting compounds **31** possessed clear-cut antibacterial and fungicidal activities *in vitro* against the *Streptococcus* pneumoniae, Bacillus subtilis, Clostridium tetani, Escherichia coli, Salmonella typhimurium, Vibrio cholera, Aspergillus fumigatus, and Candida albicans strains.

A recently proposed method⁹⁶ for the synthesis of piperidinium salts 33 is based on the 3-CR of cyanothioacetamide 32 with malononitrile 3 and aromatic aldehydes 5 in the presence of piperidine. With the goal to prepare pyridine cytostatic agents, Abbas and co-workers performed a four-step synthesis of a number of new 3,5-dicyanopyridine thioglycosides 37.⁹⁷ The obtained piperidinium salts of dihydropyridinethiones **D** were treated, without isolation, with 2,3,4,6-tetra-*O*-acetyl- α -*D*-gluco-

Scheme 10 Synthesis of thioglycosides 3,5-dicyanopyridines 37 exhibiting antitumor activity.

Scheme 11 Synthesis of polycyclic hybrid peptidomimetics 43 with pyridine, coumarin, and triazole pharmacophore moieties.

Scheme 12 Synthesis of functionalized pyridines 46 exhibiting adenosine A1 receptor agonist.

and galactopyranosyl bromides **34** to give the H-form of product **35** (Scheme 10). The subsequent aromatization and acetate deprotection resulted in the formation of 3,5-dicyanopyridine thioglycosides **37** in more than 50% yields. The *in vivo* anticancer activities against HEPG2 (human hepatocellular carcinoma cells) and HELA cell lines were an order of magnitude higher for the derivatives with glycopyranosyl moieties than for the corresponding acetyl derivatives.

In 2016, Soumya and co-workers synthesized polycyclic hybrid peptidomimetic 43 (Scheme 11) bearing three

pharmacophore moieties by linking the pyridine ring to the coumarin chromophore *via* a triazole linker. The authors implemented pseudo-4CR using 4- propynyloxybenzaldehyde 5, acetyl chloride **38**, and 3-bromopropanenitrile **40** followed by copper(1)-catalyzed [3 + 2]azide–alkyne cycloaddition (CuAAC). Triazide **42** was prepared by a two-step procedure from coumarin **39**, benzaldehyde **6**, and 3-bromopropionic acid **40**. The intermediate brominated derivative **41** was easily transformed into triazide **42** on treatment with NaN₃. An additional screening of molecule **43** revealed the activity against the human breast carcinoma cells (MCF-7) with IC₅₀ = 40 μ M mL⁻¹.⁹⁸

Recently, a method was proposed for the preparation of functionalized 3,5-dicyanopyridines **46**, a structural analogue of capadenoson (Scheme 12).⁹⁹ Fluorine-containing compound **46** (LUF7746) was fount to be a partial adenosine A1 receptor agonist with $E_{50} = 61 \pm 1\%$ (hA1AR).

Catarzi and co-workers developed a method for the synthesis of a series of new pyridines **50**, which were studied for the structure–activity relationship with respect to adenosine receptors.¹⁰⁰ This approach is based on the transformation of the thiophenyl group in pyridines **4** into a mercapto group on treatment with Na₂S followed by hydrolysis to thiol **48**. The subsequent alkylation of 2-mercaptopyridine **48** with 2-(chloromethyl)-1*H*-imidazole or methyl chloroacetate **52** in the presence of sodium hydrogen carbonate at room temperature afforded target pyridine **51** (Scheme 13). It was shown that the sulfanyl-1*H*-imidazol-2-yl moiety in the C-6 position of the resulting molecule affects the activity of adenosine receptor agonists. The highest activity towards the hA2B receptor was found for 2-amino-6-[(1*H*-imidazol-2-ylmethyl)sulfanyl]-4-[4-

Scheme 13 Multistage synthesis of imidazolyl- and acetylpyridines 50 exhibiting the activity of adenosine receptor agonists.

Scheme 14 Heterogeneous catalyzed synthesis of polycyclic compounds 52 and 53 using ionic liquid.

(prop-2-en-1-yloxy)phenyl]pyridine-3,5-dicarbonitrile in a low nanomolar concentration range (EC $_{50}=27\pm21$ nM).

The subsequent studies of this group aimed at the introduction of various substituents in the pyridine scaffold **51** demonstrated good possibilities for enhancing the biological effect (Scheme 13).¹⁰¹

A method was proposed for the synthesis of polycyclic compounds **52** and **53** (Scheme 14) in 80%–92% yields by the reaction of malononitrile with dialdehydes/dithiols and an ionic liquid, propylphosphonium hydrogen carbonate, supported on nanosilica (PPHC–nSiO₂), which served as a heterogeneous catalyst.⁷⁶ A drawback of the proposed method is the three-stage preparation procedure of the PPHC–nSiO₂ catalyst and that the ionic liquid contains phosphonium compounds, which is not quite consistent with green chemistry principles, as noted in the literature.¹⁰²

4. Conclusions

The analysis of publications devoted to the chemistry and biological activity of 2-amino-6-sulfanylpyridine-3,5-dicarbonitriles indicates the continued interest of synthetic chemists in the last decade. Latest data summary in this review show the further development of the catalytic multicomponent reactions of malononitrile, aldehydes, and thiols (selenols) for the synthesis of new pharmaceutical agents based on the 2-amino-3,5dicarbonitrile-6-sulfanylpyridine framework. Today, cluster of these compounds has been obtained with a yield of more than 70% using available and effective catalysts based on triethylamine, inorganic bases or boric acid, as well as Lewis acids, with most of which are realized in combination with ultrasonic irradiation. Attention is also drawn to innovative approaches using nanocatalysts, ionic liquids and catalysis with ceramic glass, eutectic mixture "choline chloride-urea", baker's yeast, allowing to obtain target pyridines in 80-98% yields. Another innovative segment is the expansion of the range of thiolating agents; in addition to thiols, dithioacetals and isothiuronium salts have been proposed. In our opinion, new discoveries await chemical researchers and pharmacists in the field of cyanosubstituted seleno-pyridines.

Conflicts of interest

The authors declare that they have no conflict of interest.

Acknowledgements

This work was financially partly supported by the Russian Science Foundation (project no. 19-73-00070) and within the framework of the State Assignment AAAA-A19-119022290010-9.

References

 (a) S. X. Lin, M. A. Curtis and J. Sperry, *Bioorg. Med. Chem.*, 2020, 28, 115820, DOI: 10.1016/j.bmc.2020.115820; (b)
 M. N. Zafar, A. H. Atif, M. F. Nazar, S. H. Sumrra, Gul-E-Saba and R. Paracha, *Russ. J. Coord. Chem.*, 2016, 42, 1–18, DOI: 10.1134/S1070328416010097; (*c*) L. Yet, Sixmembered ring systems: pyridine and benzo derivatives, in *Progress in Heterocyclic Chemistry*, ed. G. W. Gribble and J. A. Joule, Elsevier, 2020, vol. 31, p. 431.

- 2 M. Baumann and I. R. Baxendale, *Beilstein J. Org. Chem.*, 2013, 9, 2265–2319, DOI: 10.3762/bjoc.9.265.
- 3 F. Alinaghizadeh, M. Zahedifar, M. Seifi and H. Sheibani, *J. Braz. Chem. Soc.*, 2016, **27**, 663–669, DOI: 10.5935/0103-5053.20150309.
- 4 (a) G. M. Ziarani, Z. Kheilkordi and P. Gholamzadeh, *Mol. Diversity*, 2020, 24, 771–820, DOI: 10.1007/s11030-019-09964-1; (b) M. Driowya, A. Saber, H. Marzag, L. Demange, R. Benhida and K. Bougrin, *Molecules*, 2016, 21, 492, DOI: 10.3390/molecules21040492; (c) Y. Gu, *Green Chem.*, 2012, 14, 2091–2128, DOI: 10.1039/C2GC35635J; (d) C. Allais, J.-M. Grassot, J. Rodriguez and T. Constantieux, *Chem. Rev.*, 2014, 114, 10829–10868, DOI: 10.1021/cr500099b.
- 5 SciFinder chemical abstracts service, https://scifindern.cas.org, accessed on September 2020.
- 6 (a) D. D. Ben, C. Lambertucci, M. Buccioni, A. M. Navia, G. Marucci, A. Spinaci and R. Volpini, Pharmaceuticals, 2019. 150, DOI: 10.3390/ph12040150; 12, (b)K. A. Jacobson, D. K. Tosh, S. Jain and Z.-G. Gao, Front. Cell. Neurosci., 2019, 13, 124, DOI: 10.3389/ fncel.2019.00124; (c) P. G. Baraldi, M. A. Tabrizi, F. Fruttarolo, R. Romagnoli and D. Preti, Purinergic Signalling, 2008, 4, 287-303, DOI: 10.1007/s11302-008-9097-z.
- 7 L. C. W. Chang, J. K. von Frijtag Drabbe Künzel, T. Mulder-Krieger, R. F. Spanjersberg, S. F. Roerink, G. van den Hout, M. W. Beukers, J. Brussee and A. P. IJzerman, *J. Med. Chem.*, 2005, 48, 2045–2053, DOI: 10.1021/jm049597+.
- 8 M. W. Beukers, L. C. W. Chang, J. K. von Frijtag Drabbe Künzel, T. Mulder-Krieger, R. F. Spanjersberg, J. Brussee and A. P. IJzerman, *J. Med. Chem.*, 2004, 47, 3707–3709, DOI: 10.1021/jm049947s.
- 9 M. Betti, D. Catarzi, F. Varano, M. Falsini, K. Varani, F. Vincenzi, D. B. Diego, C. Lambertucci and V. Colotta, *Eur. J. Med. Chem.*, 2018, **150**, 127–139, DOI: 10.1016/ j.ejmech.2018.02.081.
- 10 L. H. Heitman, T. Mulder-Krieger, R. F. Spanjersberg, J. K. von Frijtag Drabbe Künzel, A. Dalpiaz and A. P. Ijzerman, *Br. J. Pharmacol.*, 2006, **147**, 533–541, DOI: 10.1038/sj.bjp.0706655.
- 11 (a) D. Meibom, B. Albrecht-Küpper, N. Diedrichs, W. Hübsch, R. Kast, T. Krämer, U. Krenz, H.-G. Lerchen, J. Mittendorf, P. G. Nell, F. Süssmeier, A. Vakalopoulos and K. Zimmermann, ChemMedChem, 2017, 12, 728-737, DOI: 10.1002/cmdc.201700151; (*b*) J.-A. Baltos, E. A. Vecchio, M. A. Harris, C. X. Qin, R. H. Ritchie, A. Christopoulos, P. J. White and L. T. May, Biochem. Pharmacol., 2017, 135, 79-89, DOI: 10.1016/ j.bcp.2017.03.014.
- 12 L. Bott-Flügel, A. Bernshausen, H. Schneider, P. Luppa,
 K. Zimmermann, B. Albrecht-Küpper, R. Kast,
 K.-L. Laugwitz, H. Ehmke, A. Knorr and M. Seyfarth, *PLoS* One, 2011, 6, 18048, DOI: 10.1371/journal.pone.0018048.

- 13 (a) A. A. Voors, H.-D. Düngen, M. Senni, S. Nodari, P. Agostoni, P. Ponikowski, J. J. Bax, J. Butler, R. J. Kim, B. Dorhout, W. Dinh and M. Gheorghiade, *J. Clin. Pharmacol.*, 2017, 57, 440, DOI: 10.1002/jcph.828; (b) M. C. Erber, J. Anlahr, J. Nicolai and M. Pfeffer, Parenteral pharmaceutical composition comprising neladenoson bialanate, *WO Pat.*, 2019180072A1, 2019.
- 14 (a) M. L. Barreca, N. Iraci, S. Biggi, V. Cecchetti and E. Biasini, *Pathogens*, 2018, 7, 27, DOI: 10.3390/ pathogens7010027; (b) K. Guo, R. Mutter, W. Heal, T. R. K. Reddy, H. Cope, S. Pratt, M. J. Thompson and B. Chen, *Eur. J. Med. Chem.*, 2008, 43, 93–106, DOI: 10.1016/j.ejmech.2007.02.018.
- 15 J. Deng, T. Sanchez, L. Q. Al-Mawsawi, R. Dayam, R. A. Yunes, A. Garofalo, M. B. Bolger and N. Neamati, *Bioorg. Med. Chem.*, 2007, **15**, 4985–5002, DOI: 10.1016/ j.bmc.2007.04.041.
- 16 Sudheer and M. A. Quraishi, *Ind. Eng. Chem. Res.*, 2014, 53, 2851–2859, DOI: 10.1021/ie401633y.
- 17 J. A. Makawana, M. P. Patel and R. G. Patel, *Med. Chem. Res.*, 2012, **21**, 616–623, DOI: 10.1007/s00044-011-9568-6.
- 18 S. Kambe, K. Saito, A. Sakurai and H. Midorikawa, *Synthesis*, 1981, 531–533, DOI: 10.1055/s-1981-29513.
- 19 N. M. Evdokimov, A. S. Kireev, A. A. Yakovenko, M. Yu. Antipin, I. V. Magedov and A. Kornienko, *J. Org. Chem.*, 2007, 72, 3443–3453, DOI: 10.1021/j0070114u.
- 20 R. Mamgain, R. Singh and D. S. Rawat, *J. Heterocycl. Chem.*, 2009, **46**, 69–73, DOI: 10.1002/jhet.32.
- 21 N. M. Evdokimov, I. V. Magedov, A. S. Kireev and A. Kornienko, *Org. Lett.*, 2006, **8**, 899–902, DOI: 10.1021/ ol052994+.
- 22 B. C. Ranu, R. Jana and S. Sowmiah, *J. Org. Chem.*, 2007, 3, 3152–3154, DOI: 10.1021/jo070015g.
- 23 B. Das, B. Ravikanth, A. S. Kumar and B. S. Kanth, J. Heterocycl. Chem., 2009, 46, 1208–1212, DOI: 10.1002/ jhet.206.
- 24 K. Guo, M. J. Thompson and B. Chen, *J. Org. Chem.*, 2009, 74, 6999–7006, DOI: 10.1021/jo901232b.
- 25 S. Banerjee and G. Sereda, *Tetrahedron Lett.*, 2009, **50**, 6959–6962, DOI: 10.1016/j.tetlet.2009.09.137.
- 26 K. Guo, M. J. Thompson, T. R. K. Reddy, R. Mutter and B. Chen, *Tetrahedron*, 2007, 63, 5300–5311, DOI: 10.1016/ j.tet.2007.03.139.
- M. Sridhar, B. C. Ramanaiah, C. Narsaiah, B. Mahesh,
 M. Kumaraswamy, K. K. R. Mallu, V. M. Ankathi and
 P. S. Rao, *Tetrahedron Lett.*, 2009, 50, 3897–3900, DOI: 10.1016/j.tetlet.2009.04.051.
- 28 K. N. Singh and S. K. Singh, ARKIVOC, 2009, XIII, 153–160, DOI: 10.3998/ark.5550190.0010.d13.
- 29 Z.-q. Wang, Z.-m. Ge, T.-m. Cheng and R.-t. Li, *Synlett*, 2009, **12**, 2020–2022, DOI: 10.1055/s-0029-1217529.
- 30 M. Ali, K. M. Khan, M. Mahdavi, A. Jabbar, S. Shamim, U. Salar, M. Taha, S. Perveen, B. Larijani and M. A. Faramarzi, *Bioorg. Chem.*, 2020, **100**, 103879, DOI: 10.1016/j.bioorg.2020.103879.

- 31 U. V. Desai, M. A. Kulkarni, K. S. Pandit, A. M. Kulkarni and P. P. Wadgaonkar, *Green Chem. Lett. Rev.*, 2014, 7, 228–235, DOI: 10.1080/17518253.2014.925144.
- 32 N. Azizi and M. S. Haghayegh, *ChemistrySelect*, 2017, 2, 8870–8873, DOI: 10.1002/slct.201701682.
- 33 A. U. Khandebharad, S. R. Sarda, M. N. Farooqui, M. A. K. Pathan and B. R. Agrawal, *Polycyclic Aromat. Compd.*, 2020, 40, 832–839, DOI: 10.1080/ 10406638.2018.1485713.
- 34 A. S. Chavan, A. S. Kharat, M. R. Bhosle and R. A. Mane, Synth. Commun., 2017, 47, 1777–1782, DOI: 10.1080/ 00397911.2017.1350982.
- 35 A. Allahi and B. Akhlaghinia, *Phosphorus, Sulfur Silicon Relat. Elem.*, 2020, **196**, 328–336, DOI: 10.1080/ 10426507.2020.1835905.
- 36 P. V. Shinde, B. B. Shingate and M. S. Shingare, *Chin. J. Chem.*, 2011, **29**, 1049–1054, DOI: 10.1002/cjoc.201190178.
- 37 S. Takale, J. Patil, V. Padalkar, R. Pisal and A. Chaskar, J. Braz. Chem. Soc., 2012, 23, 966–969, DOI: 10.1590/S0103-50532012000500024.
- 38 R. V. Kupwade, S. S. Khot, M. A. Kulkarni, U. V. Desai and P. P. Wadgaonkar, *RSC Adv.*, 2017, 7, 38877–38883, DOI: 10.1039/C7RA07738F.
- 39 Z. Fang, F. Zhang, B. H. Zou, W. He, H. Zhong, D. Ji and K. Guo, *Adv. Mater. Res.*, 2013, **749**, 293–298, DOI: 10.4028/www.scientific.net/AMR.749.293.
- 40 M. N. Khan, S. Pal, S. Karamthulla and L. H. Choudhury, *RSC Adv.*, 2014, 4, 3732–3741, DOI: 10.1039/C3RA45252B.
- 41 M. A. Aziz and M. Farooqui, *World J. Pharm. Res.*, 2016, 5, 1255–1267.
- 42 W. Hui, X. Jiangbiao, Z. Peng, W. Yu and Y. Rui, Polysubstituted pyridine derivative and the preparation method and application thereof, *CN Pat.*, 108727259 A, 2018.
- 43 Y. Caibo, Z. Xin, W. Shenghua, G. Tao, H. Huihui, Y. Cuiping and C. Zhaolian, Method for preparing 2amino-4-phenyl-6-(phenylthio)-3,5-dicyanopyridine derivative with green catalysis, *CN Pat.*, 104649967 B, 2016.
- 44 J. Safaei-Ghomi, M. A. Ghasemzadeh and M. Mehrabi, *Sci. Iran., Trans. C*, 2013, **20**, 549–554, DOI: 10.1016/j.scient.2012.12.037.
- 45 J. Safaei-Ghomi, H. Shahbazi-Alavi and E. Heidari-Baghbahadorani, *RSC Adv.*, 2014, 4, 50668–50677, DOI: 10.1039/C4RA04769A.
- 46 J. Safaei-Ghomi and M. A. Ghasemzadeh, J. Sulfur Chem., 2013, 34, 233–241, DOI: 10.1080/17415993.2012.728220.
- 47 J. Safaei-Ghomi and M. A. Ghasemzadeh, *Acta Chim. Slov.*, 2012, **59**, 697–702.
- 48 M. L. Kantam, K. Mahendar and S. J. Bhargava, J. Chem. Sci., 2010, 122, 63–69, DOI: 10.1007/s12039-010-0007-x.
- 49 M. Norouzi, A. Ghorbani-Choghamarani and M. Nikoorazm, *RSC Adv.*, 2016, 6, 92387–92401, DOI: 10.1039/C6RA19776K.
- 50 S. J. Shams-Najafi, M. Gholizadeh and A. J. Ahmadpour, J. Chin. Chem. Soc., 2019, 66, 1531–1536, DOI: 10.1002/ jccs.201900041.

- 51 B. Baghernejad, *Bull. Chem. Soc. Ethiop.*, 2014, **28**, 149–153, DOI: 10.4314/bcse.v28i1.18.
- 52 M. A. Zolfigol, M. Safaiee, B. Ebrahimghasri, S. Baghery, S. Alaie, M. Kiafar, A. Taherpour, Y. Bayat and A. Asgari, *J. Iran. Chem. Soc.*, 2017, **14**, 1839–1852, DOI: 10.1007/ s13738-017-1123-z.
- 53 A. Nakhaei and H. Nakhaei, Heterocycl. Lett., 2018, 8, 27-33.
- 54 H. Ebrahimiasl, D. Azarifar, J. Rakhtshah, H. Keypour and M. Mahmoudabadi, *Appl. Organomet. Chem.*, 2020, 34, 5769, DOI: 10.1002/aoc.5769.
- 55 G. M. Nazeruddin, Y. I. Shaikh and A. A. Shaikh, *RJPBCS*, 2014, **5**, 1773–1779.
- 56 Y. I. Shaikh, A. A. Shaikh and G. M. Nazeruddin, *J. Chem. Pharm. Res.*, 2012, **4**, 4953–4956.
- 57 P. V. Shinde, S. S. Sonar, B. B. Shingate and M. S. Shingare, *Tetrahedron Lett.*, 2010, **51**, 1309–1312, DOI: 10.1016/ j.tetlet.2009.12.146.
- 58 C. Verma, M. A. Quraishi, H. Lgaz, L. O. Olasunkanmi, E.-S. M. Sherif, R. Salghi and E. E. Ebenso, *J. Mol. Liq.*, 2019, 283, 491–506, DOI: 10.1016/j.molliq.2019.03.105.
- 59 M. S. Su, X. J. Ji, B. B. Zhao, M. Tian and J. J. Ma, J. Chem. Soc. Pak., 2015, 37, 1130–1134.
- 60 A. A. Grigor'ev, N. V. Shtyrlin, R. R. Gabbasova, M. I. Zeldi, D. Yu. Grishaev, O. I. Gnezdilov, K. V. Balakin, O. E. Nasakin and Yu. G. Shtyrlin, *Synth. Commun.*, 2018, **48**, 2288–2304, DOI: 10.1080/00397911.2018.1501487.
- 61 Md. N. Khan, S. Pal, T. Parvin and L. H. Choudhury, *RSC Adv.*, 2012, 2, 12305–12314, DOI: 10.1039/C2RA21385K.
- 62 R. Pagadala, S. Maddila and S. B. Jonnalagadda, Ultrason. Sonochem., 2014, 21, 472–477, DOI: 10.1016/ j.ultsonch.2013.08.024.
- 63 J. B. Gujar, M. A. Chaudhari, D. S. Kawade and M. S. Shingare, *Tetrahedron Lett.*, 2014, 55, 6939–6942, DOI: 10.1016/j.tetlet.2014.10.125.
- 64 S. Mishra and R. Ghosh, *Synth. Commun.*, 2012, **42**, 2229–2244, DOI: 10.1080/00397911.2011.555284.
- 65 M. Kidwai and R. Chauhan, J. Iran. Chem. Soc., 2014, 11, 1005–1013, DOI: 10.1007/s13738-013-0368-4.
- 66 L. S. Reddy, T. R. Reddy, R. B. Mohan, A. Mahesh,
 Y. Lingappa and N. C. G. Reddy, *Chem. Pharm. Bull.*, 2013,
 61, 1114–1120, DOI: 10.1248/cpb.c13-00412.
- 67 N. M. Panchani and H. S. Joshi, *Chem. Biol. Interface*, 2016, 6, 92–98.
- 68 P. V. Shinde, B. B. Shingate and M. S. Shingare, *Bull. Korean Chem. Soc.*, 2011, **32**, 459–462, DOI: 10.5012/ bkcs.2011.32.2.459.
- 69 S. S. Kottawar, S. A. Siddiqui and S. R. Bhusare, *Heterocycl. Commun.*, 2012, 18, 249–252, DOI: 10.1515/hc-2012-0103.
- 70 M. S. Pandharpatte, H. A. Osman, A.-B. M. Osman and G. M. Nazeruddin, *Chem. Sci. Trans.*, 2017, 6, 1–7, DOI: 10.7598/cst2017.1277.
- 71 A. Ahad and M. Farooqui, *Int. J. Chem. Sci.*, 2016, **14**, 1789–1796.
- 72 V. T. Kamble, S. T. Atkore, P. M. Pisal, M. Sadaf and R. V. Thakre, *Quarterly Journal of Iranian Chemical Communication*, 2016, 4, 186–196.

- 73 M. Thimmaiah, P. Li, S. Regati, B. Chen and J. Cong-Gui Zhao, *Tetrahedron Lett.*, 2012, 53, 4870–4872, DOI: 10.1016/j.tetlet.2012.06.139.
- 74 M. R. P. Heravi and F. Fakhr, *Tetrahedron Lett.*, 2011, 52, 6779–6782, DOI: 10.1016/j.tetlet.2011.10.031.
- 75 S. Ray, P. Das, A. Bhaumik, M. Pramanik and C. Mukhopadhyay, *Recoverable Recyclable Catal.*, 2014, 1, 34–57, DOI: 10.2478/recat-2014-0001.
- 76 F. Rahmani, I. Mohammadpoor-Baltork, A. R. Khosropour, M. Moghadam, S. Tangestaninejad and V. Mirkhani, *RSC Adv.*, 2015, 5, 39978–39991, DOI: 10.1039/C5RA03569D.
- 77 K. Niknam and A. R. Hosseini, Org. Chem. Res., 2017, 3, 16– 24, DOI: 10.22036/ORG.CHEM..2017.41100.
- 78 S. Sobhani and M. Honarmand, *Appl. Catal.*, *A*, 2013, **467**, 456–462, DOI: 10.1016/j.apcata.2013.08.006.
- 79 S. Sobhani, F. Nasseri and F. Zarifi, J. Iran. Chem. Soc., 2018, 15, 2721–2732, DOI: 10.1007/s13738-018-1460-6.
- 80 P. V. Shinde, V. B. Labade, B. B. Shingate and M. S. Shingare, *J. Mol. Catal. A: Chem.*, 2011, 336, 100– 105, DOI: 10.1016/j.molcata.2011.01.005.
- 81 M. M. Heravi, M. Khorshidi, Y. Sh. Beheshtia and B. Baghernejad, *Bull. Korean Chem. Soc.*, 2010, **31**, 1343– 1344, DOI: 10.5012/bkcs.2010.31.5.1343.
- 82 S. Kumari, A. Shekhar and D. D. Pathak, *New J. Chem.*, 2016, 40, 5053–5060, DOI: 10.1039/C5NJ03380B.
- 83 P. Manna and P. K. Maiti, *Tetrahedron Lett.*, 2015, 6, 5094– 5098, DOI: 10.1016/j.tetlet.2015.07.038.
- 84 K. Godugu, V. Divya Sri Yadala, M. K. M. Pinjari, T. R. Gundala, L. R. Sanapareddy and C. G. R. Nallagondu, *Beilstein J. Org. Chem.*, 2020, 16, 1881–1900, DOI: 10.3762/bjoc.16.156.
- 85 A. Davoodnia, P. Attar, H. Eshghi, A. Morsali, N. Tavakoli-Hoseini and A. Tavakoli-Nishaburi, *Asian J. Chem.*, 2011, 23, 1273–1275.
- 86 D. Hao, Z. Yun-lei, S. Xiao-peng, Y. Jin-ming and F. Dong, *Res. Chem. Intermed.*, 2014, 40, 587–594, DOI: 10.1007/ s11164-012-0984-0.
- 87 T. Jinjin and G. Hongyun, *Chin. J. Org. Chem.*, 2012, **32**, 193– 196, DOI: 10.6023/cjoc1105133.
- 88 S. Sobhani and M. Honarmand, C. R. Chim., 2013, 16, 279– 286, DOI: 10.1016/j.crci.2012.10.011.
- 89 M. Bayat, M. Saboni and B. Notash, J. Heterocycl. Chem., 2018, 55, 313–317, DOI: 10.1002/jhet.3051.
- 90 (a) M. N. Khan, S. Karamthulla, L. H. Choudhury and Md. S. H. Faizi, *RSC Adv.*, 2015, 5, 22168–22172, DOI: 10.1039/C5RA02403J; (b) J. Soni, N. Sahiba, A. Sethiya and S. Agarwal, *J. Mol. Liq.*, 2020, 315, 113766, DOI: 10.1016/ j.molliq.2020.113766.
- 91 A. A. Grigor'ev, S. V. Karpov, Y. S. Kayukov, M. Yu. Belikov and O. E. Nasakin, *Tetrahedron Lett.*, 2015, 56, 6279–6281, DOI: 10.1016/j.tetlet.2015.09.130.
- 92 V. Vashchenko, L. Kutulya and A. Krivoshey, *Synthesis*, 2007, 2125–2134, DOI: 10.1002/chin.200747094.
- 93 Ya. S. Kayukov, S. V. Karpov, O. V. Kayukova and A. A. Grigor'ev, *Russ. J. Org. Chem.*, 2020, 56, 1313–1316, DOI: 10.1134/S1070428020070283.

- 94 Y. O. Bhola and Y. T. Naliapara, *World Sci. News*, 2019, **117**, 221–227.
- 95 M. B. Kanani and M. P. Patel, *Med. Chem. Res.*, 2013, 22, 2912–2920, DOI: 10.1007/s00044-012-0292-7.
- 96 F. S. Hosseini, M. Bayat and M. Masoumi, *J. Sulfur Chem.*, 2019, **40**, 65–74, DOI: 10.1080/17415993.2018.1523412.
- 97 H.-A. S. Abbas, W. A. El Sayed and N. M. Fathy, *Eur. J. Med. Chem.*, 2010, 45, 973–982, DOI: 10.1016/j.ejmech.2009.11.039.
- 98 T. V. Soumya, C. M. Ajmal and D. Bahulayan, *Bioorg. Med. Chem. Lett.*, 2017, 27, 450–455, DOI: 10.1016/j.bmcl.2016.12.044.
- 99 X. Yang, M. A. Dilweg, D. Osemwengie, L. Burggraaff, D. van der Es, L. H. Heitman and A. P. IJzerman, *Biochem.*

Pharmacol., 2020, **180**, 114144, DOI: 10.1016/ j.bcp.2020.114144.

- 100 D. Catarzi, F. Varano, K. Varani, F. Vincenzi, S. Pasquini,
 D. D. Ben, R. Volpini and V. Colotta, *Pharmaceuticals*, 2019, 12, 159, DOI: 10.3390/ph12040159.
- 101 M. Betti, D. Catarzi, F. Varano, M. Falsini, K. Varani,
 F. Vincenzi, S. Pasquini, L. di Cesare Mannelli,
 C. Ghelardini, E. Lucarini, D. D. Ben, A. Spinaci,
 G. Bartolucci, M. Menicatti and V. Colotta, *J. Med. Chem.*,
 2019, 62, 6894–6912, DOI: 10.1021/acs.jmedchem.9b00106.
- 102 G. Cevasco and C. Chiappe, *Green Chem.*, 2014, **16**, 2375–2385, DOI: 10.1039/C3GC42096E.

Review