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Fe,Oz enhanced high-temperature arsenic
resistance of CeO,-La,03/TiO, catalyst for
selective catalytic reduction of NO, with NH3
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High-temperature arsenic resistance catalysts of CelagsFe,/Ti (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) series were
prepared and measured under a simulation condition of arsenic poisoning. The as-prepared catalysts
were characterized by XRD, SEM, TEM, and XPS. The specific surface area and pore size of the catalysts
were measured. At x = 0.2, the catalyst shows the best arsenic resistance and catalytic performance. The
active temperature range of the CelagsFeg,/Ti catalyst is 345-520 °C when the gas hourly space
velocity is up to 225000 mL gt h™l. Compared with commercial vanadium-based catalysts,
CelagsFep,/Ti shows much better catalytic performance. The introduction of Fe will improve the
dispersion of CeO, and increase the concentration of Ce** and unsaturated active oxygen on the
surface. The NHz-TPD and H,-TPR results show that the CelagsFeq,/Ti catalyst has more acidic sites
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DOI: 10.1035/d1ra00031d and more excellent redox performance than CelagsFeg/Ti. The CelagsFeq/Ti catalyst might have
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1. Introduction

Nitrogen oxides (NO,) are some of the main pollutants in the
atmosphere, which can do great harm to the ecological envi-
ronment and human health, such as, acid rain, photochemical
smog, ozone depletion, etc.* Selective catalytic reduction (SCR)
of NO, with ammonia is the most effective method to reduce
NO, in flue gas of stationary sources. Currently, the most widely
used commercial SCR catalyst is V,05-WO3(M00;)/TiO,.>* The
vanadium-based catalyst has many advantages as well as some
unavoidable problems, such as, strong biological toxicity of
vanadium, narrow temperature window (300-400 °C), easy
oxidation of SO, to SO3, and low N, selectivity at high temper-
ature.” Recent reports have shown that CeO, is the most
powerful substitute for V,05 because of its non-toxicity, high
reactivity, and excellent oxygen storage and release capabil-
ities.>” However, the adaptability and anti-inactivation ability of
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application prospects in the field of selective catalytic reduction of NO, with NHx.

CeO, in a complicated flue gas environment is still an urgent
problem to be solved. Heavy metal arsenic, often existing in the
form of volatile As,O; or As,Os in high-temperature flue gas, is
toxic to commercial SCR catalysts.® Early reports show that the
arsenic poisoning of commercial catalysts is due to the coverage of
the active sites on the surface of the catalyst by inactive As,O5 and
the diffusion of arsenic oxides into the pores of the catalyst, which
causes the blocking of the micropores in the catalysts.”* The
current widely accepted view is that chemical deactivation is the
main reason, because arsenic of high oxidation state, As(v), can
interact with the active site of vanadium to reduce the surface acid
sites.””™ In order to improve the arsenic resistance, commercial
vanadium-based catalysts often need many additives, such as WO;
and MoO;. It has been found that MoO; has better resistance to
arsenic poisoning than WO; because MoO; can further improve
the dispersion of active sites of vanadium." Current literature on
arsenic resistance mainly focuses on adding MoO; to commercial
vanadium-based catalysts. However the highest NO conversion of
these catalysts after arsenic poisoning is less than 80%.'*" It is
also effective in improving the arsenic resistance of CeO,-based
catalysts by adding WO;/MoO;."*** However the reported highest
NO conversion of the CeO,-based catalysts after arsenic poisoning
is only 75%. So far, there is no report on the CeO,-based catalyst by
adding Fe,0; as arsenic resistance catalyst. Recently, our research
group has developed the CeO,-La,0;/TiO, vanadium-free cata-
lysts, which can be used at high temperature and are expected to
replace commercial vanadium-based catalysts. Owing to its cata-
Iytic activity, sulfur resistance and porous properties, TiO, is an
excellent catalytic carrier. La,O5 is a good auxiliary component for
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active component of CeO, because of the formation of Ce-O-La
bond on the surface of CeO,, which increases the acidic sites of the
catalyst and the adsorption of NH; and NO. Because Fe-based
catalysts have good deNO, performance** as well as good
adsorption of arsenic owing to the formation of strong Fe-O-As
chemical bond in the removal of the arsenic in the water treat-
ment,?>* it is expected that Fe,O; can be used as an arsenic
resistance catalyst. In this paper, the Ce-La-Fe-Ti catalysts were
obtained by an impregnation method, using anatase as the carrier
and Ce-La-Fe oxides as the active component. The deNO, activity
of the as-prepared catalysts was measured. The as-prepared cata-
lysts were characterized by XRD, SEM, TEM, and XPS. The reason
for the arsenic resistance was discussed.

2. Experimental
2.1 Reagents and preparation

The Ce-La-Fe-Ti composite catalysts were prepared by an
impregnation method. First, a certain volume of deionized

N, selectivity (%) =
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the activity of the catalyst. The loading amount of the catalyst
is 0.8 g. The gas composition is 500 ppm NO, 500 ppm NH3,
300 ppm SO,, 3% O,, 5% H,0, and N, is used as the balance
gas. The total gas flow is 3000 mL min ', hence the corre-
sponding gas hourly space velocity (GHSV) is calculated to be
225000 mL g ' h™'. The outlet gas concentrations of NO,
NO,, SO, were detected by the Germany Ecom flue gas
analyzer and the N,O concentration was detected by the
KRMS50 infrared flue gas analyzer. The temperature program
was controlled by a computer. At each temperature, the
experiment was kept for 30 min to stabilize before the data
collection of the concentration of the outlet gas. The NO
conversion and N, selectivity were calculated according to
the formula (1) and (2).>"*®

water was added to a stainless steel reactor and heated to 60 °C.
Then ammonia (25-28 wt%) and citric acid (analytical purity)
were added to adjust the pH to 3-4 with stirring. After that,
anatase pigment (TiO,, industrial grade), Ce(NOs);-6H,0
(industrial grade), La(NOs);-6H,O (industrial grade), and
(NH,4),Fe(SO,),-6H,0 (analytical purity) were added according
to the different weight ratios, CeLa, sFe,/Ti (x = 0, 0.1, 0.2, 0.3,
0.4, 0.5), where 0.5 and x are the weight ratios of La (calculated
as La,0;) and Fe (calculated as Fe,O3) to Ce (calculated as
Ce0,). In all the Ce-La-Fe-Ti composite catalysts, the weight
ratio of Ce-La-Fe to Ti (calculated as TiO,) is 3:7. The
suspension was stirred continuously for 2-3 h and evaporated
by vacuum distillation for 1 h. Then the mixture was cooled to
room temperature, ripen for 2 hours, dried at 105 °C for 12 h,
and calcined at 500 °C in a muffle furnace for 5 h. Finally, the
samples were used for the SCR activity test. For comparison,
commercial vanadium-based catalysts obtained from the
market were also used.

2.2 Catalyst activity tests

First, 1 g as-prepared catalysts were ground in a planetary ball
mill for 90 min and soaked in 25 mL 1 mg mL ' arsenic
standard solution (calculated as As,03) for 3 h to simulate its
arsenic poisoning. The water solvent was completely evapo-
rated, thus the loading amount of As,O; on the catalyst was
calculated to be about 2.5 wt%. Then the catalyst was adhered
to an industrial honeycomb-shaped cordierite cylinder with
size of 20 x L50. After drying at 105 °C, the loaded cylinder
was calcined in a closed tube furnace at 450 °C for 3 h. Then
the loaded cylinder was put into a quartz tube furnace to test
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NO conversion (%) = [NO}E\I—O%NO]O“‘ x 100% (1)
[NO]in - [NH3]in — [Noz]out — 2[I\Izo]out _ [No}out - [NH }out 0
[NOJ, + [NH, — [NOJ,, — [NHy S 100 ®)

out out

2.3 Characterization

The Brunauer-Emmet-Teller (BET) specific surface area and
pore volume of the samples were measured on the Micro-
meritics ASAP 2020 instrument. The morphology was
observed on the Zeiss MERLIN compact field emission
scanning electron microscope (FE-SEM) and a JEOL JEM
2100 plus transmission electron microscope (TEM). The X-
ray diffraction (XRD) was performed on the Rigaku Ultima
IV instrument, with a tube voltage of 40 kV, a tube current of
40 mA, and Cu Ka radiation. X-ray photoelectron spectros-
copy (XPS) was performed on the Thermo ESCALAB 250XI
electronic energy spectrometer, with Cls binding energy
(284.8 eV) for energy calibration, X-ray source voltage of 16
kv, current of 14.9 mA, beam diameter of 650 um. The
temperature programmed chemical adsorption/reduction
(TPD/TPR) was performed on the AutoChem1 II 2920
instrument. For NH;-TPD, the catalyst was pre-treated under
argon atmosphere at 350 °C for 1 h, then cooled down to
50 °C and adsorbed NH; to saturation. After that the
temperature was raised to 100 °C and the catalyst was purged
with Ar gas to desorb the physically adsorbed NH;. Finally
the temperature was raised to 500 °C at a ramping rate of
10 °C min~ ' and the outlet NH; concentration was detected
by the thermal conductivity detector (TCD). For H,-TPR, the
catalyst was pre-treated under Ar atmosphere at 350 °C for
1 h to remove the adsorbed gas on the surface, then cooled to
room temperature. Then the catalyst was reduced in 10% H,/
Ar atmosphere from room temperature to 800 °C at a ramp-
ing rate of 10 °C min~'. The H, consumption was detected by
TCD.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Catalytic performance of catalysts with different components, all the catalysts were treated by arsenic as described in Section 2.2 except
“Fresh” catalysts. (@) NO conversion of Celag sFe,/Ti(x =0, 0.1, 0.2, 0.3, 0.4, 0.5) and commercial vanadium-based catalysts; (b) NO conversion of
Celag sFeq »/Ti and commercial vanadium-based catalyst with and without arsenic solution dipping; (c) N, selectivity of Celag sFe,/Ti (x=0, 0.1,

0.2,0.3,0.4, 0.5) and commercial vanadium-based catalyst; (d)
vanadium-based catalyst.

3. Results and discussion
3.1 Catalytic performance

Fig. 1 shows the catalytic performance of catalysts with different
components, in which all the catalysts were treated by arsenic as
described in Section 2.2 except “Fresh” catalysts. It can be seen
from Fig. 1(a) that the loading of Fe,O; greatly improves the NO
conversion. As temperature increases, the NO conversion first
increases and then decreases. Influenced by the kinetics reason, the
NO conversion will increase whereas the increasing trend will
decrease with the increase of the temperature. If the temperature is
too high (>450 °C for CeLa,sFe,,/Ti), the NO conversion will
decrease due to the decrease of the N, selectivity. At the same
temperature, the NO conversion first increases and then decreases
with the increase of the Fe content. When the Fe,O; content x is 0.2,
the NO conversion of CeLa, sFe,/Ti is the highest. The temperature
range where the corresponding NO conversion is greater than 80%
of CeLaysFeq,/Ti is 345-520 °C. Commercial vanadium-based
catalyst shows much weaker arsenic resistance than CeLa, sFe ./
Ti. On the one hand, Fe-based catalysts have good deNO, perfor-
mance,** on the other hand, Fe might form the bond of Fe-O-As**®
with As, which makes Fe preferentially combine with As to protect
the main active site of CeO,. However, excessive loading of Fe,O; is
detrimental to the deNO, performance of the catalyst, which can be

© 2021 The Author(s). Published by the Royal Society of Chemistry

N,O concentration of CelLag sFe,/Ti (x=0, 0.1, 0.2, 0.3, 0.4, 0.5) and commercial

attributed to the fact that excessive Fe,O; will cover the active sites
of the CeO, on the catalyst surface. Above 350 °C, the NO conver-
sion of the catalyst is maintained at a high level, which may be
related to the enhanced oxidation of CeO,.”® The introduction of La
increases the surface unsaturated oxygen on the surface and the
dispersibility of CeO,.>**" From Fig. 1(b), it can be found that the
commercial vanadium-based catalyst is significantly poisoned in
arsenic environment, while CeLagsFey,/Ti catalyst is slightly
affected in arsenic environment. The NO conversion of the
CeLay sFe,,/Ti is obviously better than commercial vanadium-
based catalyst with regard to the arsenic resistance. In Fig. 1(c),
the N, selectivity of the CeLa, sFe,/Ti (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5)
catalysts is much better than that of commercial vanadium-based
catalyst and CeLay sFe,,/Ti shows the best N, selectivity (99.08-
100%). In Fig. 1(d), the N,O concentration of vanadium-based
catalysts increases quickly whereas the N,O concentrations of
CeLa, sFe,/Ti (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) increase slowly. This
arsenic poisoning of vanadium-based catalysts is consistent with
the results reported in the literature.*

3.2 XRD

Fig. 2 shows the XRD pattern of CeLa, sFe,/Ti (x = 0, 0.1, 0.2)
series. The main phase of the three catalysts is anatase TiO,
(JCPDS no. 99-0008). The broad diffraction peaks indicate that

RSC Adv, 2021, 11, 9395-9402 | 9397
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Fig. 2 XRD pattern of CelagsFe,/Ti (x = 0, 0.1, 0.2) series.

the anatase is a nano-particle, which is consistent with the
following SEM and TEM results. There are weaker cubic fluorite
CeO, peaks (JCPDS no. 43-1002) near 28.6°, 33°, etc. The full
width at half maximum (FWHM) of CeO, is wider than that of
anatase, showing that the grain size of CeO, is much smaller
than that of TiO,. However, there is no phase related to the
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La,03, indicating that La,0; is highly dispersed on the catalyst
surface in an amorphous state, which is similar to the litera-
ture.*> The XRD peak of Fe,O3 (~33.15°, JCPDS no. 33-0664) is
very weak and very wide, which indicates the Fe,O; is amor-
phous. The FWHM of the (111) peak of the CeO, at 28.5°
becomes wider with the increase of the Fe content, which
means the addition of Fe decreases the CeO, grain size. Since
CeO, is the main catalyst, small crystal size is beneficial to
increase its catalytic activity. In addition, the peak of CeO, at
28.5° (after Gaussian fitting) moves towards higher angle
direction, which might be caused by the formation of the solid
solution of CeO,-Fe,0;. This is because the radius of Ce**
(eight-coordinated, 0.97 A) is larger than that of Fe®" (eight-
coordinated, 0.78 A). It is worth noting that although there
are reports in the literature that anatase will transform into
rutile at ~500 °C,* the rutile phase cannot be found in the
catalysts, showing that the catalysts have good thermal stability.

3.3 SEM

Fig. 3 is the SEM images of the CeLa, sFe,/Ti (x = 0, 0.1, 0.2)
series. According to the reports, the catalysts with the size of
nano-particles can show high catalytic activity.** As can be seen,
the active components are highly dispersed on the surface of the

Fig. 3 SEM images of CelagsFe,/Ti (x = 0, 0.1, 0.2) with different magnification. (a and b) Celag sFeo/Ti; (c and d) Celag sFeq1/Ti; (e and f)

Ce Lao_sFeo_lei.
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catalysts and the nano-particles form agglomerates with the size
of sub-microns. The number of particles increases with the
increase of the Fe content, which means that the addition of Fe
may enhance the dispersion of CeO, on the surface of TiO,. This
is consistent with the XRD results.

3.4 TEM

Fig. 4 shows the TEM image, elemental mapping, and energy
dispersive spectra (EDS) of CeLagsFe,/Ti. The morphology in
Fig. 4(a) clearly shows that the crystal size of the catalyst is tens of
nanometers. In the HR-TEM image (Fig. 4(b)), the stripe spacing of
0.357 nm corresponds to the (101) plane of anatase TiO,, and the
stripe spacing about 0.318 nm corresponds to the (111) plane of
CeO,. The elemental mapping pictures of Ti, Ce, Fe, La, and O
(Fig. 4(d-h)) show that the La, Ce, Fe and Ti elements are uniformly
distributed in the catalysts. The EDS result in Fig. 4(i) shows that
the main elements are Ti, La, Ce, Fe, and Cu, where Cu is caused by
the Cu grid used to support the sample.

3.5 XPS

Fig. 5 is the XPS spectra of CeLa, sFe,/Ti (x = 0, 0.1, 0.2). The
peaks of Ce, La, Ti, Fe and C can be found in the survey spectra
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in Fig. 5(a). The Ce3d XPS spectra (Fig. 5(b)) can be fitted to nine
peaks, named V; (=880.7 eV), V, (=882.3 eV), V5 (=885.8 eV),
V, (=888.6 eV), V5 (=898.3 €V), U; (=900.8 eV), U, (=903 eV),
U; (=907.3 eV), U, (=916.7 eV). All V peaks correspond to
Ce3ds/, spin orbits, and all U peaks correspond to Ce3d;,, spin
orbits. The peaks of V4, V; and U, correspond to Ce**, while the
peaks of V,, V4, Vs, Uy, Us, and U, correspond to Ce**.** From the
peak area, the Ce*" content on the CeO, surface increases
significantly as the Fe content increases. Because of the
different electrovalence of Fe** and Ce*!, in order to maintain
charge balance, the oxygen vacancy defects on the CeO, surface
also increase as the Fe content increases, which are beneficial to
the improvement of the catalytic activity.*® The XPS of O1ls
(Fig. 5(c)) can be fitted into two peaks: O, (surface unsaturated
oxygen, =530.6 eV) and Og (lattice oxygen, =528.7 eV). Calcu-
lated by the fitted peak area, the O,/(O, + Og) fractions of
CeLa, sFe,Ti, CeLaysFey Ti, CelagsFey,/Ti catalysts are
43.30%, 43.73% and 43.78%, respectively. Because the surface
unsaturated oxygen O, of CeO, has a higher mobility and
a stronger catalytic performance than the lattice oxygen Opg,
CeLa, sFe ,/Ti catalyst shows the best catalytic performance.’”
In Fig. 5(d), the peaks of Fe2p correspond to Fe2p,,, (724 eV),

EBEER

Counts (a.u.)

012345678910
Energy (keV)

Fig.4 TEM images, elemental mapping, and EDS of Celag sFeq »/Ti. (@) TEM morphology, (b) HR-TEM, (c) all elements mapping, (d) Ti mapping,

(e) Ce mapping, (f) Fe mapping, (g) La mapping, (h) O mapping. (i) EDS.

© 2021 The Author(s). Published by the Royal Society of Chemistry

RSC Adv, 2021, 11, 9395-9402 | 9399


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1ra00031d

Open Access Article. Published on 02 March 2021. Downloaded on 1/19/2026 11:41:09 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

d

Ofs

CelagsFey/Ti o Ti2p

3d
Cis

Ofts

CelagsFeg/Ti :
0.5" 0.1 Ce3d - Ti2p
e,
P C1s
O1s

Intensity (a.u.)

1400 1200 1000 800 600 400 200 O
C Binding Energy (eV)

O,
—~ | CelagsFey/Ti _—
3
I
= Oy
= 0
@ | CeLaggFeq/Ti -
o ,
c
= 0,
O,
CelagsFeq,/Ti -
536 534 532 530 528 526

Binding Energy (eV)

View Article Online

Paper

e
0.1

CelagsFeg/Ti

Intensity (a.u.)

CeLaU_SFeO_; i
T

920 910 900 90
d Binding Energy (e\?)

880

Intensity(a.u.)

CelagsFeq,/Ti

T T T T T T T T T
724 722 720 718 716 714 712 710 708

Binding Energy( eV)

Fig. 5 XPS spectra of CelagsFe,/Ti (x = 0, 0.1, 0.2). (a) Survey spectra; (b) Ce3d; (c) Ols; (d) Fe2p.

Fe2p;/, (711 eV) and satellite peaks. The peaks of Fe2p;, are
fitted by two peaks of Fe*" (710.0 eV) and Fe** (712.8 eV).*® The
CeLag sFeq,/Ti and CeLagsFe, 1/Ti catalysts have no obvious
differences in shape and positions, showing that the valances of
Fe in the two samples are the same or similar. No obvious
satellite peak and asymmetric peak are observed at ~715 eV,
and the peak positions of 2p3/,, satellite, and 2p,,, are close to
that of Fe**. However the existence of Fe>" must be considered
because Fe** can be fitted in the curve. Therefore, it can be
concluded that Fe** is the major valence while Fe** is the minor
valence on the surface.*

3.6 N, adsorption and desorption

The BET specific surface area, pore volume and pore diameter of
CeLay sFe,/Ti (x = 0, 0.1, 0.2) series were measured by N,
adsorption and desorption experiments. The results were
shown in Table 1. Because the main components of the catalysts
are TiO,, CeO, and La,0;, and the content of Fe,0; is very little,
the change of Fe content has little effect on the specific surface
area of the catalyst. The specific surface area increases and the
pore size increases slightly. The reason may be that the

Table 1 BET specific surface area, pore volume and pore diameter of
CelagsFe,/Ti (x =0, 0.1, 0.2) series

Catalyst Sper (m* g7 Vp (em® g™ ) D, (nm)
CelLa, sFeo/Ti 78.1 0.040 3.25
CeLag sFeq 1/Ti 79.7 0.039 3.28
CeLay, sFeg ,/Ti 79.9 0.041 3.32

9400 | RSC Adv, 2021, 11, 9395-9402

introduction of Fe inhibits the growth rate of ceria grains and
reduces the ceria grain size. This is consistent with the results of
the XRD and SEM images.

3.7 NH,-TPD and H,-TPR

NH,-TPD result reflects the acidity of the catalysts. Fig. 6(a)
shows the NH;-TPD curves of the CeLa, sFe,/Ti (x = 0, 0.1, 0.2,
0.3) catalysts. As can be seen, the CeLa, sFe,/Ti catalyst has two
desorption peaks at about 350 °C and 290 °C. It is generally
believed that the peak above 450 °C is related to the Lewis acid
site (strong acid site) associated with the NH; molecule, and the
peak near 300 °C is related to the Brensted acid site (weak acid
site) associated with NH,"  ions.* From the peak area, the
quantity of the Brensted acid sites on the surface of the catalyst
increases with the increase of Fe content up to x = 0.2, which
helps to increase the catalytic activity. This is consistent with
the catalytic performance in Fig. 1.

H,-TPR result reflects the redox characteristics of the cata-
lysts. Fig. 6(b) shows the H,-TPR curves of the CeLa, sFe,/Ti (x =
0, 0.1, 0.2, 0.3) catalysts. The strong peaks of the four catalysts in
the range of 450-580 °C correspond to the reduction process
from Ce*" to Ce*", which are closely related to the catalytic
activity of the catalysts.** With the increase of Fe content x up to
x = 0.2, the peak position shifts towards lower temperature
direction from 577 °C to 473 °C, which means that the intro-
duction of Fe makes the reduction of the surface oxygen on
CeO, by H, more easy. However, when the Fe content increases
to x = 0.3, the reduction peak changes from 473 °C to 515 °C,
which means that the reduction of CeO, on the catalyst surface
the H,

becomes more difficult. From the peak area,

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 (a) NHs-TPD curves of the Celag sFe,/Ti (x =0, 0.1, 0.2, 0.3) catalysts; (b) H,-TPR curves of the CelLag sFe,/Ti (x =0, 0.1, 0.2, 0.3) catalysts.

consumption is CeLa, sFe, »/Ti > CeLag sFeq 3/Ti > CeLag sFeq 1/
Ti > CeLa, sFey/Ti, showing that the surface oxygen on CeO,
increases with the increase of Fe content, which is consistent
with the XPS results. Based on the NH;-TPD and H,-TPR curves,
it can be concluded that CeLa, sFe, ,/Ti catalyst has the most
acidic sites and strongest redox performance.

4. Conclusions

An anti-arsenic SCR denitration catalyst with anatase as the
carrier, CeO,, as the main active components, and La,03, Fe,03
as the main auxiliary agent was prepared by the impregnation
method. The optimized CeLa, sFe,,/Ti catalyst exhibits better
catalytic performance under arsenic environment than the
commercial vanadium-based catalysts. After the introduction of
the Fe,0;, the Ce®" concentration, surface unsaturated oxygen,
CeO, dispersibility, specific surface area, and acidic sites are all
improved, which improves the catalytic activity in the arsenic
environment. CeLa, sFe,,/Ti catalyst has high NO conversion
efficiency, excellent N, selectivity and arsenic resistance, which
might be a candidate for SCR denitrification applications in the
arsenic flue gas environment.
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