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Derivatives of the new ring system benzolflpyrimidoll,2-dl[1,2,3]triazolo[1,5-a][1,4]diazepinone and its
cycloalkane and cycloalkene condensed analogues have been conveniently synthesized through a three-
step reaction sequence. An atom-economical, one-pot, three-step cascade process engaging five
reactive centers (amide, amine, carbonyl, azide, and alkyne) has been performed for the synthesis of
alicyclic derivatives of quinazolinotriazolobenzodiazepine using cyclohexane, cyclohexene, and
norbornene B-amino amides. The stereochemistry and relative configurations of the synthesized
compounds were determined by 1D and 2D NMR spectroscopy and X-ray crystallography. The reaction
was also performed using enantiomeric starting materials leading to enantiomeric
quinazolinotriazolobenzodiazepine with an ee of 95%. The synthesis of 9H-benzolflpyrimido[1,2-d][1,2,3]
triazolo[1,5-a][1,4]diazepinone, a new heterocyclic system, was achieved in a good yield using a retro

Diels—Alder (RDA) procedure. Some compounds were tested for antiproliferative activities against five
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Introduction

The development and synthesis of architecturally diverse and
complex molecules in an efficient, environmentally benign, and
atom-economic fashion have become extremely important in
the last several decades." As a solution to this challenging
problem, a multistep, one-pot procedure has been developed.
Because this type of procedure is based on several trans-
formations with bond forming taking place in a domino reac-
tion manner - which is also referred to as “pot economy”,* - it
minimizes time consumption and chemical waste generation.

Therefore, the development of a reaction sequence, that
assembles several components or transformations engaging
several reactive centers, is ideal for preparing complex struc-
tures. In general, the number of possible diastereomers
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human cancer cell lines of gynecological.

increases along with the number of components. Although
several successful examples have been reported,® because of the
difficulty of performing “one-pot” domino reactions with high
diastereoselectivity, the task is still challenging.*

Because of their high hit rates and pharmacological profiles,
privileged scaffold derivatives are especially suited for the prepara-
tion of molecular libraries as leads in medicinal chemistry.® Indeed,
only a few frameworks, described as privileged scaffolds, are the
main substructure for nearly 25% of all known drugs.® Being
considered as privileged heterocycles, quinazolinones, benzodiaze-
pines, and triazoles are found in many bioactive compounds.”™

Furthermore, various biologically active compounds con-
taining a triazole-fused 1,4-benzodiazepine unit, such as
protease inhibitors,' alprazolam," estazolam,"” and tri-
azolam," continuously attract the attention of organic and
medicinal chemists due to their medicinal potential.**"*®

Following our studies on diastereoselective, two-component
multi-functional domino ring-closure reactions and our project for
the synthesis of novel N-heterocycles with the focus on the bio-
logical potential of fused quinazolinones and triazoles,”** herein
we report our study with respect to the diastereoselectivity of a one-
pot, two-step cascade synthesis procedure of quinazolino-
triazolobenzodiazepines described by Guggenheim et al.”® and the
synthesis of a new series of alicyclic derivatives.

Our aim was (i) the synthesis of alicyclic derivatives of qui-
nazolinotriazolobenzodiazepine in an atom-economical, one-

© 2021 The Author(s). Published by the Royal Society of Chemistry
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pot, three-step cascade process engaging five reactive centers,
(ii) to examine the diastereoselectivity of the domino ring-
closure reaction of N-propargyl-substituted amino acids with
substituted and unsubstituted 2-azidobenzaldehydes, (iii)
elaboration of a retro Diels-Alder reaction (RDA) on norbornene
derivatives to prepare a new heterocyclic ring system and,
finally, (iv) to determine the antiproliferative properties of the
synthesized derivatives against a panel of human adherent
cancer cell lines by means of MTT assay.

Results and discussion

Alicyclic N-Boc-protected propargyl amides (£)-3, (£)-4, (£)-9,
and (£)-10 were prepared according to a previous procedure,
starting from the corresponding Boc-protected amino acids
(£)1, (£)-2, (£)-7, and (£)-8, using a mixture of N,N'-diisopro-
pylcarbodiimide (DIC) and hydroxybenzotriazole (HOBt) in
tetrahydrofuran.”»** The other starting materials, 2-azido-
benzaldehyde derivatives, were obtained by the addition of
sodium azide to 2-nitrobenzaldehydes in hexamethylphos-
phoramide (HMPA) following the procedure already described
in the literature.”®

Afterwards, the free amide bases, prepared by an acidic
deprotection of amides (+)-3, (+)-4, (+)9, and (+)-10 were
reacted further without purification. Namely, a one-pot, two-
step cascade process was carried out by reacting the corre-
sponding 2-azidobenzaldehyde derivatives with the alicyclic
propargyl amides under reflux in EtOH in the presence of iodine
or p-toluenesulfonic acid as catalysts for 2 h. The main products
(£)-5a-¢, (+)-6a-c, (£)-11a-c, and (+)-12a-c were obtained after
crystallization from Et,O followed by recrystallization from
diisopropyl ether-EtOH (Schemes 2 and 3).

In the cascade process of alicylic 2-aminocarboxamides with
2-azidobenzaldehydes involving five reactive centers, first
a Schiff base is produced, which undergoes a ring-closure
reaction to give quinazoline epimers through a ring-chain
tautomerism. The next step is an intramolecular azide-alkyne
1,3-dipolar cycloaddition delivering the penta- and hexacyclic
ring systems (Scheme 1).>

This designed cascade process is atom economic as
described by Trost,>**” as the process maximizes the incorpo-
ration of both reagents into the final compound without any by-
product, with a given consideration to the use of stoichiometric
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Scheme 1 The domino reaction pathway.
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Scheme 2 Synthesis of octahydrobenzol5,6][1,2,3]triazolo-[5",1":3,4]
[1,4]diazepino(7,1-blquinazolin-11(9H)-one (+)-5a-c and (+)-6a-c.
Reagents and conditions: (i) DIC, HOBt, propargylamine, THF, r.t.,, 24 h,
84% (ii) 1. HCl/H,0O 10%, r.t., 4 h 2. NaOH, H,O/CHCls, 3. I, or p-TSA, 2-
azidobenzaldehyde derivative, EtOH, reflux, 2 h, 69-76%.

quantities for both reagents.”® Moreover, it is also employing
environmentally benign iodine as a catalyst. Furthermore, the
process is step economic, minimizing the number of reactions
steps to the bare minimum, as described by Wender,*** with
the possibility to form two epimers of (£)-5a-c, (+)-6a-c,
(£)-11a-c, and (+)-12a-c.

In all cases, the "H NMR spectra revealed the formation of the
single epimers of quinazolino[1,2,3]triazolo-[1,4]benzodiazepines
(£)-5a-¢, (+)6a-c, (+)11la-c, and (+)12a-c. The total NMR
signal assignment was carried out for these compounds. Charac-
teristic NOE crosspeaks were found between the protons C;q,H,
CisoH, and Cye,H for cyclohexane cis-condensed (+)-5a-¢ and
cyclohexene cis-condensed (+)-11a—c derivatives.

This allowed the deduction of the relative configuration of
the new asymmetric center, which is in cis arrangement with the
Ci1.H and Cy5,H hydrogens. For cyclohexane trans-condensed
(£)-6a-c and cyclohexene trans-condensed (+)-12a-c, the rela-
tive configuration of the new asymmetric center C;6,H is in cis
arrangement with the C;5,H proton as shown by their NOE
crosspeaks. Furthermore, the stereochemistry of (+)-5a and
(£)-6a was also confirmed by X-ray diffraction analysis (Fig. 1).

Our study was extended to racemic norbornene derivatives
(Scheme 4), and for further examination, the reaction was
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Scheme 3 Synthesis of hexahydrobenzol5,6][1,2,3]triazolo-[5",1":3,4]
[1,4]diazepinol7,1-blquinazolin-11(9H)-one (+)-1la—c and (+)-12a-c.
Reagents and conditions: (i) DIC, HOBt, propargylamine, THF, r.t., 24 h,
72-74% (i) 1. HCU/H,O 10%, r.t., 4 h 2. NaOH, H,O/CHCls, 3. |, or p-
TSA, 2-azidobenzaldehyde derivative, EtOH, reflux, 2 h, 66-77%.

RSC Adv, 2021, 11, 6952-6957 | 6953


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0ra10553h

Open Access Article. Published on 10 February 2021. Downloaded on 11/6/2025 4:48:24 PM.

RSC Advances

(+)-5a (¢)-6a
Fig.1 ORTEP plot of the X-ray structure of (+)-5a, (+)-6a.
[o} (o}

/

H
e
H
" NHBoc

g @15

/_Q ‘ i 62-70%

H
(L
H NHBoc

("‘) -16

/_Q I i 64-69%

H
i @COOH i
9 9
72% NHBoc 75%
H
(%)-13: diendo

(%)-14: diexo

12H a 12H
g N b:R=ClI
B HHH c.R=Br '5HHH

R

(#)-17a-c: -11a,t-12,t-15,c-15a,c-16a (¥)-18a-c: -11a,c-12,c- 15 c-15a,c-16a

Scheme 4 Synthesis of hexahydro-methanobenzol5,6][1,2,3]triazolo-
[5',1":3,4][1,4]diazepino(7,1-b]lquinazolin-11(9H)-one  (+)-17a-c and
(£)-18a—c. Reagents and conditions: (i) DIC, HOBt, propargylamine,
THF, rt., 24 h, 72-75% (ii) 1. HCI/H,O 10%, r.t., 4 h 2. NaOH, H,O/
CHCls, 3. I, or p-TSA, 2-azidobenzaldehyde derivative, EtOH, reflux,
2 h, 62-70%.

performed with enantiomerically pure norbornene starting mate-
rials to obtain enantiomerically pure products, followed by the
investigation of a potential RDA reaction. The racemic N-Boc-
protected amino acids were prepared from the corresponding
amino acids according to an earlier method.* Following the same
procedure, the synthetic route was fully diastereoselective giving
the single epimers (+)-17a-c and (£)-18a—c.

Full NMR signal assignment followed by stereochemistry inves-
tigation by NOE crosspeaks revealed the relative configuration of the
CisaH protons to be in a cis arrangement with the annelated
hydrogen atoms Cy1,H and C;s,H for diendo (+)-17a-c and diexo
(£)-18a—c derivatives. The stereochemistry was further confirmed by
X-ray diffraction analysis of the single crystal of (+)-17¢ (Fig. 2).
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Fig. 2 ORTEP plot of the X-ray structure of (+)-17c.
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Scheme 5 Transformation of enantiomeric diendo N-Boc protected
amino acid (—)-13. Reagents and conditions: (i) DIC, HOBt, prop-
argylamine, THF, r.t., 24 h, 75% (i) 1. HCl/H,O 10%, r.t., 4 h 2. NaOH,
H,O/CHCls, 3. |, or p-TSA, 2-azidobenzaldehyde derivative, EtOH,
reflux, 2 h, 70%.

In further studies, enantiomerically pure diendo N-Boc-
protected amino acids, prepared following the procedure
described in a previous work, were used as chiral sources.** The
reaction was performed with both (—)-13 and (+)-13. Note,
however, that only a single enantiomer is shown in Scheme 5 to
represent the process. The reaction was carried out under
conditions applied previously, starting from enantiomeric N-
Boc-protected amino-acid (—)-13 (ee > 90%). Product (+)-17a was
obtained with a relatively good enantiomeric excess (ee > 84%).
On the other hand, (—)-17a was isolated with higher enantio-
meric excess (ee > 95%) starting from (+)-13 (ee > 95%).

The next goal of our present work was the application of the RDA
reaction of these specific structures to obtain the new ring system
benzo[f]pyrimido[1,2-d][1,2,3]triazolo[1,5-a][1,4]diazepinone.

The investigation of the RDA reaction conditions was per-
formed on both diendo (£)-17a and diexo (+)-18a derivatives.
Unfortunately, the diexo (+)-18a product led only to degradation
or no reaction under all tested conditions. Consequently, only
the transformation of diendo (£)-17a derivative is shown in
Scheme 6 and discussed below.

Table 1 lists the results of our efforts to find appropriate
reaction conditions for the transformation of (+)-17a including
both classic and modern organic synthesis techniques for the
synthesis of compound 19. The flow reactor showed tempera-
ture limitations not reaching high enough temperatures for our
procedure. Likewise, the use of classic batch reactor gave
unsatisfactory results even at high temperature.

The only successful attempt was the use microwave irradia-
tion in a microwave vial in 1,2-dichlorobenzene as solvent at
220 °C for 30 min, generating pyrimidotriazolobenzodiazepine
19, a novel N-heterocyclic ring system. The NMR signal assign-
ment of the obtained product shows the loss of both the
cyclopentadiene moiety and the hydrogen of the asymmetric
center. These results can be explained by the instability of

quinazolinotriazolo-benzodiazepine (+)-17a under high
" o o o
7 "N 4 ,',\l 7 /N
N 1
N/\ﬁl’\ll | N N-N | B N-N
N - N TN
HHH HH
()-17a 19

Scheme 6 RDA reaction of diendo (+)-17a. Reagents and conditions:
see in Table 1.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Table 1 RDA reaction of (+)-17a investigated under varied conditions
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Methods Conditions

Compound (yield)

Batch reactor
Batch reactor
Batch reactor
Flow reactor

Flow reactor
Microwave reactor

Toluene, reflux, 30 min
1,2-Dichlorobenzene, reflux, 30 min
Solvent free, 220 °C, 30 min

Toluene, 180 °C, 30 min
Toluene/Methanol (4 : 1), 180 °C, 30 min
Toluene, 180 °C, 30 min

No reaction
19 (traces)
19 (traces)
No reaction
No reaction
No reaction

Microwave reactor 1,2-Dichlorobenzene, 220 °C, 30 min 19 (66%)
Table 2 In vitro antiproliferative activity
Growth inhibition (%) = SEM
Compound Concentration (uM) A2780 HeLa MCF-7 SiHa MDA-MB-231
(£)-5a 10 <10“ <10 <10 <10 <10
30 <10 <10 <10 <10 <10
(£)-6a 10 <10 <10 <10 <10 <10
30 <10 <10 <10 <10 <10
(£)11a 10 <10 <10 <10 <10 <10
30 <10 <10 <10 11.17 £ 1.84 <10
(£)-12a 10 <10 <10 <10 <10 <10
30 <10 <10 <10 <10 <10
(£)17a 10 <10 <10 <10 <10 11.08 + 1.06
30 <10 15.04 £ 2.16 36.74 + 3.51 17.81 £ 1.19 14.06 + 0.92
(£)-18a 10 <10 <10 <10 16.32 £+ 1.85 <10
30 <10 <10 <10 18.93 + 2.29 <10
20 10 <10 <10 <10 15.56 £+ 1.82 <10
30 <10 25.52 £+ 1.32 55.34 £+ 2.15 19.07 £+ 1.34 <10
21 10 <10 17.59 £ 0.88 <10 <10 <10
30 <10 70.86 + 2.29 67.39 £+ 2.37 26.03 £+ 0.98 <10
(£)-22 10 <10 <10 <10 <10 <10
30 <10 <10 <10 <10 <10
(£)-23 10 <10 <10 <10 <10 <10
30 <10 <10 <10 <10 <10
(£)-24 10 <10 <10 <10 <10 <10
30 <10 <10 19.38 £ 1.17 <10 11.45 + 0.88
(£)-25 10 <10 <10 <10 <10 <10
30 <10 12.07 £ 1.12 39.19 + 1.98 12.44 + 2.10 <10
Cisplatin 10 83.57 =+ 1.21 42.61 £+ 2.53 53.02 £ 1.78 88.64 + 0.61 20.84 £ 0.81
30 95.02 £ 0.36 99.94 + 0.26 89.92 + 2.13 90.15 + 1.58 74.47 £ 1.20

¢ Cell growth inhibition values lower than 10% were considered negligible and were not given numerically.

temperature leading to an oxidation of the starting compound
of the domino process before the RDA reaction can take place.

This statement can also be confirmed by the result of
a literature study, where a similar oxidation side product was
isolated even at a temperature much lower than that used in our
RDA reaction.”

In vitro antiproliferative activity

The effects of the newly synthesized and structurally related
compounds on the tested cancer cell lines are presented in
Table 2. The synthesis of fused N-heterocyclic quinazoline
derivatives 20 was described by Guggenheim et al,*® 21 was
reported by Madhubabu et al.,** while the synthesis of derivates
(£)-22, (£)-23, (£)-24, and (£)-25 containing a 1,2,3-triazole ring
was published in our previous work (Fig. 3).>

© 2021 The Author(s). Published by the Royal Society of Chemistry

Most of the compounds elicited negligible growth inhibiting
action against the utilized cancer cells. None of the substances
elicited >10% inhibition on ovarian (A2780) cancer cells. MCF-7
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Fig. 3 Structure of literature compounds??#2” 20—-(+)-25 subjected
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(breast) and HeLa (cervical) cells are more sensitive than SiHa
(cervical) or MDA-MB-231 (breast) cell lines. Concerning the
diazepine analogues, the condensed aromatic ring may confer
some limited activity and the configuration of the annelation
seems irrelevant.

The importance of the aromatic ring has been confirmed in
the case of quinazoline derivatives with 21 being the most
effective compound in the current set.

Conclusions

In summary, the preparation of alicyclic derivatives of quina-
zolinotriazolobenzodiazepine was achieved, using iodine or p-
TSA as catalyst under green conditions in good yields. The
diastereoselectivity of the three-step cascade process engaging
five reactive centers (amide, amine, carbonyl, azide, and alkyne)
was proved by NMR and X-ray methods. Moreover, this was
shown to be consistent throughout the studied scope. The
investigation of the RDA process led to a novel heterocyclic ring
system, pyrimidotriazolobenzodiazepine, in a relatively high
yield using microwave irradiation. The simplicity of this process
with the use of accessible starting materials and the wide scope
are the major features to make the current protocol valuable.
Most of the presented analogues have no substantial anti-
proliferative activity, while some compounds exerted a modest
inhibition against some cancer cell lines at higher
concentration.
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