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extile dyes from aqueous solution
using tea-polyphenol/Fe loaded waste silk fabrics
as Fenton-like catalysts

Md Shipan Mia,a Ping Yao,b Xiaowei Zhu,a Xue Lei,a Tieling Xing *a

and Guoqiang Chena

In this study, waste silk fabrics (SF) were modified with tea-polyphenols (TPs) and then iron (Fe2+). The

modified silk fabrics (TP-SF/Fe) were characterized via Fourier-transform infrared (FTIR), energy

dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and X-ray photoelectron

spectroscopy (XPS) analysis. TP-SF/Fe was used in the Fenton-like removal of dyes (methylene blue,

reactive orange GRN, and cationic violet X-5BLN) from aqueous solutions with catalyst-like activity. The

effects of different catalyst samples, contact time, H2O2 concentration, initial dye concentration, and pH

values on dye removal were investigated. The results showed that the dye removal percentages with the

TP-SF/Fe-H2O2 sample reached 98%, 97%, and 95% in 5–40 min for methylene blue, reactive orange

GRN, and cationic violet X-5BLN, respectively. Different thermodynamic and kinetic models were used

to check the best fit of the adsorption data. The results indicated that the Freundlich isotherm and

pseudo first-order kinetics models were the best fits. Moreover, it was also proved that TP-SF/Fe would

be quite an effective and economical adsorbent for the treatment of textile dye wastewater. This work

provides the basis for waste silk application in the removal of dyes from wastewater.
1. Introduction

Dyeing wastewater from the textile industries produces highly
polluted effluents and is a serious concern for the environment
and human beings.1–3 Approximately ten thousand different
dyes are currently used in the textile industries and the amount
of wastewater is huge.4,5 Compared with natural dyes, the dyeing
wastewater from synthetic dyes rapidly increases pollution
levels because of their low synthesis cost,6 high toxicity,7 good
chemical stability,8,9 strong bioaccumulation and color diver-
sity. They have strong resistance to conventional treatment
methods10–12 and sunlight and they cause serious damage to
aquatic life when discharged into water.13,14 Dye wastewater
causes many human diseases such as lung cancer, skin irrita-
tion, allergy, heart disease, chromosomal aberrations, kidney
and liver damage, and respiratory diseases.15–18 Therefore, it is
necessary to remove these dyes from wastewater before it is
discharged into the water system.

In recent years, researchers have developed various methods
and techniques to remove toxic pollutants from the wastewater
of textile industries.19–22 Among those efforts, various tech-
niques have been considered to remove dyes from wastewater
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such as coagulation, adsorption, membrane ltration, biological
processes, microextraction, photocatalysis, Fenton-like removal
and electrochemical methods.23–26 Among these technologies,
Fenton-like removal technology has attracted wide attention due to
its high degradation capability, low cost and environmental
friendliness although the reaction mostly requires H2O2 and
Fenton or Fenton-like reagents. In addition, during the treatment
process, the Fenton or Fenton-like reaction directly breaks down
dye molecules without post-processing.27,28

Currently, the Fenton process is attracting more interest for
the degradation of dyes.29,30 In this process, hydroxyl radicals
(cOH) are produced, which are highly reactive and powerful
oxidants capable of degrading organic and inorganic
compounds into water.31,32 However, the homogeneous Fenton
process also has some drawbacks from the perspective of
practical application and this system has some limitations such
as acidic pH conditions, a huge amount of nal sludge, time-
consuming processes and high cost.33,34 Immobilization of
iron particles (Fe) may be a suitable and stable remediation
technique to overcome these limitations. The immobilization of
iron has garnered a great deal of interest in the prevention of
secondary water pollution due to its potential for having lower
costs, higher reactivity and wider uses compared to other
treatments.35,36 However, this research was inspired by our
previous study on immobilizing the iron (Fe) particles of
a Fenton-like removal process on activated silk ber for
heterogeneous catalytic applications.37
© 2021 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d0ra10727a&domain=pdf&date_stamp=2021-02-20
http://orcid.org/0000-0002-4136-3137
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0ra10727a
https://pubs.rsc.org/en/journals/journal/RA
https://pubs.rsc.org/en/journals/journal/RA?issueid=RA011014


Fig. 1 A schematic diagram of TP-SF/Fe preparation and its adsorption of dyes.
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Silk is a standard natural brous protein ber widely used in
textiles and biomedical applications due to its slow degrada-
tion, excellent biocompatibility and mechanical properties.38–40

Moreover, silk is more extensively used in the textile industries
to meet consumer demands and at the same time, lots of fabric
is wasted in the processes.41,42 Waste silk fabric samples that
cannot be used for any other purpose are a worldwide concern.
An alternative use of waste silk fabric provided through this
work could be a sustainable remedy.

Polyphenol is a very effective component and can be used for
different purposes. The structure of polyphenol compounds is
considered to have an effective inuence on improving the
surface reactivity of hydrophobic and hydrophilic surfaces as
well as other functional groups.43–45 Tea is a compound widely
used in the world and tea leaves are rich in natural polyphenolic
compounds. Tea polyphenols (TPs) are used in beverage and
food industries, as well as being investigated in health, bio-
logical and medicine services.46,47 Tea polyphenols are also used
Fig. 2 The chemical structure of (i) methylene blue, (ii) reactive orange

© 2021 The Author(s). Published by the Royal Society of Chemistry
in textile industries for coloration.48,49 However, TPs are exten-
sively used in dye adsorption, heavy metal adsorption, anti-
bacterial, antimicrobial, UV protective and super-hydrophobic
elds due to their strong functional properties.50–52 The prop-
erties of TPs are similar to dopamine, but their cost is relatively
low. Thus, TPs can be used as effective components in the
coloration and functional modication of textiles.

In this present work, waste silk fabric was coated using TPs
by rapid oxidative polymerization and iron particles (Fe2+) were
effectively immobilized onto the fabric surface, which was used for
the Fenton-like degradation of methylene blue, reactive orange GRN
and cationic violet X-5BLN dyes from aqueous solution, as shown in
Fig. 1. The TPs graed iron-loaded silk fabric (TP-SF/Fe) was char-
acterized by using several instrumental techniques such as SEM and
XPS. Moreover, the degradation process was investigated by various
parameters, including different catalyst samples, contact time, H2O2

concentration, initial dye concentration and pH values. The isotherm
and kinetics models of dye degradation were also analyzed.
GRN, and (iii) cationic violet X-5BLN dyes.
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Fig. 3 A schematic diagram of the postulated mechanism of the degradation of the dyes.

Fig. 4 Infrared spectra of untreated and treated silk.
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2. Materials and methods
2.1 Materials

In this study, waste silk fabric (48 g m�2) was provided by
Huzhou Jiangnan Hengsheng Rening and Dyeing Co., Ltd.
(China). Tea polyphenols (TPs) (purity 98.5%) were purchased
from Shanghai Yuanye Biotechnology Co. Analytical grade
sodium perborate (NaBO3$4H2O), ferric chloride hexahydrate
(FeCl3$6H2O), hydrogen peroxide (H2O2, 33%), and ferrous
Fig. 5 Energy dispersive spectra of (a) SF and (b) TP-SF/Fe.

8292 | RSC Adv., 2021, 11, 8290–8305
sulfate heptahydrate (FeSO4$7H2O) were obtained from
Shanghai Lingfeng Chemical Reagent Co., Ltd. (Shanghai,
China). Methylene blue (MB), reactive orange GRN (GRN) and
cationic violet X-5BLN (BLN) dyes were purchased from Tianjin
Tianshun Chemical Dyestuff Co., Ltd (Tianjin, China).
2.2 Preparation of the functional silk fabrics

In this work, silk fabric (15� 15 cm2) was immersed in 150 mL of
deionized water containing 2 g L�1 tea polyphenol and 2mmol L�1

ferric chlorides (FeCl3$6H2O) and placed in a shaking water bath
for 20 min at 50 �C. Then 12 mmol L�1 of sodium perborate
(NaBO3$4H2O) was added and the nal solution was stirred for
40 min. The resultant coated silk fabric (TP-SF) was removed and
rinsed using deionized water then dried in air. Aerward, the
coated dried silk fabric was directly put into 1400 mL deionized
water containing 40 mmol L�1 FeSO4$7H2O for 24 h at room
temperature. Finally, the TP-SF/Fe sample was taken out and
rinsed with deionized water and dried overnight in ambient
condition. The chemical structure of the three dyes (cationic blue,
anionic orange and cationic based violet dyes) are shown in Fig. 2.
2.3 Characterization of TP-SF/Fe

Fourier transform infrared (FTIR) spectroscopy of TP-SF/Fe was
performed using a Nicolet-5700 Fourier transform infrared spec-
trometer in the range of 400–4000 cm�1. The surfacemorphology of
silk fabric was analyzed by scanning electron microscopy (SEM,
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Energy dispersive spectra of (a) SF and (b) TP-SF/Fe with different element mapping images.
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Hitachi S-4800). The elemental detection of the silk fabric and its
percentage atomic weight was carried out by energy dispersive X-ray
spectroscopy (EDS) using BRUKNER axes EDS analyzer mounted
with SEM. The surface elements of TP-SF/Fe were veried by X-ray
photoelectron spectra (XPS) through a Thermo ESCALAB 250XI
spectrometer (Thermo Fisher Scientic, USA) using an Al Ka X-ray
source (1484.6 eV). The degradation of TP-SF/Fe was measured
Fig. 7 SEM images of SF (a, b) and TP-SF/Fe (c, d) at different magnifica

© 2021 The Author(s). Published by the Royal Society of Chemistry
using a double beam UV-Vis spectrophotometer (Hitachi UH-4150)
in the wavelength range 300–800 nm at room temperature.
2.4 Dye degradation procedure and analysis

The TP-SF/Fe was evaluated by the heterogeneous Fenton-like
removal of (methylene blue, reactive orange GRN and cationic
tions

RSC Adv., 2021, 11, 8290–8305 | 8293
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Fig. 8 (a) Wide-scan XPS spectra of the silk fabrics, high-resolution C 1s spectra of (b) SF and (c) TP-SF/Fe, and (d) the core-level Fe 2p spectrum
of TP-SF/Fe.
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violet X-5BLN) dyes in the presence of hydrogen peroxide
(H2O2). In the rotatory shaker, 0.1 g TP-SF/Fe (adsorbent) was
added into 70 mL aqueous solution with 20 mg L�1 of dyes for
40 min at 50 �C with stirring. In this experiment, the concentra-
tions of dyes in the solutions were measured every 5 min until
degradation was complete and the remaining amount of dyes in
the aqueous solution was determined by UV-spectrophotometer.
The dye removal percentage (R) and removal capacity (qe) was
calculated using the following equations:

qe ¼ VðC0 � CeÞ
m

(1)

R% ¼ ðC0 � CeÞ
C0

� 100 (2)
Table 1 Surface elemental compositions (atomic weight percentage)
of silk fabric samples

Surface element

Sample (%)

SF TP-SF/Fe

N 10.94 6.41
O 17.84 29.95
C 70.75 61.02
Fe 0.46 2.62

8294 | RSC Adv., 2021, 11, 8290–8305
where C0 is the initial concentration of dye and Ce is the
concentration of dyes at different time intervals, qe (mg g�1) is
the amount of dye removal capacity, V (L) is the volume of the
solution and m (g) is the mass of adsorbent. The maximum
absorptionwavelength of the dye in the visible regionwas calculated
by C/C0 at lmax: (664, 591 and 475 nm for methylene blue, reactive
orange GRN and cationic violet X-5BLN). Dye removal is inuenced
by different factors such as the effect of contact time (5 to 40 min),
H2O2 concentration (0.01 to 5 mmol L�1), dye concentration (10 to
80 mg L�1) and pH (3 to 11). The pH was adjusted by using
0.1 mol L�1 HNO3 and 0.1 mol L�1 NaOH solutions.
2.5 Degradation mechanism

Based on the results described in the section above, the proposed
mechanism of MB, GRN and BLN dye degradation by TP-SF/Fe is
presented in Fig. 3. Ferrous ions can be mineralized into FeOOH by
TP-SF like PDA-SF.53The TP-SF/Fe-H2O2 catalyst can efficiently degrade
dyesdue to thepresenceofhydroxyl ionson the surfaceofTPs. TheTP-
SF/Fe-H2O2was considered for theFenton-like reaction in thepresence
of H2O2 which can catalyze the production of hydroxyl cOH radicals
from H2O2.54,55 The hydroxyl cOH radicals can break the existing azo
bond in dye molecules, thus destroying the structure of dyes.

The postulated reaction mechanism is shown in the three
following steps:
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Evolution over time of C/C0 for different catalyst samples in three dye solutions: (a) methylene blue, (b) reactive orange GRN, and (c)
cationic violet X-5BLN (sample: 0.1 g, H2O2 concentration: 0.1 mmol L�1, dye concentration: 20 mg L�1, time: 40 min, and T: 50 �C).
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(i) The process of producing the reactive species

Fe2+ + TP-SF / TP-SF/Fe (FeOOH)

FeOOH + H2O2 / FeOO� + cOH + H2O

(ii) The process of color removal of the dyes

Dyes + cOH / reaction intermediates

(iii) The process of mineralization

Reaction intermediates + cOH / CO2 + H2O + inorganics
3. Results and discussion
3.1 Characterization

3.1.1 FTIR analysis. To determine the presence of active
molecules in the stabilization of Fe2+ ions in SF, Fourier transform
infrared spectroscopy (FTIR) of SF and TP-SF/Fe was conducted. It
can be observed from Fig. 4 that the absorption peaks appearing at
3278, 2961 and 2933 cm�1 were attributed to the –OH and C–H
© 2021 The Author(s). Published by the Royal Society of Chemistry
stretching vibration belonging to polyphenols present in waste
silk, respectively.56,57 The band at 1617 cm�1 was attributed to the
stretching vibration of –C]O indicating bending of the untreated
and treated waste silk fabric. The band peaks appearing at 1511,
1439, 1225 and 1062 cm�1 represented the bending vibrations of
N–H, C–N, O–H and C–O–C, respectively.52 Moreover, the FT-IR
spectra of TP-SF/Fe with band peaks at 1261, 1156, 1093, 1018
and 798 cm�1 indicated the formation of Fe–O due to the presence
of TPs which conrms the loading of the iron particles.

3.1.2 EDS analysis. The elemental composition on the ber
surface before and aer treatment was evaluated using EDS
analysis (see Fig. 5 and 6). The major elements of C, N, and O
were observed in the EDS spectra. It is obvious from the EDS
spectra and maps that there are different surface element
compositions on the treated and untreated samples. Aer
loading of iron, the EDS spectrum showed the peak intensity of
the Fe element conrming the formation of TP-SF/Fe. Fig. 6(b)
shows the iron element of TP-SF/Fe, which is derived from the
presence of some Fe-oxides in tea-phenols.

3.1.3 SEM analysis. The surface morphology of the waste
silk before and aer modication was investigated through
SEM analysis as shown in Fig. 7. It is clear from the SEM
pictures that the surface of the SF is very smooth as shown in
Fig. 7(a) and (b). Conversely, the SEM image of the surface of TP-
SF/Fe was more rough (Fig. 7(c) and (d)), indicating that the
RSC Adv., 2021, 11, 8290–8305 | 8295
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Fig. 10 UV-visible spectral changes for the degradation of dyes: (a) methylene blue, (b) reactive orange GRN, and (c) cationic violet X-5BLN dye
degradation as a function of time (TP-SF/Fe ¼ 0.1 g, dye concentration ¼ 20 mg L�1, H2O2 concentration ¼ 1.0 mmol L�1, and T ¼ 50 �C).
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modied silk fabric is successfully covered by the tea-phenols/
Fe coating.58,59 However, it can be considered that the pres-
ence of functional groups on the surface of tea-phenols/Fe silk
fabric could be chosen as a research model for further studies.

3.1.4 XPS analysis. X-ray photoelectron spectroscopy (XPS)
was performed to compare and verify the oxidation states of
elements present on the surface of the fabric before and aer
treatment as shown in Fig. 8(a)–(d) and Table 1. It can be seen from
Fig. 8(a) that C, N, and O element peaks appear in the XPS spec-
trum of SF and TP-SF/Fe samples, but a peak corresponding to the
iron (Fe) element appears on the surface spectrum of TP-SF-Fe. In
addition, Fig. 8(b) and (c) display the C 1s spectra of the surface of
the SF and TP-SF/Fe samples, and the C 1s XPS spectra are tted to
the absorption peaks at 284.7, 285.7, 286.5 and 288.1 eV, corre-
sponding to the C–C, C–N, C–OH, and O–C O bonds, respec-
tively.60–62 Furthermore, Fig. 8(d) shows the core-level Fe 2p on the
surface of the TP-SF-Fe, and the characteristic peaks are attributed
to Fe 2p3/2 (711.1 eV) and Fe 2p1/2 (724.5 eV), respectively. There-
fore, the XPS results indicated that iron mineralization on the tea-
phenol coated silk bers existed in the oxidation state.

3.2 Factors inuencing the removal of dyes from aqueous
solution

3.2.1 The effect of different catalyst systems. The effect of
different samples for adsorption of methylene blue, reactive
8296 | RSC Adv., 2021, 11, 8290–8305
orange GRN, and cationic violet X-5BLN dyes was evaluated for
the Fe, Fe-H2O2, TP-SF, TP-SF-H2O2, TP-SF/Fe, and TP-SF/Fe-
H2O2 samples, in which the same amount of Fe2+ or TP was
applied. Fig. 9 shows that TP-SF/Fe-H2O2 is the most effective at
degrading dyes and the highest efficiency is about 98% for
methylene blue, 99% for reactive orange GRN, and 96% for
cationic violet X-5BLN dyes. The TP-SF and TP-SF-H2O2 dye
removal rate is lower and could not meet the requirements. In
addition, the dye removal efficiency for Fe and Fe-H2O2 is much
lower and does not show sufficient change. High efficiency
removal of dyes can be obtained with a high dosage of H2O2 in
the traditional Fenton reaction. It can be seen from Fig. 9 that
TP-SF/Fe resulted in a lower degradation rate; on the other
hand, TP-SF/Fe with a small amount of H2O2 (0.1 mmol L�1)
generated a strong reaction system, which effectively increased
the release rate of hydroxyl radicals and degraded most of the
dyes in a short time. This signies that the TP-SF/Fe-H2O2

samples are stable and can be used for dye degradation
experiments.

3.2.2 Effects of contact time for the degradation of dyes.
The function of contact time on dye removal is a vital factor for
cost minimization in industrial usage. In this work, Fenton-like
degradation of aromatic dyes (methylene blue, reactive orange
GRN and cationic violet X-5BLN) was carried out with different
contact times and analyzed by UV-Vis spectrophotometry. The
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 Evolution over time of C/C0 for the degradation of dye: (a) methylene blue, (b) reactive orange GRN, and (c) cationic violet X-5BLN dye
degradation as a function of H2O2 concentration (TP-SF/Fe ¼ 0.1 g, dye concentration ¼ 20 mg L�1, time ¼ 40 min, T ¼ 50 �C).
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Fenton-like reaction was constructed with iron loaded silk and
hydrogen peroxide (H2O2) for degrading organic pollutants. As
shown in Fig. 10(a)–(c), the contact time for the dye removal
process was kept at 40 min to optimize the adsorption uptake
with 0.1 g of sample, initial dye concentration of 20 mg L�1 and
at 50 �C. It can be seen from Fig. 10(a) that the MB dye exhibits
the maximum absorption peak intensity at 664 nm observed
with the function of the reaction time and aer 40 minutes the
most degradation is achieved.63 Furthermore, Fig. 10(b) and (c)
shows that the reactive orange GRN and cationic violet X-5BLN
dyes exhibit the maximum absorption peak intensity at 591 nm
and 475 nm aer 40 min of stirring, respectively.64–66 It can be
concluded that Fenton-like removal experiments using TP-SF/Fe
can reach sufficient degradation effects within 40 min.

3.2.3 Effects of H2O2 concentration. The degradation of
(methylene blue, reactive orange GRN and cationic violet X-
5BLN) dyes were carried out using different concentrations of
H2O2 (0.05, 0.1, 0.5, 1, 3, and 5 mmol L�1) and the results are
illustrated in Fig. 11(a)–(c). The dye removal capacity was eval-
uated by the terms of C/C0 aer reaction with different doses of
H2O2. Fig. 11 shows that, with an increase in H2O2 dose from 0.5
to 5 mmol L�1, the dye removal efficiency increased respectively
within 40 min of reaction due to the enhanced production of
hydroxyl radicals, and when the dose of H2O2 was 0.05 and
© 2021 The Author(s). Published by the Royal Society of Chemistry
0.1 mmol L�1, the dye degradation rate was insufficient.
However, the dose of 1 mmol L�1 of H2O2 was appropriate, and
the maximum degradation efficiency was obtained within
40 min in comparison to the other high concentration doses.
Furthermore, this phenomenon clearly indicated that high
concentrations of H2O2 cannot increase the degradation
efficiency.67,68

3.2.4 Effects of initial dye concentration. The wastewater
from textile industries typically has a wide range of color
concentration, which is extremely harmful to the environment.
The effect of initial dye concentration on the degradation of
methylene blue, reactive orange GRN and cationic violet X-5BLN
dyes was investigated at different times from 5 to 40min with an
adsorbent dose of 0.1 g and H2O2 concentration of 1 mmol L�1

at 50 �C. As shown in Fig. 12(a)–(c), different dye concentrations
(10, 20, 40, 60 and 80 mg L�1) are used to determine the effect of
dye concentration on the removal of dyes. The results presented
in Fig. 12(a) show that the maximum dye removal efficiency of
the initial concentration from 10–20 mg L�1 is obtained aer
reaction time at 40 min. As shown in Fig. 12(b) and (c), a similar
character has been found in the other two dyes (reactive orange
GRN and cationic violet X-5BLN) as a function of time.60

However, it can be observed that as the concentration of the dye
solution increases, the nal degradation rate gradually reduces.
RSC Adv., 2021, 11, 8290–8305 | 8297
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Fig. 12 Evolution over time of C/C0 for the degradation of dyes: (a) methylene blue, (b) reactive orange GRN, and (c) cationic violet X-5BLN dye
degradation as a function of dye concentration (TP-SF/Fe ¼ 0.1 g, H2O2 concentration ¼ 0.1 mmol L�1, time ¼ 40 min, and T ¼ 50 �C).
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Although for a maximum dye concentration of 80 mg L�1, the
degradation efficiency was the lowest compared with other
concentrations, but it still stayed over 91%, 83% and 91%,
respectively. This phenomenon could be due to the fact that in
the case of high dye concentration, the TP-SF/Fe catalyst can
form a stable reaction system with H2O2. At this time, the
hydroxyl radicals were not easy to neutralize, which increased
the possibility of contact with the dyes and eventually led to
a high removal.69,70 These results suggested that a 20 mg L�1

concentration could be the optimum dye concentration for the
highest removal rate.

3.2.5 Effects of pH. The dyeing wastewater from the dyeing
process of textiles has a wide range of pH values. The pH has an
important role both in the characteristics of textile waste and
the generation of hydroxyl radicals, which is greatly inuenced
in Fenton-like removal experiments by the surface of the cata-
lyst.71,72 The effect of the pH on the degradation experiments
was investigated by using different pH values in the range of 3–
10. The results obtained by the effect of pH on the degradation
efficiency of dyes are shown in Fig. 13. The pH of the working
solutions was maintained by using different amounts of
0.1 mol L�1 NaOH and 0.1 mol L�1 HNO3. It is apparent from
the results in Fig. 13(a) and (c) that the degradation efficiency is
high in acidic and basic conditions and the degradation is most
8298 | RSC Adv., 2021, 11, 8290–8305
rapid at pH 3 and 11. In addition, Fig. 13(b) shows that the
degradation efficiency gradually decreases at higher pH and most
of the dyes are degraded at pH 3. Strong acidic conditions are
conducive for the generation of hydroxyl radical groups, which
favor dye degradation and also the characteristics of the Fenton
reaction. However, under strong acidic conditions, the SF catalyst
surface takes a negative charge and can adsorbmore cationic dyes,
which could explain the result of Fig. 13(a) and (c).

3.3 Theory of adsorption isotherms

The analysis of isotherms methods is an important way to
accurately represent the relationship between adsorbent and
adsorbate for methylene blue, reactive orange GRN and cationic
violet X-5BLN. In this work, the models of Langmuir and
Freundlich isotherms are applied to recognize the range and
degree of favourability of adsorption.

3.3.1 Langmuir isotherms. The analysis is based on the
Langmuir isotherm models, which assume a homogeneous
surface with uniform adsorption energy and exclusive coverage
of the adsorbent. The linearized form of the Langmuir isotherm
model is expressed by the following eqn (3):

Ce

qe
¼ Ce

qm
þ 1

KLqm
(3)
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 13 Evolution over time of C/C0 for the degradation of dyes: (a) methylene blue, (b) reactive orange GRN, and (c) cationic violet X-5BLN dye
degradation as a function of pH (TP-SF/Fe ¼ 0.1 g, H2O2 concentration ¼ 0.1 mmol L�1, dye concentration ¼ 20 mg L�1, time ¼ 40 min, T ¼ 50 �C).
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In this equation, qe (mg g�1) is the absorbed amount of the dyes
(methylene blue, reactive orange GRN and cationic violet X-
5BLN) at equilibrium, Ce (mg L�1) is the equilibrium concen-
tration of the dye solution, KL is the Langmuir constant con-
nected to the free energy of adsorption, and qm (mg g�1) is the
Fig. 14 Langmuir adsorption isotherms for methylene blue, reactive
orange GRN, and cationic violet X-5BLN dyes.

© 2021 The Author(s). Published by the Royal Society of Chemistry
maximum adsorption capacity at a complete monolayer.73,74 The
Langmuir isotherm parameters are determined from linear
isotherm plots and the corresponding data are given in Fig. 14 and
Table 2. The results obtained from the correlation coefficient (R2

values) show that the Langmuir isotherm parameters are accept-
able and t for the dyes (methylene blue, reactive orange GRN and
cationic violet X-5BLN) and the maximum adsorption capacity is
13.0993 mg g�1 for the methylene blue dyes.

3.3.2 Freundlich isotherm. The Freundlich model is
applied to describe the adsorption of dye on a heterogeneous
surface by multilayer adsorption. The linearized Freundlich
isotherm adsorption model is exposed by eqn (4):

log qe ¼
�
1

n

�
log Ce þ log Kf (4)

where qe (mg g�1) is the amount of dye adsorbed per unit weight
of adsorbent, n is the Freundlich constant indicative of
Table 2 Langmuir adsorption constants of dyes on TP-SF/Fe

Type of dye qm (mg g�1) KL R2

Methylene blue 13.0993 1.9131 0.91012
Reactive orange GRN 5.2260 3.1307 0.9070
Cationic violet X-5BLN 6.1376 2.4449 0.9420

RSC Adv., 2021, 11, 8290–8305 | 8299
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Fig. 15 Freundlich adsorption isotherms for methylene blue, reactive
orange GRN, and cationic violet X-5BLN dyes.

Table 3 Freundlich adsorption constants of the dyes on TP-SF/Fe

Type of dye n Kf R2

Methylene blue 1.714 2.5307 0.9619
Reactive orange GRN 2.1728 1.7759 0.9953
Cationic violet X-5BLN 1.3887 2.1644 0.9991

Table 4 Pseudo-first order kinetics parameters for methylene blue,
reactive orange GRN, and cationic violet X-5BLN dyes on TP-SF/Fe

Type of dye qm (mg g�1) k1 R2

Methylene blue 1.5582 0.07217 0.9686
Reactive orange GRN 1.159 0.04364 0.9976
Cationic violet X-5BLN 1.0122 0.0385 0.9916
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adsorption concentration of the adsorbents, and Kf is the
Freundlich coefficient related to the adsorption capacity of the
dye adsorbed onto the adsorbent per unit equilibrium concentra-
tion. Freundlich parameters can be calculated and the values of n
and Kf are achieved from the linear isotherm plots of log qe versus
log Ce curves75,76 and their values are given in Fig. 15 and Table 3.
Fig. 16 Pseudo-first order kinetics for methylene blue, reactive
orange GRN, and cationic violet X-5BLN dyes.

8300 | RSC Adv., 2021, 11, 8290–8305
Furthermore, the results indicate that the correlation coefficient
values (R2 values) are tted for the methylene blue, reactive orange
GRN and cationic violet X-5BLN dyes. This also suggests that dye
removal on TP-SF/Fe may be multilayer coverage.
3.4 Adsorption kinetics

It is important to study the adsorption kinetics in dye removal
from aqueous solutions. The kinetics of adsorption can be
helpful to determine the adsorption capacity of dyes by TP-SF/
Fe. The adsorption kinetics of methylene blue, reactive orange
GRN and cationic violet X-5BLN dyes at different times were
analyzed by applying pseudo-rst order and pseudo-second
order kinetic models to recognize the solute absorption rate
and transient behavior of the adsorption process.

3.4.1 Pseudo-rst order kinetics. The linearized form of
pseudo-rst order is given by eqn (5):

ln(qe � qt) ¼ ln qe � k1t (5)

where qe (mg g�1) is the equilibrium adsorption capacity, qt (mg
g�1) is the adsorption capacity at time t, and k1 is the rate
constant of the pseudo-rst order model. The values of k1 and
adsorption capacity qe can be obtained from the slopes and
intercepts of the plots of ln(qe � qt) against t, respectively.
Moreover, the resultant parameters show that the correlation
coefficient values of different dyes for the pseudo-rst order
Fig. 17 Pseudo-second order kinetics for methylene blue, reactive
orange GRN, and cationic violet X-5BLN dyes.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Table 5 Pseudo-second order kinetics parameters for methylene
blue, reactive orange GRN, and cationic violet X-5BLN dyes on TP-SF/
Fe

Type of dye qm (mg g�1) k2 R2

Methylene blue 2.153 0.0738 0.9136
Reactive orange GRN 1.5049 0.1345 0.9598
Cationic violet X-5BLN 1.0299 0.1236 0.9039
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model are acceptable and tted (Fig. 16 and Table 4), indicating
that pseudo-rst order kinetics could be sufficient to describe
the adsorption mechanism of dyes on the surface of TP-SF/Fe
adsorbents.77,78

3.4.2 Pseudo-second order kinetics. The linearized form of
pseudo-second order is given by eqn (6):

t

qt
¼

�
1

qe

�
tþ 1

k2qe2
(6)

where qe (mg g�1) and qt (mg g�1) is the adsorption capacity at
time t and at equilibrium, respectively and k2 (g mg�1 min�1) is
the pseudo-second order rate constant. The values of the
pseudo-second order rate constant k2 and equilibrium adsorp-
tion volume qe can be determined from the slopes and
Fig. 18 Reusability analysis for the adsorption of methylene blue, reacti

© 2021 The Author(s). Published by the Royal Society of Chemistry
intercepts of the plots of t/qt versus t, respectively. The resultant
parameter indicates that the correlation coefficient values of
different dyes for the pseudo-second order model are also
acceptable and tted (Fig. 17 and Table 5). Moreover, the
analysis of kinetics studies conrmed that the pseudo-rst
equation model could t better than the pseudo-second order
equation for the dye adsorption.79,80
3.5 Reusability study

Reusability is an important factor in the dye removal process to
evaluate experimental uses with a cost-effective method. Fig. 18
shows the effect of reusability cycles on the removal of methy-
lene blue, reactive orange GRN and cationic violet X-5BLN dyes
and ve successive adsorption cycles are observed. In the study,
the recyclability of TP-SF/Fe for the degradation of dyes was
determined in the presence of 0.1 g of TP-SF/Fe and 0.1 mmol L�1

of H2O2 with a time of 30 min at pH 3, respectively. Aer every
experimental run, the TP-SF/Fe was washed with deionized water
and dried in a vacuum oven for repeated use. It was observed that
the reusability cycle of TP-SF/Fe on dye removal for the 5th cycle
was 98% for methylene blue, 79% for reactive orange GRN and
78% for cationic violet X-5BLN dyes. The reason may be that the
small molecular products of dye degradation are adsorbed or
complexed on the surface of TP-SF/Fe, which prevents them from
ve orange GRN, and cationic violet X-5BLN dyes.

RSC Adv., 2021, 11, 8290–8305 | 8301
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Table 6 A comparison of adsorption capacities for methylene blue
dyes using different adsorbents from previous research

Adsorbent qe (mg g�1) Reference

TP-SF/Fe 13.09 Present study
Orange peel 5.87 7
Titanate nanotubes (TNT24) 5.644 15
Polyethylene glycol 400 (Sn-PEG4) 7.3 16
Marine seaweed 5.23 36
Cu2O nanoparticles 2.08 56
Sawdust 4.89 74
Rice husk 9.83 75
Bamboo dust carbon 9.66 79
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catalyzing the decomposition ofH2O2 to produce hydroxyl radicals.
However, these results propose that the modied waste silk can be
used for dye removal activities.

Furthermore, this research shows that the adsorption capacity
of TP-SF/Fe for methylene blue is higher than many adsorbents
explored in the literature. It may well be used in textile dye removal
activities for its eco-friendliness, low-cost and satisfactory adsorp-
tion ability. The comparative results are listed in Table 6.
4. Conclusions

In this study, tea-phenol graed waste silk bers loaded with
iron particles (TP-SF/Fe) were successfully used as an adsorbent
for the efficient removal of methylene blue, reactive orange
GRN, and cationic violet X-5BLN dyes from aqueous solution.
The surface properties of TP-SF/Fe were investigated via FT-IR,
SEM, EDS, and EDX analyses, which conrmed the successful
loading of iron particles on the surface of TP-coated waste silk
bers. The TP-SF/Fe sample is a potential catalyst for the
Fenton-like removal of aromatic dyes. The experimental results
showed that pH is an important factor in the removal of dyes,
and the maximum adsorption (99%) of dyes was achieved at
30 min. Moreover, the elevated results of the adsorption of dyes
can be better explained based on the Freundlich adsorption
isotherm model and pseudo-second order kinetics. The catalyst
was reused ve times for each dye. Therefore, waste silk can be
used as a ber-based catalyst for the Fenton-like removal of
toxic pollutants from water.
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