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ient route to one-pot synthesis of
new cyclophanes using vinamidinium salts†

Nooshin Golzar, Abdolmohammad Mehranpour * and Najmeh Nowrouzi

In this study, an efficient method for the synthesis of new cyclophanes (5a–f, 6a–g) through the

condensation of 1,4-phenylenedimethanamine (3) or 2,3,5,6-tetramethylbenzene-1,4-diamine (4) with 2-

substituted vinamidiniums (2a–g) is described. The cyclophane derivatives are obtained in good to

excellent yields in the presence of acetic acid in refluxing acetonitrile after 15 h. The structure of new

compounds was validated based on their spectral data (1H NMR, 13C NMR, IR) and elemental analysis.
Introduction

The structure of a vast range of macromolecules1 conrmed that
the design and construction of macrocyclic compounds has
been one of the most important reasons for improvement in
supramolecular science. A well-known group of macrocyclic
compounds are cyclophanes and their particular chemistry has
attracted the attention of researchers, recently2 and has been
broadly discussed within the eld of modern supra-molecular
chemistry.3,4 Cyclophanes5–42 are constrained organic mole-
cules consisting of aromatic ring(s) as well as aliphatic unit(s).
The aromatic rings support the rigidity of their structure, while
the aliphatic unit(s) create bridge(s) between the aromatic rings
and cause the exibility of the whole structure.

Due to their special structure, they are considered as an
important class of compounds in “host–guest” chemistry43–47

and supramolecular assembly.48–51 On the other hand, the clear
structure and high strain of cyclophanes has contributed in
a large number of applications such as pharmaceuticals,52,53
the cyclophane skeleton.

nces, Persian Gulf University, Bushehr,

ail.com

tion (ESI) available. See DOI:

673
asymmetric catalysis,54 insulating plastics,55 organic elec-
tronics,56 metal capture57,58 and supramolecular chemistry.59

Besides, since cyclophane structure is the main foundation unit
in many biologically active natural products (Fig. 1),60–62 their
design and application is a special interest of groups working in
Scheme 1 Reported methods for the synthesis of cyclophanes.
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Scheme 2 Application of vinamidinium salts in organic synthetic
chemistry.
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elds including biological, medicinal and organic chemistry.
Moreover, cyclophanes are attractive in the area of theoretical
chemistry due to their particular topology and intra-molecular
interactions.

So far, several methods have been reported for the synthesis
of cyclophanes compounds63–66 (Scheme 1). In some instances,
cyclophanes are formed in low yields and also with side prod-
ucts. Some procedures require many steps or harsh reaction
conditions such as high-pressure, and difficult separation
Scheme 3 Synthesis of cyclophanes.

© 2021 The Author(s). Published by the Royal Society of Chemistry
methods. Therefore, designing better routes and improving
conditions to achieve cyclophanes is still needed.

Vinamidinium salts are examples of stabilized alkenes by
“push–pull” inuences between the electron-donating amino
group and the electron-withdrawing ammonium group. They
can easily undergo condensation reaction with bifunctional
nucleophiles to form heterocycles. During past years, our group
has been investigated the utilization of vinamidinium salts for
the synthesis of heterocyclic compounds67–76 (Scheme 2).
Results and discussion

In continuation of these studies and due to the importance of
cyclophanes in different branches of sciences, we decided to
investigate the one-pot synthesis of cyclophanes from vinami-
dinium salts (Scheme 3). To the best of our knowledge, vina-
midinium salts have not yet been applied for preparing
cyclophanes.

As shown in Scheme 3, the procedure is done in two-step: (i)
synthesis of the 2-substituted vinamidinium salts (2a–g) by the
Vilsmeier–Arnold formylation of the substituted acetic acids
(1a–g) as explained in authors previous work;67–76 and (ii)
synthesis of cyclophane derivatives (5a–f, 6a–g) by the reaction
of 2-substituted vinamidinium salts (2a–g) with 1,4-
Table 1 Effect of the different reaction parameters on the reaction of
1,4-phenylenedimethanamine (3) with ((E)-N-(3-(dimethylamino)-2-
(naphthalen-1-yl)allylidene)-N-methylmethanaminium perchlorate
(2f))

Entry Condition Solvent Time (h) Yielda (%)

1 AcOH (3 mmol) EtOH/reux 24 43
2 AcOH (3 mmol) MeOH/reux 24 36
3 AcOH (3 mmol) CH3CN/reux 15 90
4 AcOH (3 mmol) CHCl3/reux 24 35
5 AcOH (3 mmol) CH2Cl2/reux 24 Trace
6 AcOH (3 mmol) Toluene/reux 24 —
7 AcOH (3 mmol) DMF/100 �C 24 45
8 Et3N (3 mmol) CH3CN/reux 24 —
9 i-Pr2NEt (3 mmol) CH3CN/reux 24 —
10 — CH3CN/reux 24 —
11 AcOH (4 mmol) CH3CN/reux 15 90
12 AcOH (2 mmol) CH3CN/reux 24 64
13 AcOH (1 mmol) CH3CN/reux 24 40

a Isolated yield.
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phenylenedimethanamine (3) or 2,3,5,6-tetramethylbenzene-
1,4-diamine (4) by applying acetic acid in acetonitrile as solvent.

In the rst step, vinamidiniums were isolated as the
perchlorate salts and used directly without additional purica-
tion for the synthesis of cyclophanes.

As illustrated in Scheme 3, the symmetrical vinamidinium
salts (2a–g) were able to react with 1,4-
Table 2 The synthesis of cyclophane derivatives from the reaction
enedimethanamine (3) (1.0 mmol) in the presence of AcOH (3.0 mmol)

Entry R+ or R

1

2

3

4

5

a Isolated yield.

13668 | RSC Adv., 2021, 11, 13666–13673
phenylenedimethanamine (3) or 2,3,5,6-tetramethylbenzene-
1,4-diamine (4) in reuxing acetonitrile in the presence of ace-
tic acid for 15 h to manage the cyclophane derivatives (5a–f, 6a–
g). To provide the best reaction conditions in second step, the
reaction of vinamidinium salt 2f with 1,4-phenylenedimethan-
amine (3) was chosen as model reaction and the impacts of
solvents and catalysts were investigated. The obtained results
of 2-substituted vinamidinium salts (2a–g) (1.0 mmol), 1,4-phenyl-
in CH3CN (8.0 mL) at reflux conditions

Yielda (%)

87

90

83

88

90

© 2021 The Author(s). Published by the Royal Society of Chemistry
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are summarized in Table 1. When EtOH and MeOH were
applied as the solvent and the mixture was subjected to reux in
the presence of AcOH, the desired product, 5f, was achieved in
Table 3 The synthesis of cyclophane derivatives from the reaction of
thylbenzene-1,4-diamine (4) (1.0 mmol) in the presence of AcOH (3.0 m

Entry R+ or R

1

2

3

4

5

6

7

a Isolated yield.

© 2021 The Author(s). Published by the Royal Society of Chemistry
low yields (43% and 36%, respectively) aer 24 h (Table 1,
entries 1 and 2). In a modied protocol, the reaction was carried
out in reuxing acetonitrile. In this case, remarkable
2-substituted vinamidinium salts (2a–g) (1.0 mmol), 2,3,5,6-tetrame-
mol) in CH3CN (8.0 mL) at reflux conditions

Yielda (%)

77

86

80

82

81

90

87
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improvement of yield was observed (Table 1, entry 3). No better
results were obtained when the reaction was carried out in
DMF, CHCl3, CH2Cl2 or toluene (Table 1, entries 4–7). There-
fore, the subsequent reactions were carried out in CH3CN.

Aer choosing the solvent, the model reaction was con-
ducted under neutral and basic conditions. As shown in entries
8 and 9 of Table 1, in the presence of basic catalysts such as
triethylamine and ethyldiisopropylamine, the desired product
5f, was not achieved. In neutral conditions also, no product was
formed (Table 1, entry 10). Increasing the amount of AcOH did
not affect the reaction appreciably, while, decreasing the
amount of AcOH, resulted the product in lower yield (Table 1,
entries 11–13). So, acidic media is critical to the success of the
reaction.

We then applied the obtained optimized conditions for the
reaction of different vinamidinium salts with 1,4-phenyl-
enedimethanamine (3). The results are listed in Table 2.

The results demonstrated that the variety of vinamidinium
salts were successfully employed in this process, affording novel
cyclophanes in high yields in suitable reaction times.

Aer successful application of 1,4-phenylenedimethan-
amine (3) in cyclophane synthesis, to enhance the generality of
Scheme 4 The proposedmechanism for the synthesis of cyclophanes
in the presence of AcOH.

13670 | RSC Adv., 2021, 11, 13666–13673
the system, we applied 2,3,5,6-tetramethylbenzene-1,4-diamine
(4) as bifunctional nucleophile and investigated the formation
of new cyclophanes.

2,3,5,6-Tetramethylbenzene-1,4-diamine (4) was also toler-
ated well in this procedure to give the desired products (Table
3).

According to our previous works and above results,
a reasonable mechanism for the synthesis of cyclophane
compounds (5a–f, 6a–g) in the presence of AcOH is illustrated in
Scheme 4.

The reaction proposed by the initial attack of the amino
group in 1,4-phenylenedimethanamine (3) or 2,3,5,6-
tetramethylbenzene-1,4-diamine (4) to protonated vinamidi-
nium salt. Then, removal of dimethylamine occurs, followed by
the nucleophilic attack of second molecule of amine on the
obtained iminium salt to produce intermediate A. The loss of
the second dimethylamine molecule produces intermediate B.
The reaction of this intermediate with the second molecule of
vinamidinium salt, followed by the loss of two dimethylamine
molecules and intramolecular nucleophilic cyclization, yields
the desired cyclophane.
Conclusion

In this study, an efficient and applicable protocol has been
developed for the synthesis of novel cyclophanes by the reaction
of 2-substituted vinamidinium salts with 1,4-phenyl-
enedimethanamine or 2,3,5,6-tetramethylbenzene-1,4-diamine
in the presence of acetic acid.

This protocol has several advantages such as: simple and
one-step procedure, absence of by-products, inexpensive cata-
lyst, normal atmospheric conditions, high to excellent yields
and easy purication of the products. Furthermore, the prod-
ucts are well-known, stable solids and have a long shelf-life
when stored in an anhydrous environment.
Experimental section
General procedure for the synthesis of cyclophane derivatives
(5a–f, 6a–g)

To a ame dried one-necked round-bottomed ask equipped
with magnetic stirring and reux condenser, 2-substituted
vinamidinium salts (2a–g) (1.0 mmol), 1,4-phenyl-
enedimethanamine (3) or 2,3,5,6-tetramethylbenzene-1,4-
diamine (4) (1.0 mmol), AcOH (3.0 mmol) and CH3CN (8.0
mL) were added. The mixture was allowed to reux for 15 h in
an oil bath. Aer completion of the reaction, distilled H2O (20
mL) was added to the mixture. The resulting precipitate was
gathered, washed with Et2O (3 � 3 mL). Finally, the precipitate
was washed with 2-propanol (3 � 3 mL) and dried under
vacuum at 80 �C to afford the corresponding cyclophanes.
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