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Recent advances in nanotechnology have contributed tremendously to the development and

revolutionizing of drug delivery systems in the field of nanomedicine. In particular, targeting
nanoparticles based on biodegradable poly(lactic-co-glycolic acid) (PLGA) polymers have gained much
interest. However, PLGA nanoparticles remain of concern for their effectiveness against cancer cells and
their toxicity to normal cells. The aim of this systematic review is to identify a promising targeting PLGA
nanoformulation based on the comparison study of their cytotoxicity potency in different cell lines. A
literature search was conducted through the databases of Google Scholar, PubMed, ScienceDirect,
Scopus and SpringerLink. The sources studied were published between 2009 and 2019, and a variety of
keywords were utilized. In total, 81 manuscripts that met the inclusion and exclusion criteria were
selected for analysis based on their cytotoxicity, size, zeta potential, year of publication, type of ligand,
active compounds and cell line used. The half maximal inhibitory concentration (ICsq) for cytotoxicity
was the main measurement in this data extraction, and the SI units were standardized to ug mL™* for

a better view of comparison. This systematic review also identified that cytotoxicity potency was

Received 5th January 2021 . . . . . . - .
Accepted 24th February 2021 inversely proportional to nanoparticle size. The PLGA nanoparticles predominantly exhibited a size of less
than 300 nm and absolute zeta potential ~20 mV. In conclusion, more comprehensive and critical

DOI: 10.1039/d1ra00074h appraisals of pharmacokinetic, pharmacokinetic, toxicokinetic, in vivo and in vitro tests are required for

Open Access Article. Published on 03 March 2021. Downloaded on 2/9/2026 9:27:14 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

rsc.li/rsc-advances

1. Introduction

Recent advances in nanotechnology have contributed tremen-
dously to the development and revolutionizing of the drug
delivery system in the nanomedicine field. The application of
nanoparticles has long been recognized as a controlled release
formulation for delivering a therapeutic agent to a specific tar-
geted site. Nanoparticles provide a high therapeutic effect
against cancers, which has earned them remarkable research
interest among researchers. Nanoparticles offer a highly effi-
cient targeted therapy compared to traditional cancer therapies.
This targeted therapy can be done easily on nanoparticles using
an ideal targeting ligand. Thus, targeting nanoparticles based
on biodegradable polymers have gained much interest for
treating cancer cells with minimal systemic side effects.'?
Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable poly-
mer that has attractive properties as a nanocarrier for cancer
therapy. PLGA is a hydrophobic copolymer and mainly
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the investigation of the full value of targeting PLGA nanoparticles for cancer treatment.

composed of two monomers: lactic acid and glycolic acid
(Fig. 1). PLGA is approved by the European Medicine Agency
and the US Food and Drug Administration (FDA) as an ideal
material for designing a drug delivery system due to its
biocompatibility and biodegradability. PLGA is widely adapted
for preparing nanoparticles encapsulating hydrophilic and
hydrophobic anti-therapeutic agents.>* PLGA offers an
enhanced permeability and retention (EPR) effect, sustained
and controlled drug delivery for cancer therapy, enhanced
accumulation of drugs in tumor vasculature and targeted
delivery by surface conjugation with targeting ligands.®

Active and passive mechanisms are often practiced when
targeting cancer cells using nanoparticles. Passive targeting is
the application of polymeric nanoparticles owing to their size,
shape and surface charge enabling them to be accumulated
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Fig.1 Chemical structure of PLGA.
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predominantly in the microenvironment of cancer cells via the
EPR effect. This EPR effect is amplified based on the exclusive
presence of leaky vasculature and impaired lymphatic drainage
in tumors. Active targeting is the attachment or grafting of
targeting/biorecognizable ligands on nanoparticles to target
specific receptors/biomarkers that are overexpressed in cancer
cells, excluding normal cells.® Since targeting ligands are highly
selective towards overexpressed receptors in cancer cells, in
which can result in enhanced cellular uptake of nanoparticles
as well as excluding harm to normal cells. Both passive and
targeting mechanisms are considered a gold standard in
designing a drug delivery system.

Recently, the use of PLGA nanoparticles for cancer therapy
has received great interest due to the advantages offered and
approval by the FDA. However, the safeness of PLGA nano-
particles containing cytotoxic therapeutic agent remains a huge
concern. The anti-cancer drugs lack targeting specificity to
cancer cells and could induce potent cytotoxic effects against
both normal and cancer cells. In addition, the cellular concen-
tration of the drugs is relatively low in cancer cells due to the low
efficiency of non-targeting PLGA nanoparticles in delivering the
drugs to the site of action. The cancer cell targeting of PLGA
nanoparticles, enhanced cellular uptake of the drugs and low
toxicity to normal cells are the most important criteria or
measurements for chemotherapy. Therefore, it is vital for
researchers to design a PLGA nanocarrier that, in addition to being
biocompatible, biodegradable and cost-effective, can specifically
release drugs at the target site with reduced systemic effects.

Hence, this systematic review is focused on a comparison study
of the cytotoxicity potency of the targeting PLGA nanoparticles on
the basis of published in vitro assessment findings from 2009 to
2019 in order to assess the PLGA nanoparticles with the ideal
targeting ligands for specific cell lines - preferentially based on
their ICs, cytotoxicity potency — and to correlate the size and zeta
potential of nanoparticles with cytotoxicity potency.

The databases of Google Scholar, PubMed, ScienceDirect,
Scopus and SpringerLink were searched for literature published
between 2009 and 2019. Different combinations of keywords -
including PLGA nanoparticles, cytotoxicity, targeting ligands
and anti-cancer - were used for the literature search (Fig. 2). The
methodology for the study was based on the Preferred Report-
ing Items for Systematic Review and Meta-Analysis Protocols
(PRISMA-P) 2015.7° The inclusion criteria for our study were: (1)
PLGA nanoparticles with different types of targeting ligands; (2)
PLGA with nanoencapsulated active compounds and exhibited
cytotoxic effects on normal and cancer cells; (3) PLGA with co-
encapsulation of outer or inner polymers; (4) studies pub-
lished between 2009 and 2019 (including in-press articles).
Studies with the following criteria were omitted (exclusion
criteria): (1) PLGA microparticles; (2) chemical conjugation of
PLGA with other polymers to form nanoparticles; (2) all in vivo,
ex vivo, in silico, clinical studies, and review articles; (4) studies
without available cytotoxicity data; (5) articles that were not
published in English. Based on the inclusion and exclusion
criteria, the articles that fulfilled the requirements were selected
for analysis. Screening of the articles was conducted by two
independent reviewers. The data extraction involved analysis of
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Fig. 2 Flowchart of the selection of studies, using PRISMA guidelines.

the selected articles based on the types of cells, ICs, for cyto-
toxicity, year of publication, treatment duration, types of active
compounds used, types of targeting ligands, types of studies (in
vitro) and the size and zeta potential of the nanoparticles. The
data were described and presented in a table. The ICs, for
cytotoxicity was the main measurement in this data extraction.
The SI units were standardized to pg mL™" for a better view of
comparison. The ICs, is the dose required to inhibit 50% of the
cell viability. Based on the availability of the data of ICs,, size
and zeta potential of the nanoparticles, PLGA nanoparticles
with the active targeting properties were selected for the
purpose of studying the correlation between the particle size/
zeta potential of PLGA nanoparticles and cytotoxicity potency.

2. Cytotoxicity of PLGA
nanoformulations

The databases of Google Scholar, PubMed, ScienceDirect, Sco-
pus and SpringerLink were searched. These produced 113, 32,
113, 20 and 5 articles, respectively. From all the databases,
a total of 266 articles were retrieved after 17 duplicates were
removed. Following this, 170 articles that were not compliant
with the inclusion criteria were identified and excluded from
the study. The 96 articles left were thoroughly assessed
according to the exclusion criteria defined in Introduction. After
critical assessment, 15 articles were omitted due to the meth-
odology and cytotoxicity data being insufficiently described.
Hence, 81 studies have been integrated into the qualitative
synthesis involving assessment of the data of in vitro studies.

2.1 Invitro studies

The data of the cytotoxicity of PLGA nanoparticles conjugated
with particular targeting ligands that deliver specific active

© 2021 The Author(s). Published by the Royal Society of Chemistry
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compounds against different types of cells — such as brain,
breast, lung, colon, stomach, gastric, liver, ovary, cervix, pros-
tate, uterus, pancreas, skin, umbilical vein endothelial, esoph-
agus, bladder, head, neck and kidney cells - are shown in Table
1. From the table, it can be seen that PLGA nanoparticles are
time/dose-dependent on cytotoxicity.

2.1.1 Brain. Magnetic silica PLGA nanoparticles conjugated
with transferrin showed the most potent cytotoxic effect against
brain cancer cells (U-87) with an ICs, of 0.13 pug mL~ " This
could be due to the dual drug delivery of doxorubicin and
paclitaxel designed for the PLGA nanoparticles, compared to
the single drug carriers listed in Table 1. The application of
targeting ligands can improve the bioavailability of drug-loaded
nanoparticles. In this study, transferrin was actively targeted to
the overexpressed transferrin receptors in brain capillary
endothelium and glioma cells. The IC5, was much lower when
the treatment duration was prolonged from 48 h (1.03 pg mL )
to 96 h (0.13 pg mL™ "), showing the time-dependent effect of the
treatment.

2.1.2 Breast. Transferrin-conjugated lipid-coated PLGA
nanoparticles carrying the aromatase inhibitor 7a-(4’-amino)
phenylthio-1,4-androstadiene-3,17-dione (7a¢-APTADD) exhibi-
ted the greatest anti-proliferative effect against SKBR-3 breast
cancer cells. The ICs, value of the nanoparticles was less than
0.00049 ug mL~* for 24 h of treatment.** These findings indicate
that the inhibitory activity of nanoparticles has been improved
in comparison with the non-targeted nanoparticles, accounting
for the transferrin receptor-mediated endocytosis.

2.1.3 Lung. Arginine-glycine-aspartic acid (RGD) peptide-
modified and paclitaxel-loaded PLGA-chitosan nanoparticles
(PTX-PLGA-CSNP-RGD) had the most potent cytotoxic effect
against H1975 lung cancer cells with an ICs, of 0.0017 pg
mL ' The PTX-PLGA-CSNP-RGD nanoparticles showed
enhanced uptake due to the nature of RGD peptide, which is
highly targeted to the overexpressing integrin a,f; receptor
specifically found in lung cancer cells. In addition, less toxicity
was received by the normal lung cells due to the weak expres-
sion of integrin a,f; in normal lung cells.

2.1.4 Colon. PLGA nanoparticles loaded with paclitaxel and
conjugated with WGA wheat germ agglutinin (WNP) showed the
most promising cytotoxic potency against colon cancer cells
(HT-29) with an ICs, of 0.028 ug mL~".** WGA actively binds to
the highly expressed N-acetyl-p-glucosamine-containing glyco-
protein found in the membrane of colon cancer cells, thus
increasing the cellular uptake of WNP in colon cancer cells.
Since WGA tends to bind to the glycoprotein in colon cancer
cells, WNP is more effective in delivering paclitaxel to colon
cancer cells to enhance the bioavailability of paclitaxel
compared to non-targeted nanoparticles.

2.1.5 Stomach. Only one study about nanoparticles target-
ing stomach cancer cells was included for review after the
databases were screened. PLGA nanoparticles modified with
polyethylene glycol and conjugated with an engineered anti-
human CD44v6 Fab (AbD15179) were developed to specifically
target human CD44 isoforms containing exon v6 (CD44v6)
present in stomach cancer cells. The PLGA nanoparticles were
reported to exhibit anti-proliferative potency against GP202,
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MKN74-CD44v6+ and MKN74 stomach cancer cells. The cyto-
toxicity of the PLGA nanoparticles was 50 pg mL~" and highly
stable against fluid-mimicking gastrointestinal conditions.** No
ICs, data were reported in this study.

2.1.6 Gastric. Dual-targeting hybrid nanoparticles made of
PLGA and a lipoid shell prepared by conjugating the anti-HER2/
neu peptides (AHNP) and n-hexadecylamine (HDA) to the
carboxyl groups of hyaluronic acid (HA) were reported to deliver
7-ethyl-10-hydroxycamptothecin (SN38 agent) specifically to
gastric cancer cells (HGC27 cells) with overexpression of (1)
CD44 cluster determinant 44 and (2) HER2 (human epidermal
growth factor receptor 2). An ICs, of 0.05 pg mL ™" was reported
for the dual-targeting nanoparticles.” Studies on the cytotox-
icity mechanism have indicated that the enhanced cellular
uptake of dual-targeting nanoparticles and suppression of
CD44 and HER?2 expression by HA and AHNP inhibit the growth
of HGC27 cells.

2.1.7 Liver. LFC131 peptide-conjugated PLGA nano-
particles composed of bp-o-tocopheryl polyethylene glycol
succinate (TPGS) moieties were prepared to deliver epirubicin
and specifically bind with CXCR4-overexpressing human
hepatic carcinoma cells (HepG2). TPGS is a vitamin E derivative
and was used to stabilize the PLGA nanoparticles. It was also
used as an inhibitor of P-glycoprotein in overcoming multi-drug
resistance.’® LFC131 peptide-conjugated nanoparticles exhibi-
ted a threefold higher cellular uptake in HepG2 cells than non-
targeted nanoparticles. CX-EPNP showed a promising anti-
proliferative effect against HepG2 cells with an ICs, of 0.78
and 0.38 pg mL ™" for 24 and 48 h of treatment, respectively.'”
Herein, LFC131 peptide-conjugated nanoparticles showed
a time-dependent effect on the cytotoxicity studies.

2.1.8 Ovarian. The potential use of PLGA nanoparticles as
a paclitaxel carrier for ovarian cancer stem cells (OCSCs) was
reported. PLGA nanoparticles loaded with paclitaxel were
developed by an emulsion solvent evaporation method and then
conjugated with a targeting ligand: folic acid (FA). Cytotoxicity
results reveal that FA-conjugated nanoparticles had an ICs, of
0.00075 pg mL~'.'® Folate receptors (FR) are biomarkers that are
over-expressed in human cancer cells, such as ovarian cancer
cells. Therefore, FA was applied as the targeting ligand in the
study to target paclitaxel to FR-positive OCSCs over the normal
cells.

2.1.9 Cervical. Magnetic PLGA nanoparticles with surface
modified with folate-chitosan conjugate, which served as an
anti-cancer and magnetic resonance imaging (MRI) contrast
agent, were reported in one study. Docetaxel and super para-
magnetic iron oxide nanoparticles (SPIONs) were loaded into
the PLGA nanoparticles for delivery to folate-positive KB cancer
cells. The folate-chitosan conjugate was prepared using the
carbodiimide method and then used as a shell for the loaded
PLGA nanoparticles to target the FR in KB cells. This specific
targeting of FA in PLGA nanoparticles improved the cellular
uptake by FR-positive KB cancer cells with an IC5, of 0.0057 pg
mL71-19

2.1.10 Prostate. Theragnostic PLGA nanoparticles loaded
with superparamagnetic iron oxide (SPIO) nanocrystals and
docetaxel were prepared for both ultrasensitive MRI and cancer

RSC Adv, 2021, 11, 9433-9449 | 9435


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1ra00074h

View Article Online

Review

RSC Advances

910C LV upqnudg 1€°C F TTHe+ SIIN VN
juapuadap an[q
€10C  9¥ TIVISV -9s0d Y oct [eXB}[o'd € F LC— 8T¢ Iewelvy VN
Juapuadap ((*(*HDO*HD®HDO*HDHOD0) DY (FHN)A]
10T SV ae[od -as0Qq q ve -1 %) 8napoad gaa Te— 01T LI L_Tw 3 129 £-ADN
Juapuadap
€102 ¥ undooroH -2s0q q¥e [oxelroed T0F+0T— TF08T SILIN VN
(aaviav-nz)
Juapuadap JUOIp-/£T‘g-ouaIpeIsoIpue-T-orjAusayd 9z T 3
010 TT ULLIDJSURLL, -asoq y e (ourwre- p)-0z ‘10MqIYuUl 9seIBWONY  S'T F 6'8T— F €0LT SLIN 6¥000°0 03 T£000°0
(cgaHAYIN
-ny1) Apoqnue
[euo[oouow ZIAH
-nue paziuewny & juapuadap T'1T P L8 31 9/1000°0
6007 €¥  jo sjuowdey qed -9s0d Yy 8y THAM8EHd LF I+ FTVCT SIIN + £L6V00°0 dDIS
(CaaHAYIN
-ny1) Apoqnue
[eUOPOUOW TYTH T 3rl
-nue paziuewny e jusapuadap 1T ¥2000°0 F 82000°0 cd/cdcd
6007 €t  jo sjuowdey qed -as0q Yy 8% TAMISEAd LF T+ FTICT SIN  ,_Tw 31 $T1°0< zded Iseald
Apoqnue
[euopoouowr juapuadop
810C ¢V 1A 4Dd-huy -9s0d yve urnoainp TLF6'C— € FISC LLIN VN IHIAADH/ONIA
opndad juopuadap 6€'CT
LT0C TV PpoAllap-snila salqey -950d yo9c upiqnioxod €£°0 F+ 1S°S— F 0T°4S¢ LLIN VN ASAS-HS
deydins juopuadop 9'8
610C OV untoipuoyd -9s0d y 8y upiqnioxod 0T°¢€ F+ €9°LT— F €'LET 8-3IDD T 3 gg10 1sen
juapuadap
210 6€ TIPISV -WILL YT/ pue 8% ‘¥ [oxe3ed VN 00T~ LIN VN
juspuadop
TT0C 8¢ IIVISY WLl Y7/ pue 8 ‘4T [oXeyNped 1T F $'9T— 6'G8 LLA VN 119
juspuadop 0L
610C (L€ SOd.L d UTWeNA -9s0d yve [oXBlI[oed 8€°0 F €0°E€EV— F G'8€T T-LSM T 3 gz
Jyuopuadop 8L°¢
600C 9¢ ULLIdJSURL], -l Y ¢/ pue 8¥ ‘¥¢ [oXejped L7°¢ F ¢L'TT— F 8'T8T LLIN VN 9D
juapuadop 8 4
S10T S¢ V4 pue ULlIdjoloe] -WILL Y 8% pue $7 ‘¢TI ‘9 aprsodoyg F C1T0v+ F 6181 LLX VN DINZ8N
Jyuopuadop
ST10C V€ z-dodorguy -9sod q 8y VNAIS Y454 pue upiqnioxod 'V + 98¢+ 06T~ qdS (VN) 9[qe[reae 10N
juapuadop
L q 96 Tw 3 €10
juapuadop
€102 0T ULLI9JSUBLL, -asoq Y 8% [oxearoed pue uwiqnioxod S0 F 1'8T— 0ST~ LLN T 3 €01 /80N urelq
1eax 3oy pueSi SunaSiey, diysuonea1 uoneinp ainsodxg punodwod 2a10Y (Aw) [epusjod (wu) 9z1s  Aesse %901 aurp [[22 jo adAL,
asuodsay ©7 Aniqera
11°0

1192 JO SadA} yuaiayip uo sadiedoueu yYHT1d 4O ANDIX0101AD By T 91qel

'90UB217 paModun 0'g uong LNy suowiwoD aaireas) e sepun pasusol|siapiesiyl |[EEGEEL ()
"INV ¥T:22'6 9202/6/2 U0 papeo|umod TZ0Z Yo-e N €0 U0 paus!idnd 81y sse00y usdo

© 2021 The Author(s). Published by the Royal Society of Chemistry

9436 | RSC Adv, 2021, 11, 9433-9449


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1ra00074h

View Article Online
RSC Advances

Review

aurwejoxd yydrom juspuadap
vI0Cc €9 1B[NO9[0W-MOT -9s0d Uy 8y umiqnioxoq LT+ oTe~ LLIN T 3oy qav/L-a0N
Juapuadap 67
910 9§ srewreIn[n -as0@ y 8% [exearoed  T1°0 F 00'T— F L'IST LI L Tw 3 ££°0  S[[99 BWIOUIOIED
juapuadap 0€'TL rereyids
Z10T 79 91eUOIPUY -as0@ qve qIuI0za110q pue Urnomy VN FS's€e LILN VN Arewrwrew Ly
juapuadap
910C 19 v -esod Yy 8y upiqnioxod ST + 9°6T— ¢TI F 861 LLIN VN 4av/T€c-dIN-VdIN
juapuadop 1’8 T
ST0T 09 pIoe druoInjeAq -as0Q@ Y 0¥¢ uBddIOULI PUB UPIqNIOXod  O'T F £'09— F¢T6 I-ISM 31 ¥00°0 F 8%0°0
juapuadap XA
810C 6S ULLIDJSueL], -9s0d yve unadIanNg €6°'¢ F LS 1T— F 0ST LLIN T My
oprwrerdd juapuadop ce'y
v10C 8S pIoe druoineAq -ouwILL Y cL ‘8% ‘ve [9X€32000 8C'T + L6'ST— F 0C'98C SIIN VN TE€C-AIN-VAN
juapuadap 1$#°8S Tu
610C ¢S qewnznsedry, -9s0d yve upqnudy  L€°T F 19°C— F vl LLIN 3610 F 1T°E €ST-dIN-VAIN
juapuadap 1$#°8S T
610C ¢S qewnznsedry, -9s0d yve upiqnudy  L€°T F 19°T— + vl LLIN 3 g0 F €T 0c-1d
juapuadap 99 [ZAAR
910C LS undadroy -WILL Y TL pue 8% ‘¥e [oXel[oed G40 + 08'TT+ F ¥°89C LLIN VN aan1sod-zdaH
juapuadap 99 LADN
910C LS undadoroy -uwILL, Y TL pue 8% ‘4¢ [oXBl[oed SL°0 + 08'TT+ F ¥°89C LLIN VN 2A1E3aU-2IdH
juapuadop 6'F
910C 9¢ jeweInH -9s0d Yy 8¥ [oxeloed TIT1°0 + 00°'T— F L'IST LLIN T zrs
juapuadop $1°0T
810C &S 1dv 1ONN -9s0d yceL upiqnids pue Tz-IIURUY TO0F L6+ F V01T LLIN VN
(4 zz)
(_Tw 31 2600°0 F
suowtoy juapuadap v 6£0°0 (4 8%) ,_Tw
910z ¥S opndadedsp HIHT -WwILL Y ¢L pue 8y SNOIdS pue uruiqiis ‘(axe3adod  ¥'¢ F 9'8¢— F 9'¥8T LLA 381 59000 F £50°0
Jyuopuadop 8LV o Lt
910C €S pIoe druoineAq -9s0d yve [oxe3rped pue udwoures TTF T'6v+ F I¥V'EST LLIN 3ogTF 81
juapuadop 1¥°8S T
610C ¢S qewnznselry, -9s0d yve upqnudg  £€°T F 19°¢— F vl LLIN 3 ¢10 F 2o
Jyuopuadop
600C TS Apoqnue YI1Dd -9s0d yoct upfweded 1S F 8°¢T— 9T F ¥.¢C LIN _TW 31 11920°0
urwnqre juapuadop 8L
610C 0S WNIdS uewny -as0 Y 8¢ UIOINIOXOP PUB SPOIOUBU P[OD 90 F £/S'8— F §'S¥C LLN VN
(ddvy) uopuadop
£107  6v Isweide YNA THLS -9s0d yceL upiqnidg 0T+ Y444 LLIN VN
Jyuopuadop
¢10C 8¢ TIVISY -WLL Y7L pue 8y ‘vc [oxeled  T'C + S'9C— ¢'a8 LLIN VN
(sApszgaio  yuspuadap q 02T vee
0107 8% -dsy-A|pSeyiungnig -uO PUR 96 ‘TL ‘8HVT PV UNEISLIDIqUIOd PUR [aXeoed TT— T 08D SIN  ,_Tw 31 ¢50°0~
IedX ‘Joy puedi| dunadrer, diysuone[ar uonemp ainsodxy punodwod 2anoy (Aw) renualod (wu) azig Kesse oSy QuI[ 1[99 Jo adAT,
asuodsoyg AEY/ Ariqeia
1?0

'90UB217 paModun 0'g uong LNy suowiwoD aaireas) e sepun pasusol|siapiesiyl |[EEGEEL ()
"INV ¥T:22'6 9202/6/2 U0 papeo|umod TZ0Z Yo-e N €0 U0 paus!idnd 81y sse00y usdo

(‘ProD)

To19eL

RSC Adv, 2021, 11, 9433-9449 | 9437

© 2021 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1ra00074h

View Article Online

Review

RSC Advances

urunndde juapuadop Ta
0T0C €T wiad 3eaym -9s0d yve [oxeloRd €0F 6'€— €F0¢€€ LI 311200 F 190°0 6CIH
Juapuadap T
-wy, yzL 3 £20°0 F L£T0
juapuadap T
-asoq q ¥ 31 121°0 F £00°T 0D81-ADD
juapuadap T
-sw, i § A2 81 0200 F £80°0
urunndde juapuadop T
010C €I wIdd JBIYM -asoq q¥e [oxearoed €0F 6'¢— € Foee LLN 81 €€2°0 F 610°T T-00eD uofod
P\AE il
L100°0~) SL6TH
‘(. Tw 31 $20°0~)
juapuadap PSUET anyq 66CTH ‘(,_Tw SL6TH
L10T 2T apndad @oy -owiy, Y 8% pue ¥¢ [oXeNped  ¥0'v F S'6c+  F £Tc  uedhir, 3 110°0~) 6¥SV PUE 675V ‘66CTH
juopuadap
L10T VL ULLIQJSURLL, -asoq ys Vv urjpisodAq VN  9ST-96 iele) (1w 31 10°0 6vSsV aanisod WAL
Jyuopuadop
€10C €2 qewxmap -as0q y 8% ayejruured [oxerrjoed 05— 08 LIA VN 8D-ON[-67SY
juapuadap
910C L pIoe oruoInfeAH -asod Y 8% [9xe3200Q LTC— PST LLA L_Tw 31 16°0
juopuadop
10T TL pioe oruoIn[eAHq -as0q y 8% [oxe30a v'6T— 8¢ LLA L_Tw 3z oNT-6hSY
juapuadap
L10T  OL pIoe oruoIn[eAH -as0d y e 99 uLIo[YD L0°8S 002 SLIN VN
juopuadap ST
S10C 69 ULLIgJsuely, -9s0d U 8y upiqnIoxod 16°T + ¢E'TC— + 80T oIS T 31 0g£00°0
juapuadap
¥10C 89 apndad 1€1D4T -9s0d yve upiqnioxod  ¥'T F ¥'L€— OT F T0€ LLIN VN
apndad (T1avT0)
DDSALVADALIUSd juspuadap €0t
600T /9 -(z1‘1T)-0194D -asoq 40t umIqnioxoq TEFSh—  F 98T SLIA ,_Tw 31 o¢
surwreyoxd Jydrom juopuadap
¥10CT €9 IR[NOJ[OW-MOT -as0a q 8% upIqnIoXod LT+ 01C~ LLN L_Tw 31 p¢0 6VSY
sururejoxd jydrom juspuadap
v10C €9 Ie[no9[oW-MOT -9s0d y 8y upiqnioxod LT+ () ¥dad LLIN T 3 gLo L/6vSv 3ung
urwnqre juapuadop
ST0C 99 wnies uewWny -9sod 4 8y [oXxel[oRd €T— 0T F+ 0T¢C LLIN VN [EVAAN
Jyuopuadop
0T0C S9 unorg -asoq q¥e VNRIIS pajadier-d3-4 pue [axenped €0 F T'¢I— 0ST-00¢ SIN VN
Juapuadap ,_Tuw 3ri
600C V9 unorg -9s0d Y96 Iepmbrie) pue [axeloed SFo6I— TFO0VC SIIN  S$8000°0 F+ ¥€0°0 of
urwnqre juapuadop 8L
6T0C 0S WINIdS UeWNH -asod y 8¢ UIOIqNIOXOP pUE SPOIOUEU P[OD  9'0 F £S'8— F 8°SHC LLN VN
183X 399 puesi| Sunasiey, diysuonela1 uoneinp sinsodxy punodwod 2A1dY (Aw) [enusjod (wu) azig Aesse 2601 auy] [92 jo 3d4L,
asuodsoyg AEY/ Ariqeia
1?0
(‘PU0D) T ol19eL

'90UB217 paModun 0'g uong LNy suowiwoD aaireas) e sepun pasusol|siapiesiyl |[EEGEEL ()
"INV ¥T:22'6 9202/6/2 U0 papeo|umod TZ0Z Yo-e N €0 U0 paus!idnd 81y sse00y usdo

© 2021 The Author(s). Published by the Royal Society of Chemistry

9438 | RSC Adv, 2021, 11, 9433-9449


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1ra00074h

View Article Online
RSC Advances

Review

juapuadap T
600C ¥9 unorg -asoq q 96 Tepinbire) pue [axeoed SF6I— IFO0FC SLIN 31 9200°0 F ¥%0°0 STI-YAV/ION ueLIRAQ
Juapuadap T'6
810C S8 proe as0joe] -oUWILL Y 7L pue 8% ‘v¢ 0%V  T'TFL8C— TF16¥C 8-3IDD VN
uesolIYd paygrpowr judpuadop 9'0T
6107 ¥8  -pIoE JIUOIqOIdBT WL, Y7/ pue 8% ‘b¢ (f0%sy) opoln o1uas1y €0 F 6'8¢+ F ¢'L8T 80D VN TTLL-DININS
00TEANV Juapuadop 78’1
ST0T €8 ‘sIuoSeIue RIDXD -9s0d q 87 qrusjelos 61— F STSLT LLIN VN L-HH[
juapuadap T
10T 8 UIN3oJo[eISY -asod ye S[0ua110003 pue upIqnIdy T'¥I— F $'88¢ LLA L Tw 3 g~
juapuadap
910C ST ue[nmnd -9s0d q 8y 7V unejsejaIquio)d T 81— T'8TC LILIN T e
juapuadap
910C ST ue[nmnd -9s0d Uy 87 [oxelT[oed L9T— 7°60¢ LLIN T 3oy
juapuadap €0
910C 18 unorg -9s0d yve upiqnioxod TI¥°0 F L1'9— F €'TIT LLIN T 3 geeg
urnge Jjuapuadap T
£10C 08 wnies UewWnH -as0q yzL [oxe300a 96— ¥02 LLA 3170 T ¥
juapuadap
-wly, y 8% _Tw 8 ge'0
juapuadap e
910 6L spndad 1€T04T -as0d y e upiqnirdg VN  F 8¢l LLN L_Tw 3 820 zodoH I9ATT
juapuadop
8107 8L aje[0d -asoq yze ® apiqioydoayd VN 00T~ LLN VN STNIIN
juapuadop 659
910C 6¢ dNHV -oso y 8y (upayioydweohxoipAy-01-1Aqre-2) 8ENS 0T F 0°ST—  F 9°90% LLA r_Tw 31 60°0 LTDOH oLsen
6/.1STAqQV 20TcdD
‘qed 9ArvaD Jusapuadap pue +9A¥¥dd
8T10C ¥1 Uewny-npue ueny -WILL [ 8% pue ¥¢ [PxeipPed ¥'0 + 0°0C— ST F €6C LIN VN -TLNDIN ‘PLNDIN [oeuwols
(ss9 DIAV) 3uapuadap
1102 /L qewnuwnieuo) -asod yzcL c_ouﬁoumamo CL'0 + 20+ ¢TI F 0ST LI VN 91TLOH
aeydins juopuadap 6'C
6107 9L uploIpUOYD -as0Q y 8% (LdOH) uayioydwes AxoIpAH-0T  ¥'C F TET— F €701 LI L_Tw 31 z9'¢
Juapuadap y1°01
810C SS 1dv 1ONIN -950d ycL uiqniids pue [z-munuy 0 F L6+ FVOTIC LLIN VN 97D
urwngre juapuadop 8L
610C 0S WNIds UewnH -asod Y 8c UIQNIOXOP PUE SPOIOUBU P[0D  9°0 F LS'8— F 8'S¥C LIN VN 971D
(mvoda)
9[Nda[OW UOISAYpE
119 [erpyids
isurede sidy (VN) uapuadap
v10c <L pioe oloponuoqry -9s0d ysyr+1¢ urnoImyp - v F €9¢— 6T F 06 LLIN VN
urunni3dde juapuadop T
010C €T w18 1BaYM -UWILL ycL [oxe3loed €0F6'€— €F0¢€¢e LLN  31800°0 F 820°0
183X 399 puesi| Sunasiey, diysuonela1 uoneinp sinsodxy punodwod 2A1dY (Aw) [enusjod (wu) azig Aesse 2601 auy] [92 jo 3d4L,
asuodsoyg AEY/ Ariqeia
1120

'90UB217 paModun 0'g uong LNy suowiwoD aaireas) e sepun pasusol|siapiesiyl |[EEGEEL ()
"INV ¥T:22'6 9202/6/2 U0 papeo|umod TZ0Z Yo-e N €0 U0 paus!idnd 81y sse00y usdo

(‘ProD)

To19eL

RSC Adv, 2021, 11, 9433-9449 | 9439

© 2021 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1ra00074h

View Article Online

Review

RSC Advances

CI0C 68 pidry yeL VNAIS TTAI ST F 605+ VN
Jjuopuadop T
L10C €6 ULLIgJsuel], -9s0d yceL upiqnioxod  ¥'T + S°0€— T F €CT SIIN 3 £80°0 F 8%°0 €0d 21eIsoid
00TEANV  3uapuadap 8T
ST0T €8 3Istuoderue RIDXD -9s0d Uy 8y qrusjelos 61— F ST'GLT LLIN VN 1-VOH
Jyuopuadop
G10C €€ vd -9s0d yotr upiqnioxod V'eF+ ¢'8— € F8I1 LLIN T 3z
juapuadop
L10C 6T uesojyo-a3e[oq -9s0d U 8y SNOIdS pue [9xe1900d 6+ 097-00C qg4s T 31 £500°0
Jjuopuadop
910C 19 vd -9sod q 8y upiqnioxod  S'T F 9°6T— ¢TI F 861 LLIN VN a1
(¥4 suopo (d3dv)
Apoquue (d3-q)
ur01dodA3-g-nue  juspuadop
¥I0C ©¢6 [euopoOuUOW 9SNON -9s0d U 8y urnanp TLE— 7991 LLIN T 31 1500 TA-IX
juopuadap ST
TI0T 16 u1o1dod[S-d-nuy -as0a Y 8% urwnom) - T'9 F €0b—  F FCET LLN (_Tw 31 66'6< TA-DI PUe I-£-aX)
juopuadop 6'F
910C 9¢ jewreIn[H -9s0d U 8y [oxeled TT1°0 + 00°'T— F £L'TIST LLIN T 31 19'0
(dsy-A1o juapuadap €e'T Tw
8107 -81y) spndad any -duILL q 8% LSTFVST— F L6'V6T 310 F 6L°0
(dsv-A1o uapuadap ce'1 ;T
810¢ -31v) opndad @y -soq y ¥e LS'TF ¥'ST— F L6761 8910 F 991
Juapuadap 61°0 Tu
8T0¢ aye[od -wiy, q 8 65°0 F €6T— F 16061 31 90°0 F 080
Juapuadap 6T°0 M
810C 06 2e[oq -9s0d yve upIqnIoxod 6S°0 + €'6T— F 16061 LLIN 3 10 F 981 ®ToH
juapuadap 19%°% ®0[D eToH Jurssaidxa
C10C 68 prdr1 -9s0d ycaL VNUYIS on[-nuy ST+ 606+ F £0T -IALLI[PD T 31 590 -9Sel9IonT [ed1AID)
juapuadap
L10C 8T vd -950d yve [oxel[oed VN LV6T LLN [ _TW 31 $52000°0 SDOSD0
juopuadap
¥10C 88 TIIH-NUY -asoq y¥e upIgnIoxop pue usaid suruelopur 0 F 0'T— £ F 01¢ IS VN
(4 8%)
yuapuadap 9" €T LTw 3 gH T (Y
610C /8 qewnznselry, -uwILL Y 87 pue v¢ upe[ds1d ¥£T F 6561+ F 19°S9T 80D  ¥7) T 3 1677
(4 zz)
L_Tw 31 100°0 F
suowioy juspuadop ¥ £20°0 ‘(4 8¥) ,_Tw
910z %S opndadedssp HIHT -WwILL Y ¢L pue 8y SNOIdS pue uruiqiis ‘(axe3dod  ¥'¢ F 9'8¢— F 9'¥8T LI 3172000 F €£0°0
(PO DDN)  uspuadap 8'98
€10T 98 opndad Lvi -as0q ye [PxeyNped  6'S F S€—  F 8IVE LIN 7w 31 2900
juspuadop S'e
T10C 7¢ Apoquue zydH -9s0d qve unliqnrioxod 8'CF €T— FO€EIC qaS VN €-AOJS
IedX ‘Joy puedi| dunadrer, diysuone[ar uonemp ainsodxy punodwod 2anoy (Aw) renualod (wu) azig Kesse oSy QuI[ 1[99 Jo adAT,
asuodsoyg AEY/ Ariqeia
11?0

'90UB217 paModun 0'g uong LNy suowiwoD aaireas) e sepun pasusol|siapiesiyl |[EEGEEL ()
"INV ¥T:22'6 9202/6/2 U0 papeo|umod TZ0Z Yo-e N €0 U0 paus!idnd 81y sse00y usdo

(‘ProD)

To19eL

© 2021 The Author(s). Published by the Royal Society of Chemistry

9440 | RSC Adv, 2021, 1, 9433-9449


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1ra00074h

View Article Online
RSC Advances

Review

110T 00T apndad M3aoud qve PV UNBISRIDIqUIOD pue [oXeNped €T F #'I11— VN 0T491d
Jjuopuadop
¥10C 66 opluresiuy -9s0d yve upiweder pue unedsp T+ 91— 0T F 00T SIIN P L8] 31 60°0 MN[-GLEV up[s
qg4as
urRysueny  juapuadop pue anjq _Tw 3l
v10C 86 -0[oy uewunHy -9s0d Uy 87 qruaozalrog T+ 91— 0T + 00C 03sald  6T000°0 + 8200°0 €10-¢S
qg4s
urRysuen;  juapuadap pue an[q ANdH
¥10C 86 -ojoy uewinyH -9s0d Uy 8y qruuoza1ogq T+ 91— 0T + 00T 0318ald VN -LYdLY [eWION
Jyuopuadop an[q
€10T L6 v TIPISY -as0d 4 0ctT suIqejpwWLs pue UIWNOIND VN 0ST JIewre[y VN 1-3d
juopuadop anjq
€10C L6 1dv TIPISY -9s0d g oct SUIqeIPWAE puR UIWNIIMND VN 0ST  Tewelvy VN
juapuadop
-own angq
910C 96 3dv TTIFISY  pue -asoq Y 96 ‘cL ‘8F SNOIdS pue urunosinp VN 0ST  Iewelvy VN ¢-eDEd VIN
juapuadap anjq
€10C L6 v TTPISY -9s0d Y oct SUIqEIOWSS PUB UIWNOIND VN 0ST  Iewelvy VN
juapuadap
-ouIn angq
910C 96 1dy TIFISY  pue -asod Y 96 ‘T, ‘8 SNOIdS PUE urunainy VN 0ST  Tewe[y VN I-ONVd ~ seamued
juopuadop c'e
T10C <T¢ Apoqnue yIH -9s0d Y ve unIqnioxoq 8¢ F €T— F0€TC qd4s VN SXJ/VS-SAN QULIaN
juapuadap
ST0T  S6 vd -as0Qq 7 02T sprwein[esrg L'TT+ 6'90C IS (T 31 08>
Juapuadap 19%'% ®0[D
C10C 68 prdr1 -9soq yreL VNAIS TTADI ST F 607G+ F £0T -IALLI[PD VN svina
Juapuadap 19%'% ®0[D
C10C 68 pidry -9s0d ycaL VNAYIS TTADI ST+ 606+ F £0T -IALLI[PD VN deDN'T
juapuadap
Apoqniue uadnue -own 1'T€
CI0C V6  [[90 Wo3ls 23eIsold pue -9sod Y 7L pue 8% ‘4¢ SNOIdS pPue [9xe1900d VN F 7481 8-IDD VN WEDd
(4 zz) ;oo 3n
TTT00°0 F 22€00°0
‘(y 8v) _Tw il
sarpoqnue uadnue juapuadop 60T00°0 F 6£500°0
[[90 wa)s ayessoxd -oumn 9'8 ‘(4 ¥¢) T 3l
T10C T¢ ureyo-3[3uls  pue -asod Y TL pue 8% ‘4¢ SNOIdS pue [9xe1900d VN F 6971 LL CTT00°0 F €0¥T0°0
Jyuopuadop
L10C 6T uesojyo-a3e[oq -9s0d y 8y SNOIdS pue [9xe1900d 6+ 097-00C qg4as T 31 %00
Juapuadap 18 LT
S10C 09 pIoe oruoIn[edH -as0a 4 ove UedaIOUMI pue uPIqnIoxod 0T F £09— F¢'I6  T-ISM 31 910°0 F £60°0
Juapuadap T97°% ®@0[D
-9s0d F £0T -IALL[[PD
IedX ‘Joy puedi| dunadrer, diysuone[ar uonemp ainsodxy punodwod 2anoy (Aw) renualod (wu) azig Kesse oSy QuI[ 1[99 Jo adAT,
asuodsoyg AEY/ Ariqeia
1?0

'90UB217 paModun 0'g uong LNy suowiwoD aaireas) e sepun pasusol|siapiesiyl |[EEGEEL ()
"INV ¥T:22'6 9202/6/2 U0 papeo|umod TZ0Z Yo-e N €0 U0 paus!idnd 81y sse00y usdo

(‘ProD)

To19eL

RSC Adv, 2021, 11, 9433-9449 | 9441

© 2021 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1ra00074h

View Article Online

Review

RSC Advances

juapuadap
ST0T €€ vd -asoq y ot upiqnioxod  ¥'C F S'8— € F 8TIT LLIN VN £-SOD Koupny
(qewxnya0) Juapuadop Jyoau
L10T 6T Apoquue YiOd-DUY -950Q 'R upiqnioxod S0 F 9VI— (4741 LLIN VN Ve DOSINN pue peoH
(suauroqiouexo juapuadap %
€107 T0T  wnruiprueng)4jod -asoq yeL (ToTaxd ‘0£99¢LDSN) yeIsourad VN 2€ FIST  T-LSM ,_Tw 31 605°0 -Ld PUe £-DN-NN Iappeld
(((zuddy)?(uoyd)ny)
juapuadop I9Z1)ISUSSOIpeI pUe 10J1qIyul
8T10C LT ADdY -9s0d yve uonedr[dal yNd paseq-wniuayinyg L'YV— €eT LLIN VN 133c (0]
(((zyddy)?(uayd)nzy)
juapuadap 19ZNISUISOIpeI puk 1031qIYul
810C /T I0dY -asoQq q e uomneo1dar YN paseq-uniuayinyg L'v— eeT LI VN 1240 Teadeydosa
juapuadap 7% aniq
110T 00T apndad yjanuo -asoq Y ve PV UNBISBIPIqUIOD pue [axelPed €7 F ¥’ 11— F I'vbe  uedArg VN
00TEANY Juapuadap 8T
ST0T €8 ‘s1uoSeIue RIDXD -9s0d Uy 87 qiusjelos 61— F STSLT LLIN VN
juapuadop
910C ST ue[nnd -9s0d Uy 8v 7V unejselaIquiod T 81— T'8TC LILIN T 31 81100 [el[oyiopUo
juspuadop uroA
910C ST ue[nynd -950 y 87 [oXejI[oed L9T— 7607 LILIN T 31 96£0°0 SOIANH [eoriquin
juapuadap 7% aniq
-9sod FI¥be  uedAir
1e3X ‘Joy puedi Sunadie], diysuonea1 uoneinp arnsodxy punodwod aAnoy (Aw) [enuajod (wru) ozIs Aesse (o) auI[ [[9d jo adAlL,
asuodsoyq ©7 Ariqeia
[IE)

'90UB217 paModun 0'g uong LNy suowiwoD aaireas) e sepun pasusol|siapiesiyl |[EEGEEL ()
"INV ¥T:22'6 9202/6/2 U0 papeo|umod TZ0Z Yo-e N €0 U0 paus!idnd 81y sse00y usdo

(‘P3u0D)

T9o19eL

© 2021 The Author(s). Published by the Royal Society of Chemistry

9442 | RSC Adv, 2021, 1, 9433-9449


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1ra00074h

Open Access Article. Published on 03 March 2021. Downloaded on 2/9/2026 9:27:14 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Review

treatment. PLGA nanoparticles were formed by using a single
emulsion evaporation method. The active targeting ligand
single-chain prostate stem cell antigen antibodies (ScAbpsca)
were conjugated to PLGA via a poly(ethylene glycol) linker.
Overexpression of prostate stem cell antigen (PSCA), a prostate-
specific glycosyl phosphatidylinositol-anchored glycoprotein
found in prostate cancer PC3 cells, was the binding site for the
scAbpsca-conjugated nanoparticles.”® Targeted PLGA nano-
particles demonstrated improved cellular uptake and cytotox-
icity in PC3 prostate cancer cells exhibited an IC5, of 0.01403 pg
mL " (24 h), 0.00579 ug mL " (48 h) and 0.00322 pg mL " (72
h).>* Herein, the scAbpgca-conjugated nanoparticles showed
a time-dependent cytotoxicity against prostate cancer PC3 cells.

2.1.11 Uterine. One study reported a comparison of the
cytotoxicity and cellular uptake activity of targeted and non-
targeted PLGA nanoparticles for delivering doxorubicin
against multi-drug resistance in uterine (MES-SA/Dx5) cancer
cells. HER2 antibody-conjugated nanoparticles and non-
targeted nanoparticles showed higher cellular uptake of doxo-
rubicin than free doxorubicin in MES-SA/Dx5 cancer cells. No
significant difference was found regarding cytotoxicity in MES-
SA/Dx5 cells for targeted and non-targeted PLGA nanoparticles.
This was due to no HER2 receptor overexpression being
observed in MES-SA/Dx5 cells. Higher cytotoxicity was observed
for both targeted and non-targeted PLGA nanoparticles
compared to free doxorubicin, showing suppression of the
overexpression of P-glycoprotein in Dx5 cells. HER2 antibody-
conjugated nanoparticles were able to overcome the multi-
drug resistance (MDR) effect in Dx5 cells since cytotoxicity
and cellular uptake results at 10 uM extracellular doxorubicin
concentration were comparable.*

2.1.12 Pancreas. Bortezomib, a proteasome inhibitor, was
loaded into PLGA nanoparticles with poloxamer 407 as an
emulsifier against S2-013 pancreatic cancer cells. Surface-
modified of the PLGA nanoparticles with transferrin was done
to achieve pancreatic cancer cell targeting. Cellular uptake
studies have shown high uptake of the targeted PLGA nano-
particles by cancer cells for a sustained release of bortezomib
from targeted PLGA nanoparticles. Targeted PLGA nano-
particles showed cytotoxic effects against pancreatic cancer cells
with a GIs, of 0.0028 pg mL™ "> Low toxicity to normal
pancreatic cells demonstrated that the targeted PLGA nano-
particles enhanced the delivery of bortezomib to $2-013
pancreatic cancer cells.

2.1.13 Skin. PLGA nanoparticles containing dio-
leoylphosphatidic acid (DOPA) coated cisplatin and rapamycin
induced potent cytotoxic effects on A375-luc human melanoma
cells with an ICs, of 0.09 pg mL '.>* This was due to the
synergistic effects of rapamycin and cisplatin towards A375-luc
human melanoma cells. Rapamycin acts as a mammalian target
of rapamycin inhibitors and a sensitizer. DOPA was coated onto
cisplatin to achieve compatibility between PLGA and the dual
drugs cisplatin and rapamycin. A high anti-proliferative effect
was observed in PLGA nanoparticles conjugated with targeting
ligand anisamide, which has a high affinity towards sigma
receptor membrane-bound proteins that are overexpressed in
A375-luc human melanoma cells.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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2.1.14 Umbilical vein endothelial. One study reported in
vitro synergistic effects of paclitaxel or combretastatin A4-
loaded charge reversible pullulan-conjugated PLGA nano-
particles formulated with poly(B-amino ester) for the treatment
of human umbilical vein endothelial cells (HUVECs). This work
revealed ICsos of less than 0.0396 and 0.0118 g mL~! for the
respective paclitaxel and combretastatin A4-loaded nano-
particles.” Pullulan-conjugated PLGA nanoparticles had high
cytotoxicity activity in HUVECs due to the polysaccharide
backbone of pullulan having a high affinity towards the asia-
loglycoprotein receptor (ASGPR) in HUVECs.*® The pH sensi-
tivity of the PLGA nanoparticles was attributed to pullulan's
cleavage of B-carboxylic amide bond towards changes in pH in
the microenvironment of cells.

2.1.15 Esophageal. Surface-modified PLGA nanoparticles
with DTPA-hEGF allowed PLGA nanoparticles to attain radio-
labeling and targeting towards the EGF receptor (EGFR). DTPA
represents diethylenetriaminepentaacetic acid, while hEGF
refers to human epidermal growth factor. Surface-modified
PLGA nanoparticles were radiolabeled with "'In to achieve
high affinity to EGFR-overexpressing esophageal cancer cells.
The 'In radiolabeled PLGA nanoparticles induced radio-
toxicity via cellular DNA damage. Rul or Ru(phen),(tpphz)**
(phen represents 1,10-phenanthroline, while tpphz represents
tetrapyridophenazine) is a ruthenium-based DNA replication
inhibitor and radiosensitizer. Ru1 was loaded into '*'In radio-
labeled PLGA nanoparticles for DNA damage enhancement.
hEGF-PLGA-Rul nanoparticles showed remarkable cytotoxicity
in EGFR-overexpressing OE21 cells due to the active targeting of
the hEGF ligand. However, compared to OE21 cells, lower
cytotoxicity was observed in EGFR-normal OE33 cells, with
>70% proliferation.”” No ICs, data were reported for the in vitro
cytotoxicity results of hEGF-PLGA-Rul nanoparticles.

2.1.16 Bladder. PLGA nanoparticles were surface-modified
with a novel cell-penetrating polymer - poly(guanidinium oxa-
norbornene) (PGON) - to improve tissue penetration tenfold in
mouse bladder and human ureter. PGON is a synthetic polymer
that mimics cell-penetrating peptides and possesses low toxicity
to normal/cancer cells. PGON PLGA nanoparticles showed
a significant enhancement in intracellular uptake of nano-
particles compared to unmodified nanoparticles. Belinostat,
a histone deacetylase (HDAC) inhibitor, was loaded into the
PGON PLGA nanoparticles to assess their biological activity. In
comparison to uncapsulated belinostat, belinostat-loaded
nanoparticles exhibited a significantly low ICs, (0.509 pg
mL~") in cultured bladder cancer cells (UM-UC-3 and RT-4) and
sustained hyperacetylation.*®

2.1.17 Head and neck. A PLGA/polydopamine core/shell
nanoparticle system was designed for light induced cancer
thermochemotherapy. Overexpression of the epidermal growth
factor receptor (EGFR) drove the high binding of anti-EGFR
antibody-conjugated nanoparticles towards head and neck
cancer cells. This enhanced cellular uptake of nanoparticles by
head and neck cancer cells and induced the conversion of near-
infrared light to heat, triggering drug release from the nano-
particles and cancer cell ablation due to the increased
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temperature. The study revealed that PLGA/polydopamine
nanoparticles were effective in inhibiting cancer cells at 10
uM doxorubicin concentration when coupled with near-infrared
(NIR) irradiation. A doxorubicin concentration of 5 uM or
higher was required to achieve the NIR irradiation effect on
PLGA/polydopamine nanoparticles in order to produce heat
needed for cancer cell ablation and trigger drug release.*

2.1.18 Kidney. Folate-targeted and reduction-triggered
PLGA nanoparticles were prepared for targeted delivery of
doxorubicin to the COS-7 kidney fibroblast-like cell line. Folate-
targeted PLGA nanoparticles were prepared from a PLGA core
containing a monolayer soybean lecithin and a reducible outer
layer monomethoxy-poly(ethylene glycol)-S-S-hexadecyl (mPEG-
S-S-Cy6). Disulfide bonds (-S-S-) are highly degradable in the
reducing environment (high concentration of glutathione) of
cancer cells and thus release drugs at the targeted site.’*** FA
was conjugated to the mPEG-S-S-C;¢ outer layer to achieve
tumor targeting. No significant difference was observed in the
cytotoxicity in FR-negative COS-7 cells for targeted and non-
targeted PLGA nanoparticles. This shows that the cellular
uptake of folate-targeted PLGA nanoparticles involved a FR-
mediated endocytosis.*® The study showed a dose-dependent
effect where the cytotoxic effect of the nanoparticles was
directly proportional to the concentration of doxorubicin, which
proves the non-cytotoxicity of the nanoparticles.

2.2 Size and cytotoxicity

The cytotoxicity results show that PLGA nanoparticles induced
an anti-proliferative effect as early as 3 h, taking 240 h at most.
The particle size of PLGA nanoparticles ranged from 58 to
407 nm, with an average size of 189 nm. It was evident that
particles smaller than 100 nm and larger than 300 nm were less
commonly prepared, as a certain size is required to carry the
load of the drugs and nor bigger size to promote the EPR effect
in cancer cells. The ICs, of cytotoxicity of PLGA nanoparticles
was plotted against particle size of the PLGA nanoparticles to
assess the correlation between particle size and cytotoxicity
(Fig. 3). It can be seen that as the particle size increased, the ICs,
of cytotoxicity also increased, which indicates that smaller
nanoparticles induced lower ICs, values and higher cytotoxicity
potency. Although the application of corona materials such as
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Fig. 3 The correlation between particle size and cytotoxicity.
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hyaluronic acid increase the particle size, the efficacy of the
encapsulated drugs to the desired site was enhanced. This is
due to the cancer targeting properties provided by the binding
of hyaluronic acid to the PLGA nanoparticles.****7%72 Selective
targeting enhances the cellular uptake of drugs in cancer cells
and reduces the cytotoxic effect of drugs in normal cells. This
further justifies that the ideal size and ability of PLGA nano-
particles to selectively deliver drugs to desired site are crucial in
developing efficient and safe drug delivery systems. The ICs,
values were mostly lower than 10 pg mL™", but reached up to 80
pg mL~' for FA-conjugated chitosan-functionalized PLGA
nanoparticles (CPN) with particle size of 207 nm. This was due
to the extremely low entrapment efficiency of bicalutamide in
CPN (only about 1%).%

2.3 Zeta potential and cytotoxicity

A plot of the zeta potential of the PLGA nanoparticles against
their cytotoxicity ICs, values can be seen in Fig. 4. It is notice-
able that PLGA nanoparticles were predominantly in negative
charged because of its nature negatively charge of the carboxyl
group end chain in PLGA. PLGA nanoparticles ranging from
—13.2 to —19.3 mV showed the lowest ICs, value of 0.00031 pg
mL ' at —18.9 mV, with an average ICs, value of 1.15 ug mL ™" (n
= 20) (ESI datat). Surface charge of the particle is defined by the
absolute value of zeta potential. Zeta potential is a critical factor
in designing a drug delivery system because it defines the
stability of the nanoparticles. Interestingly, a former study re-
ported that the cytotoxicity potency of PLGA nanoparticles is
directly proportional to the absolute zeta potential.*** This is in
agreement with a previous report that an absolute value of zeta
potential 20 mV or much lower results in nanoparticles with
adequate stability.’”® The stability of nanoparticles is directly
proportional to the absolute value of zeta potential. Since
stronger repulsive forces were formed between the nano-
particles with high absolute values of zeta potential, stable
nanoparticles with uniform size distributions were produced.***
PLGA is a hydrophobic polymer and can be stabilized by the
hydrophilic corona materials such as chitosan.'>*** This is
because of the absolute zeta potential of PLGA nanoparticles is
increasing with the concentration of chitosan and indirectly
resulted in increased stability of the PLGA nanoparticles. High
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Fig. 4 The correlation between zeta potential and cytotoxicity.
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stability in nanoparticles ensures that there is no early drug
release along the route to the target site, which translates to
a higher cytotoxic effect on the targeted site in cancer cells.

3. Discussion

This systematic review provides an overview of the application
of different targeting ligands and active compounds/drugs used
in PLGA nanoparticles to achieve active targeting for drug
delivery to a particular cell line. This can give insight to
researchers in regard to the designing of a potential drug
delivery nanoparticle system for different types of cell lines. The
potential of treating multiple cell lines using a single formula-
tion makes the designation of a drug delivery system become
more flexible in terms of its usage. For instance, a drug delivery
nanoparticle system involving the encapsulation of paclitaxel
and conjugation of transferrin as the targeting ligand can be
used to treat several types of cancer cells, including breast and
brain cancer cells. This can be explained by the fact that FR is
a well-known biomarker that has a high affinity for FA in cancer
cells due to its overexpression on several types of cancer cell
lines, while paclitaxel has long been recognized as a mitotic
inhibitor for treating various types of cancer cells. Both the drug
and targeting ligand are suitable for treating breast and cervical
cancers within a single formulation; this provides cost efficiency
and compatibility to patients. The systematic review gives
a summary of the ICs, of cytotoxicity of different types of cancer
cells treated with various formulated PLGA nanoparticles, in
which the overview of the cytotoxicity of PLGA nanoparticles is
better understood. For instance, the exposure time and ICs,
concentration for selected types of cells could serve as refer-
ences for other researchers to use in planning and identifying
their research interests and protocols, which would make these
processes easier and save time.

The cellular uptake of nanoparticles with the presence of
targeting ligands provides a specific binding to the target or
cancer site without causing any or less harms to the healthy
cells. This phenomenon is attracting more interest from
researchers due to its safeness and less toxicity being imposed
as a result of its specific controlled release of anti-cancer drugs.
These statements are in line with the findings of previous
studies that reported that the surface conjugation of a targeting
ligand in nanoparticles more greatly enhances the cellular
uptake of drugs and cytotoxicity potency compared to non-
conjugated nanoparticles.”**” For instance, the cell viability
for RGD antibody-conjugated nanoparticles (PTX-PLGA-CSNP-
RGD, 35.2%) was significantly lower (p < 0.01) than for non-
conjugated nanoparticles (PTX-PLGA-CSNP, 45.7%)."> On top
of this, 24 h treatment of A549 cells with FluTax-PLGA-CSNP-
RGD, on the basis of the fluorescence intensity of fluorescent
paclitaxel (FluTax), revealed higher uptake of 28 pg/1 x 10>
cells, compared to PTX-PLGA-CSNP by 28 pg/1 x 10’ cells. The
reduced cell viability and higher fluorescence intensity of Flu-
Tax in RGD antibody-conjugated nanoparticles demonstrates
the selective absorption of paclitaxel through integrin receptor-
mediated endocytosis compared to non-targeted delivery at the
same dose.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Identifying the zeta potential and particle size of PLGA
nanoparticles is crucial because an ideal nanoparticle size can
provide an EPR effect for cancer cells' uptake of drugs, while
proper zeta potential can provide nanoparticles with high
stability. From this systematic review, it is evident that nano-
particles <300 nm in size and ~20 mV in absolute zeta potential
are favorable. This is because a decent size (~200 nm) is
required for nanoparticles to load the drugs, while high zeta
potential provides a uniform and narrow size distribution, as
well as high stability.'”® Since nanoparticles are highly stable,
the leakage of drugs is negligible during transportation along
the target site, which means greater cytotoxicity potency and
cellular uptake of nanoparticles.

Challenges are always present in designing a drug delivery
system. Although active targeting of nanoparticles reduces
toxicity to normal cells, the conjugation of targeting ligands to
the nanoparticles might increase the particle size. This is time-
consuming, as optimization of the preparation step in making
nanoparticles of an ideal size is required. In addition, targeting
ligand conjugation might also reduce the release of drugs from
the nanoparticles due to the probability that the ligand may
serve as an external barrier when releasing the drug from the
nanoparticles. The process of conjugating targeting ligands
onto the surface of nanoparticles often involves a two-step
reaction. This two-step reaction may cause leakage or early
release of drugs from the nanoparticles due to the involvement
of a reaction incubation period as well as sonication to mini-
mize the agglomeration of nanoparticles.

The studies analyzed in this systematic review involved
different factors, including length of exposure time, active
compounds and targeting ligands used in assessing cytotoxicity
assays of PLGA nanoparticles in a single cell line. Comparisons
among the available studies for a particular cell line are difficult
to make due to the variations in the factors involved. Hence,
there is still a lack of ideally designed PLGA nanoparticle drug
delivery systems. Moreover, some in vitro studies lack proper
descriptions for data, such as IC5, data for cytotoxicity assess-
ment. Additionally, different in vitro cytotoxicity assays have
been used (e.g. MTT, MTS, SRB), which may have resulted in
variations in cytotoxicity data.'®® Hence, it is difficult to obtain
completely accurate results from comparison studies of cyto-
toxicity for PLGA nanoparticles.

Currently, only 19 drug formulations based on PLGA have
been approved by the FDA.'” This negligible number displays
that the development of PLGA formulations is very challenging.
Thus far, none of the 19 FDA approved PLGA formulations are
based on PLGA nanoparticles as they are mainly composed of
PLGA microparticles, solid implant and in situ gel. This lacking
availability of PLGA nanoformulations further indicates that
more evaluations on its efficacy and safety requirements are
needed before getting approved for clinical use. Poor drug
entrapment efficiency and drug release kinetics from PLGA
nanoformulations are the main challenges faced in order to
deliver drugs effectively to the target site. For instances, initial
burst drug release is the typical issue of low efficacy in designing
PLGA nanoformulations. Although PLGA nanoformulations
were reported to be safe and selective targeting to the cancer
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cells in in vitro and animal studies, they are insufficient to prove
that the same outcomes will be observed in human trials. Safety
concerns of a drug delivery system are the top priority when it
comes to establish their application.

Nevertheless, challenges still arise along with opportuni-
ties. Despite the great challenges, PLGA nanoparticles are still
of interest due to its biocompatibility and particularly, an FDA
approved material for drug delivery. Over the past few decades,
a significant advancement in the development of PLGA
nanoparticles for the application of drug delivery has led to the
revolution of pharmaceutical industry. The uniqueness of
PLGA nanoformulations, specifically their sustained and
controlled drug release as well as cancer targeting properties
provide the assurance of great potentials as promising nano-
carriers. There are still great potentials in PLGA nano-
formulations by modifying their physicochemical properties
with better understanding of the physiology of the cancer cells
and pharmacokinetics of the drug delivery system. In terms of
biocompatibility and toxicity in biological systems, the physi-
cochemical properties of PLGA nanoformulations play an
important role.'*® Particle size, surface charge and selective
targeting properties of PLGA nanoformulations are critical
benchmarks to consider when it comes to efficacy. The
potential of these state-of-the-art innovations and strategies to
develop PLGA nanoformulations are contributing to the
advancement of cancer treatment. Nevertheless, intensive
evaluations for pharmacokinetics, biodistribution and toxicity
are essential before progressing PLGA nanoformulations into
clinical studies.

4. Conclusions

In conclusion, PLGA nanoparticles with active targeting
properties have higher cytotoxicity and cellular uptake of
drugs compared to non-targeting nanoparticles, regardless of
the types of cells studied. The size and zeta potential of PLGA
nanoparticles play a crucial role in defining the resulting
cytotoxicity. Therefore, in future studies, greater focus should
be placed on assessing the pharmacodynamic, pharmacoki-
netic and toxicokinetic profiles of the drug delivery system
using cancer-targeting PLGA nanoparticles. In addition,
although the listed PLGA nanoparticles exhibited the potency
of pharmacological actions based on the in vitro data, there
was a lack of in vivo data for many of them. This raises
concerns regarding efficacy and safety of usage in the appli-
cation of PLGA nanoparticles in human trials. Therefore, more
relevant in vivo data on the efficacy and toxicity of PLGA
nanoparticles are desired before human clinical trials should
be commenced, as a pharmaceutical formulation can only be
considered successful when both safety of usage and efficacy
are guaranteed.

Author contributions

Hock Ing Chiu: methodology, validation, formal analysis,
investigation, writing - original draft, writing - review & editing,
visualization, project administration. Nozlena Abdul Samad:

9446 | RSC Adv, 2021, 11, 9433-9449

View Article Online

Review

data curation, formal analysis, investigation Lizhen Fang: data
curation, formal analysis, investigation. Vuanghao Lim:
conceptualization, methodology, validation, formal analysis,
writing - review & editing, supervision, project administration,
funding acquisition.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This research was funded by the Fundamental Research Grant
Scheme (FRGS, 203.CIPPT.6711684) from the Ministry of
Higher Education, Malaysia. Hock Ing Chiu would like to
express his appreciation to USM for providing him the USM
Fellowship Scheme.

References

1 A. D. Ayub, H. L. Chiu, S. N. A. Mat Yusuf, E. Abd Kadir,
S. H. Ngalim and V. Lim, Artif Cells, Nanomed.,
Biotechnol., 2019, 47, 353-369.

2 H. 1 Chiu, A. D. Ayub, S. N. A. Mat Yusuf, N. Yahaya, E. Abd
Kadir and V. Lim, Pharmaceutics, 2020, 12, 38.

3 A. Schoubben, M. Ricci and S. Giovagnoli, J. Pharm. Invest.,
2019, 49, 381-404.

4 S. Rezvantalab and M. Keshavarz Moraveji, RSC Adv., 2019,
9, 2055-2072.

5 K. T. Kim, J. Y. Lee, D. D. Kim, I. S. Yoon and H. ]J. Cho,
Pharmaceutics, 2019, 11, 280.

6 J. Yoo, C. Park, G. Yi, D. Lee and H. Koo, Cancers, 2019, 11,
640.

7 D. Moher, L. Shamseer, M. Clarke, D. Ghersi, A. Liberati,
M. Petticrew, P. Shekelle, L. A. Stewart and PRISMA-P
Group, Syst. Rev., 2015, 4, 1-9.

8 N. A. Hanan, H. I. Chiu, M. R. Ramachandran, W. H. Tung,
N. N. Mohamad Zain, N. Yahaya and V. Lim, Int. J. Mol. Sci.,
2018, 19, 1725.

9 V. Lim, E. Schneider, H. Wu and I. H. Pang, Nutrients, 2018,
10, 1580.

10 Y. Cui, Q. Xu, P. K. H. Chow, D. Wang and C. H. Wang,
Biomaterials, 2013, 34, 8511-8520.

11 Y. Zheng, B. Yu, W. Weecharangsan, L. Piao, M. Darby,
Y. Mao, R. Koynova, X. Yang, H. Li, S. Xu, L. J. Lee,
Y. Sugimoto, R. W. Brueggemeier and R. ]J. Lee, Int. J.
Pharm., 2010, 390, 234-241.

12 A. Babu, N. Amreddy, R. Muralidharan, G. Pathuri, H. Gali,
A. Chen, Y. D. Zhao, A. Munshi and R. Ramesh, Sci. Rep.,

2017, 7, 1-17.
13 C. Wang, P. C. Ho and L. Y. Lim, Int. J. Pharm., 2010, 400,
201-210.

14 P. J. Kennedy, F. Sousa, D. Ferreira, C. Pereira, M. Nestor,
C. Oliveira, P. L. Granja and B. Sarmento, Acta Biomater.,
2018, 81, 208-218.

15 Z.Yang, H. Luo, Z. Cao, Y. Chen, J. Gao, Y. Li, Q. Jiang, R. Xu
and J. Liu, Nanoscale, 2016, 8, 11543-11558.

© 2021 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1ra00074h

Open Access Article. Published on 03 March 2021. Downloaded on 2/9/2026 9:27:14 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Review

16 Z. Zhang, S. Tan and S. S. Feng, Biomaterials, 2012, 33,
4889-4906.

17 S. Di-Wen, G. Z. Pan, L. Hao, ]J. Zhang, Q. Z. Xue, P. Wang
and Q. Z. Yuan, Int. J. Pharm., 2016, 500, 54-61.

18 A. Abou-ElNaga, G. Mutawa, 1. M. El-Sherbiny, H. Abd-
ElGhaffar, A. A. Allam, J. Ajarem and S. A. Mousa, Int. J.
Mol. Sci., 2017, 18, 1-14.

19 A. Shanavas, S. Sasidharan, D. Bahadur and R. Srivastava, J.
Colloid Interface Sci., 2017, 486, 112-120.

20 M. N. Wente, A. Jain, E. Kono, P. O. Berberat, T. Giese,
H. A. Reber, H. Friess, M. W. Biichler, R. E. Reiter and
0. ]J. Hines, Pancreas, 2005, 31, 119-125.

21 Y. Ling, K. Wei, Y. Luo, X. Gao and S. Zhong, Biomaterials,
2011, 32, 7139-7150.

22 T. Lei, S. Srinivasan, Y. Tang, R. Manchanda, A. Nagesetti,
A.  Fernandez-Fernandez and A. J. McGoron,
Nanomedicine, 2011, 7, 324-332.

23 M. F. Frasco, G. M. Almeida, F. Santos-Silva, M. Do Carmo
Pereira and M. A. N. Coelho, J. Biomed. Mater. Res., Part A,
2015, 103, 1476-1484.

24 S. Guo, C. M. Lin, Z. Xu, L. Miao, Y. Wang and L. Huang,
ACS Nano, 2014, 8, 4996-5009.

25 C. Zhang, T. An, D. Wang, G. Wan, M. Zhang, H. Wang,
S. Zhang, R. Li, X. Yang and Y. Wang, J. Controlled
Release, 2016, 226, 193-204.

26 Y. Kaneo, T. Tanaka, T. Nakano and Y. Yamaguchi, J.
Controlled Release, 2001, 70, 365-373.

27 M. R. Gill, J. U. Menon, P. J. Jarman, ]J. Owen, I. Skaripa-
Koukelli, S. Able, J. A. Thomas, R. Carlisle and
K. A. Vallis, Nanoscale, 2018, 10, 10596-10608.

28 D. T. Martin, C. J. Hoimes, H. Z. Kaimakliotis, C. J. Cheng,
K. Zhang, J. Liu, M. A. Wheeler, W. K. Kelly, G. N. Tew,
W. M. Saltzman and R. M. Weiss, Nanomedicine, 2013, 9,
1124-1134.

29 H. He, E. Markoutsa, Y. Zhan, J. Zhang and P. Xu, Acta
Biomater., 2017, 59, 181-191.

30 V. Lim, K. Khiang Peh and S. Sahudin, Int. J. Mol. Sci., 2013,
14, 24670-24691.

31 S. N. A. Mat Yusuf, Y. M. Ng, A. D. Ayub, S. H. Ngalim and
V. Lim, Polymers, 2017, 9, 311.

32 Y. M. Ng, S. N. A. Mat Yusuf, H. I. Chiu and V. Lim,
Pharmaceutics, 2020, 12, 1-20.

33 B. Wu, P. Yu, C. Cui, M. Wu, Y. Zhang, L. Liu, C. X. Wang,
R. X. Zhuo and S. W. Huang, Biomater. Sci., 2015, 3, 655-
664.

34 L. Wang, Y. Hao, H. Li, Y. Zhao, D. Meng, D. Li, ]J. Shi,
H. Zhang, Z. Zhang and Y. Zhang, J. Drug Targeting, 2015,
23, 832-846.

35 Y. C. Kuo and Y. C. Chen, Int. J. Pharm., 2015, 479, 138-149.

36 N. Shah, K. Chaudhari, P. Dantuluri, R. S. R. Murthy and
S. Das, J. Drug Targeting, 2009, 17, 533-542.

37 C. Lei, P. Davoodi, W. Zhan, P. K. H. Chow and C. H. Wang,
J. Pharm. Sci., 2019, 108, 1736-1745.

38 A. Aravind, P. Jeyamohan, R. Nair, S. Veeranarayanan,
Y. Nagaoka, Y. Yoshida, T. Maekawa and D. S. Kumar,
Biotechnol. Bioeng., 2012, 109, 2920-2931.

© 2021 The Author(s). Published by the Royal Society of Chemistry

View Article Online

RSC Advances

39 Z.Yang, H. Luo, Z. Cao, Y. Chen, J. Gao, Y. Li, Q. Jiang, R. Xu
and J. Liu, Nanoscale, 2016, 8, 11543-11558.

40 P. Liu, N. Chen, L. Yan, F. Gao, D. Ji, S. Zhang, L. Zhang,
Y. Li and Y. Xiao, Carbohydr. Polym., 2019, 213, 17-26.

41 R. Huey, B. O'Hagan, P. McCarron and S. Hawthorne, Int. J.
Pharm., 2017, 525, 12-20.

42 Z. Jamali, M. Khoobi, S. M. Hejazi, N. Eivazi,
S. Abdolahpour, F. Imanparast, H. Moradi-Sardareh and
M. Paknejad, Photodiagn. Photodyn. Ther., 2018, 23, 190-
201.

43 ]J. Gao, G. Kou, H. Wang, H. Chen, B. Li, Y. Lu, D. Zhang,
S. Wang, S. Hou, W. Qian, J. Dai, J. Zhao, Y. Zhong and
Y. Guo, Breast Cancer Res. Treat., 2009, 115, 29-41.

44 C. Mattu, R. M. Pabari, M. Boffito, S. Sartori, G. Ciardelli
and Z. Ramtoola, Eur. J. Pharm. Biopharm., 2013, 85, 463—
472.

45 M. Zheng, P. Gong, D. Jia, C. Zheng, Y. Ma and L. Cai, Nano
LIFE, 2011, 02, 1250002.

46 A. Aravind, R. Nair, S. Raveendran, S. Veeranarayanan,
Y. Nagaoka, T. Fukuda, T. Hasumura, H. Morimoto,
Y. Yoshida, T. Maekawa and D. S. Kumar, J. Magn. Magn.
Mater., 2013, 344, 116-123.

47 H. Chen, L. Q. Xie, J. Qin, Y. Jia, X. Cai, W. Bin Nan,
W. Yang, F. Lv and Q. Q. Zhang, Colloids Surf., B, 2016,
138, 1-9.

48 Z. Wang and P. C. Ho, Small, 2010, 6, 2576-2583.

49 S. Taghavi, M. Ramezani, M. Alibolandi, K. Abnous and
S. M. Taghdisi, Cancer Lett., 2017, 400, 1-8.

50 C. C. Chuang, C. C. Cheng, P. Y. Chen, C. Lo, Y. N. Chen,
M. H. Shih and C. W. Chang, Int. J. Nanomed., 2019, 14,
181-193.

51 S. Acharya, F. Dilnawaz and S. K. Sahoo, Biomaterials, 2009,
30, 5737-5750.

52 F. Fathian kolahkaj, K. Derakhshandeh, F. Khaleseh,
A. H. Azandaryani, K. Mansouri and M. Khazaei, J. Drug
Delivery Sci. Technol., 2019, 53, 101136.

53 E. Muntimadugu, R. Kumar, S. Saladi, T. A. Rafeeqi and
W. Khan, Colloids Surf., B, 2016, 143, 532-546.

54 P. Dadras, F. Atyabi, S. Irani, L. Ma’mani, A. Foroumadi,
Z. H. Mirzaie, M. Ebrahimi and R. Dinarvand, Eur. J.
Pharm. Sci., 2017, 97, 47-54.

55 A. Bahreyni, M. Alibolandi, M. Ramezani, A. Sarafan
Sadeghi, K. Abnous and S. M. Taghdisi, Colloids Surf.,, B,
2019, 175, 231-238.

56 L. Li, X. Di, M. Wu, Z. Sun, L. Zhong, Y. Wang, Q. Fu, Q. Kan,
J. Sun and Z. He, Nanomedicine, 2017, 13, 987-998.

57 K. Yu, J. Zhao, Z. Zhang, Y. Gao, Y. Zhou, L. Teng and Y. Li,
Int. J. Pharm., 2016, 497, 78-87.

58 J. H. Park, J. Y. Lee, U. Termsarasab, 1. S. Yoon, S. H. Ko,
J. S. Shim, H. J. Cho and D. D. Kim, Int. J. Pharm., 2014,
473, 426-433.

59 A. Halder, P. Mukherjee, S. Ghosh, S. Mandal, U. Chatterji
and A. Mukherjee, Mater. Today: Proc., 2018, 5, 9698-9705.

60 H. Wang, P. Agarwal, S. Zhao, R. X. Xu, J. Yu, X. Lu and
X. He, Biomaterials, 2015, 72, 74-89.

RSC Adv, 2021, 11, 9433-9449 | 9447


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1ra00074h

Open Access Article. Published on 03 March 2021. Downloaded on 2/9/2026 9:27:14 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

RSC Advances

61 J. B. Du, Y. Cheng, Z. H. Teng, M. L. Huan, M. Liu, H. Cui,
B. Le Zhang and S. Y. Zhou, Mol. Pharm., 2016, 13, 1711~
1722.

62 S. I. Thamake, S. L. Raut, Z. Gryczynski, A. P. Ranjan and
J. K. Vishwanatha, Biomaterials, 2012, 33, 7164-7173.

63 H. Wang, Y. Zhao, H. Wang, J. Gong, H. He, M. C. Shin,
V. C. Yang and Y. Huang, J. Controlled Release, 2014, 192,
47-56.

64 Y. Patil, T. Sadhukha, L. Ma and J. Panyam, J. Controlled
Release, 2009, 136, 21-29.

65 Y. B. Patil, S. K. Swaminathan, T. Sadhukha, L. Ma and
J. Panyam, Biomaterials, 2010, 31, 358-365.

66 M. Esfandyari-Manesh, S. H. Mostafavi, R. F. Majidi,
M. N. Koopaei, N. S. Ravari, M. Amini, B. Darvishi,
S. N. Ostad, F. Atyabi and R. Dinarvand, Daru, J. Pharm.
Sci., 2015, 23, 1-8.

67 C. Chittasupho, S. X. Xie, A. Baoum, T. Yakovleva,
T. J. Siahaan and C. ]J. Berkland, Eur. J. Pharm. Sci., 2009,
37, 141-150.

68 C. Chittasupho, K. Lirdprapamongkol, P. Kewsuwan and
N. Sarisuta, Eur. J. Pharm. Biopharm., 2014, 88, 529-538.

69 Y. Guo, L. Wang, P. Lv and P. Zhang, Oncol. Lett., 2015, 9,
1065-1072.

70 K. E. Park, Y. W. Noh, A. Kim and Y. T. Lim, Carbohydr.
Polym., 2017, 157, 476-483.

71 J. Wu, J. Zhang, C. Deng, F. Meng, R. Cheng and Z. Zhong,
ACS Appl. Mater. Interfaces, 2017, 9, 3985-3994.

72 J. Wu, C. Deng, F. Meng, ]J. Zhang, H. Sun and Z. Zhong, J.
Controlled Release, 2017, 259, 76-82.

73 N. Karra, T. Nassar, A. N. Ripin, O. Schwob, ]J. Borlak and
S. Benita, Small, 2013, 9, 4221-4236.

74 X.Lin, S.Z.Yan, S. S. Qi, Q. Xy, S. S. Han, L. Y. Guo, N. Zhao,
S. L. Chen and S. Q. Yu, Front. Pharmacol., 2017, 8, 1-16.

75 L. Li, D. Xiang, S. Shigdar, W. Yang, Q. Li, J. Lin, K. Liu and
W. Duan, Int. J. Nanomed., 2014, 9, 1083-1096.

76 Z. L. Liu, L. F. Li, S. Sen Xia, H. P. Tian, Z. H. Yan,
G. ]J. Zhang, T. Zhou and Y. He, J. Drug Delivery Sci.
Technol., 2019, 52, 1-7.

77 F. Fay, K. M. McLaughlin, D. M. Small, D. A. Fennell,
P. G. Johnston, D. B. Longley and C. J. Scott, Biomaterials,
2011, 32, 8645-8653.

78 J. Son, S. M. Yang, G. Yi, Y. J. Roh, H. Park, J. M. Park,
M. G. Choi and H. Koo, Biochem. Biophys. Res. Commun.,
2018, 498, 523-528.

79 D.-W. Sun, G.-Z. Pan, L. Hao, J. Zhang, Q.-Z. Xue, P. Wang
and Q.-Z. Yuan, Int. J. Pharm., 2016, 500, 54-61.

80 S. Manoochehri, B. Darvishi, G. Kamalinia, M. Amini,
M. Fallah, S. N. Ostad, F. Atyabi and R. Dinarvand, Daru,
J. Pharm. Sci., 2013, 21, 1-10.

81 Y. Dai, H. Xing, F. Song, Y. Yang, Z. Qiu, X. Lu, Q. Liu,
S. Ren, X. Chen and N. Li, J. Pharm. Sci., 2016, 105, 2949-
2958.

82 M. Nasr, N. Nafee, H. Saad and A. Kazem, Eur. . Pharm.
Biopharm., 2014, 88, 216-225.

83 D. Y. Gao, T. T. Lin, Y. C. Sung, Y. C. Liu, W. H. Chiang,
C. C. Chang, J. Y. Liu and Y. Chen, Biomaterials, 2015, 67,
194-203.

9448 | RSC Adv, 2021, N, 9433-9449

View Article Online

Review

84 X. Song, J. Wang, Y. Xu, H. Shao and ]. Gu, Colloids Surf., B,
2019, 180, 110-117.

85 X. Song, J. You, H. Shao and C. Yan, Colloids Surf., B, 2018,
169, 289-297.

86 E. Gullotti, J. Park and Y. Yeo, Pharm. Res., 2013, 30, 1956-
1967.

87 R. Dominguez-Rios, D. R. Sanchez-Ramirez, K. Ruiz-Saray,
P. E. Oceguera-Basurto, M. Almada, J. Juarez, A. Zepeda-
Moreno, A. del Toro-Arreola, A. Topete and A. Daneri-
Navarro, Colloids Surf., B, 2019, 178, 199-207.

88 S. Srinivasan, R. Manchanda, T. Lei, A. Nagesetti,
A. Fernandez-Fernandez and A. J. McGoron, J. Photochem.
Photobiol., B, 2014, 136, 81-90.

89 W. Hasan, K. Chu, A. Gullapallij, S. S. Dunn, E. M. Enlow,
J. C. Luft, S. Tian, M. E. Napier, P. D. Pohlhaus,
J. P. Rolland and ]J. M. Desimone, Nano Lett., 2012, 12,
287-292.

90 D. Bi, L. Zhao, R. Yu, H. Li, Y. Guo, X. Wang and M. Hana,
Drug Delivery, 2018, 25, 564-575.

91 W. Punfa, S. Yodkeeree, P. Pitchakarn, C. Ampasavate and
P. Limtrakul, Acta Pharmacol. Sin., 2012, 33, 823-831.

92 W. Punfa, P. Pitchakarn, S. Yodkeeree, P. Limtrakul,
S. Suzuki, T. Naiki and S. Takahashi, Asian Pac. J. Cancer
Prev., 2014, 15, 9249-9258.

93 A. M. Lopes, K. Y. Chen and D. T. Kamei, Mater. Sci. Eng., C,
2017, 73, 373-380.

94 X. Gao, Y. Luo, Y. Wang, J. Pang, C. Liao, H. Lu and Y. Fang,
Int. J. Nanomed., 2012, 7, 4037-4051.

95 N. L. Dhas, P. P. Ige and R. R. Kudarha, Powder Technol.,
2015, 283, 234-245.

96 B. Sivakumar, R. G. Aswathy, R. Romero-Aburto,
T. Mitcham, K. A. Mitchel, Y. Nagaoka, R. R. Bouchard,
P. M. Ajayan, T. Maekawa and D. N. Sakthikumar,
Biomater. Sci., 2017, 5, 432-443.

97 B. Sivakumar, R. G. Aswathy, Y. Nagaoka, S. Iwali,
K. Venugopal, K. Kato, Y. Yoshida, T. Maekawa and
D. N. Sakthi Kumar, RSC Adv., 2013, 3, 20579-20598.

98 M. F. Frasco, G. M. Almeida, F. Santos-Silva, M. Do Carmo
Pereira and M. A. N. Coelho, J. Biomed. Mater. Res., Part A,
2015, 103, 1476-1484.

99 S. Guo, C. M. Lin, Z. Xu, L. Miao, Y. Wang, L. Huang, S. Guo,
Z.Xu, Y. Wang and L. Miao, ACS Nano, 2014, 8, 4996-5009.

100 Z. Wang, W. K. Chui and P. C. Ho, Pharm. Res., 2011, 28,
585-596.

101 D. T. Martin, C. J. Hoimes, H. Z. Kaimakliotis, C. J. Cheng,
K. Zhang, J. Liu, M. A. Wheeler, W. K. Kelly, G. N. Tew,
W. M. Saltzman and R. M. Weiss, Nanomedicine, 2013, 9,
1124-1134.

102 W. Hasan, K. Chu, A. Gullapalli, S. S. Dunn, E. M. Enlow,
J. C. Luft, S. Tian, M. E. Napier, P. D. Pohlhaus,
J. P. Rolland and J. M. Desimone, Nano Lett., 2012, 12,
287-292.

103 S. Honary and F. Zahir, Trop. J. Pharm. Res., 2013, 12, 265~
273.

104 C. Wen, Q. Yuan, H. Liang and F. Vriesekoop, Carbohydr.
Polym., 2014, 112, 695-700.

© 2021 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1ra00074h

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 03 March 2021. Downloaded on 2/9/2026 9:27:14 AM.

(cc)

Review

105 D. Zukancic, E. J. A. Suys, E. H. Pilkington, A. Algarni, H. Al-
Wassiti and N. P. Truong, Pharmaceutics, 2020, 12, 1-16.

106 M. Mohd Narawi, H. I. Chiu, Y. K. Yong, N. N. Mohamad
Zain, M. R. Ramachandran, C. L. Tham, S. F. Samsurrijal
and V. Lim, Front. Pharmacol., 2020, 11, 1-15.

© 2021 The Author(s). Published by the Royal Society of Chemistry

View Article Online

RSC Advances

107 K. Park, S. Skidmore, J. Hadar, J. Garner, H. Park, A. Otte,
B. K. Soh, G. Yoon, D. Yu, Y. Yun, B. K. Lee, X. Jiang and
Y. Wang, J. Controlled Release, 2019, 304, 125-134.

108 P. N. Navya, A. Kaphle, S. P. Srinivas, S. K. Bhargava,
V. M. Rotello and H. K. Daima, Nano Convergence, 2019,
6, 1-30.

RSC Adv, 2021, 11, 9433-9449 | 9449


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1ra00074h

	Cytotoxicity of targeted PLGA nanoparticles: a systematic reviewElectronic supplementary information (ESI) available: Supplementary data for Fig.nbsp3 and 4. See DOI: 10.1039/d1ra00074h
	Cytotoxicity of targeted PLGA nanoparticles: a systematic reviewElectronic supplementary information (ESI) available: Supplementary data for Fig.nbsp3 and 4. See DOI: 10.1039/d1ra00074h
	Cytotoxicity of targeted PLGA nanoparticles: a systematic reviewElectronic supplementary information (ESI) available: Supplementary data for Fig.nbsp3 and 4. See DOI: 10.1039/d1ra00074h
	Cytotoxicity of targeted PLGA nanoparticles: a systematic reviewElectronic supplementary information (ESI) available: Supplementary data for Fig.nbsp3 and 4. See DOI: 10.1039/d1ra00074h
	Cytotoxicity of targeted PLGA nanoparticles: a systematic reviewElectronic supplementary information (ESI) available: Supplementary data for Fig.nbsp3 and 4. See DOI: 10.1039/d1ra00074h
	Cytotoxicity of targeted PLGA nanoparticles: a systematic reviewElectronic supplementary information (ESI) available: Supplementary data for Fig.nbsp3 and 4. See DOI: 10.1039/d1ra00074h
	Cytotoxicity of targeted PLGA nanoparticles: a systematic reviewElectronic supplementary information (ESI) available: Supplementary data for Fig.nbsp3 and 4. See DOI: 10.1039/d1ra00074h
	Cytotoxicity of targeted PLGA nanoparticles: a systematic reviewElectronic supplementary information (ESI) available: Supplementary data for Fig.nbsp3 and 4. See DOI: 10.1039/d1ra00074h
	Cytotoxicity of targeted PLGA nanoparticles: a systematic reviewElectronic supplementary information (ESI) available: Supplementary data for Fig.nbsp3 and 4. See DOI: 10.1039/d1ra00074h
	Cytotoxicity of targeted PLGA nanoparticles: a systematic reviewElectronic supplementary information (ESI) available: Supplementary data for Fig.nbsp3 and 4. See DOI: 10.1039/d1ra00074h
	Cytotoxicity of targeted PLGA nanoparticles: a systematic reviewElectronic supplementary information (ESI) available: Supplementary data for Fig.nbsp3 and 4. See DOI: 10.1039/d1ra00074h
	Cytotoxicity of targeted PLGA nanoparticles: a systematic reviewElectronic supplementary information (ESI) available: Supplementary data for Fig.nbsp3 and 4. See DOI: 10.1039/d1ra00074h
	Cytotoxicity of targeted PLGA nanoparticles: a systematic reviewElectronic supplementary information (ESI) available: Supplementary data for Fig.nbsp3 and 4. See DOI: 10.1039/d1ra00074h
	Cytotoxicity of targeted PLGA nanoparticles: a systematic reviewElectronic supplementary information (ESI) available: Supplementary data for Fig.nbsp3 and 4. See DOI: 10.1039/d1ra00074h
	Cytotoxicity of targeted PLGA nanoparticles: a systematic reviewElectronic supplementary information (ESI) available: Supplementary data for Fig.nbsp3 and 4. See DOI: 10.1039/d1ra00074h
	Cytotoxicity of targeted PLGA nanoparticles: a systematic reviewElectronic supplementary information (ESI) available: Supplementary data for Fig.nbsp3 and 4. See DOI: 10.1039/d1ra00074h
	Cytotoxicity of targeted PLGA nanoparticles: a systematic reviewElectronic supplementary information (ESI) available: Supplementary data for Fig.nbsp3 and 4. See DOI: 10.1039/d1ra00074h
	Cytotoxicity of targeted PLGA nanoparticles: a systematic reviewElectronic supplementary information (ESI) available: Supplementary data for Fig.nbsp3 and 4. See DOI: 10.1039/d1ra00074h
	Cytotoxicity of targeted PLGA nanoparticles: a systematic reviewElectronic supplementary information (ESI) available: Supplementary data for Fig.nbsp3 and 4. See DOI: 10.1039/d1ra00074h
	Cytotoxicity of targeted PLGA nanoparticles: a systematic reviewElectronic supplementary information (ESI) available: Supplementary data for Fig.nbsp3 and 4. See DOI: 10.1039/d1ra00074h
	Cytotoxicity of targeted PLGA nanoparticles: a systematic reviewElectronic supplementary information (ESI) available: Supplementary data for Fig.nbsp3 and 4. See DOI: 10.1039/d1ra00074h
	Cytotoxicity of targeted PLGA nanoparticles: a systematic reviewElectronic supplementary information (ESI) available: Supplementary data for Fig.nbsp3 and 4. See DOI: 10.1039/d1ra00074h
	Cytotoxicity of targeted PLGA nanoparticles: a systematic reviewElectronic supplementary information (ESI) available: Supplementary data for Fig.nbsp3 and 4. See DOI: 10.1039/d1ra00074h
	Cytotoxicity of targeted PLGA nanoparticles: a systematic reviewElectronic supplementary information (ESI) available: Supplementary data for Fig.nbsp3 and 4. See DOI: 10.1039/d1ra00074h

	Cytotoxicity of targeted PLGA nanoparticles: a systematic reviewElectronic supplementary information (ESI) available: Supplementary data for Fig.nbsp3 and 4. See DOI: 10.1039/d1ra00074h
	Cytotoxicity of targeted PLGA nanoparticles: a systematic reviewElectronic supplementary information (ESI) available: Supplementary data for Fig.nbsp3 and 4. See DOI: 10.1039/d1ra00074h
	Cytotoxicity of targeted PLGA nanoparticles: a systematic reviewElectronic supplementary information (ESI) available: Supplementary data for Fig.nbsp3 and 4. See DOI: 10.1039/d1ra00074h
	Cytotoxicity of targeted PLGA nanoparticles: a systematic reviewElectronic supplementary information (ESI) available: Supplementary data for Fig.nbsp3 and 4. See DOI: 10.1039/d1ra00074h
	Cytotoxicity of targeted PLGA nanoparticles: a systematic reviewElectronic supplementary information (ESI) available: Supplementary data for Fig.nbsp3 and 4. See DOI: 10.1039/d1ra00074h


