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The understanding of the relationship between molecular structure and the formation of the nematic twist-
bend phase is still at an early stage of development. This is mainly related to molecular geometry, while the
correlation between the nematic twist-bend phase and the electronic structure is ambiguous. To explore
the electronic effect on properties and stabilization of the nematic twist-bend phase we investigated
2',3-difluoro-4,4"-dipentyl-p-terphenyl dimers (DTC5Cn). We used polarized fourier transform infrared
spectroscopy, which can, at least in principle, provide information about the ordering in the twist-bend
phase. All dimers show a significant drop in the average value of the transition dipole moment for
parallel dipoles at the transition from the nematic to the twist-bend phase, and an increase for
perpendicular dipoles, despite remaining unchanged for the monomer. Density functional theory
calculations were used to determine the geometric and electronic properties of the hydrogen bonded
complexes. We have provided experimental and theoretical evidence of stabilization of the nematic
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Introduction

The structure-property relationships for liquid crystal dimers has
been extensively studied; leading to the common belief that
molecular curvature is necessary for the formation of the nematic
twist-bend (Nyg) phase. The stabilization of the phase increases
as the molecular bending angle, defined as the angle between the
two mesogenic arms, decreases.*™ In addition to molecular
bending, several reports have suggested that intramolecular
torsion, conformational distributions, bending angle fluctua-
tions, and the effect of free volume can affect the transition
temperature Tyrpn and can also influence the stability of the Nyg
phase. The key observation of recent experiments is that on
cooling the dimers through the N-Npg phase transition the
correlation length of the spatial periodicity drops, while the
heliconical orientational order becomes more -correlated.’
Despite these efforts, the relationship between molecular struc-
ture and the formation of the N phase is still at an early stage of
development. This is mainly related to molecular geometry, while
the correlation between the Nrg phase and the electronic struc-
ture of the molecules responsible for phase formation is
ambiguous. The geometry of helices and their close-packed
structures is essential to characterize the geometric properties
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twist-bend phase by arrays of multiple hydrogen bonds (XF---HX, X—benzene ring).

of helices traced by atoms in liquid crystalline molecules because
their function is driven by structure and dynamics.

Recently, there have been several reports on the induction of
the twist-bend phase (Nyg) in LCs dimers using hydrogen
bonds.*® Intermolecular hydrogen bridges have a direct impact
on the structure and durability of the molecular network. This is
related to the energy of the system as well as to the configura-
tion of the periodic arrangement of the molecules. The role of
hydrogen bonding in the formation of liquid crystallinity in
mixtures containing bipyridines and 4-pentoxybenzoic acid
(supramolecular aggregates) has been well investigated using
Fourier Transform Infrared Spectroscopy (FTIR).>™*

Hydrogen bonding interactions play an important role in many
chemical and biological systems. Fluorine acting as a hydrogen-
bond acceptor in intermolecular and intramolecular interactions
has been the subject of many controversial discussions and there
are differing opinions about it."*** There is sample experimental
and computational evidence for the propensity of fluorine to
participate in hydrogen bonding.*** The incorporation of one or
more fluorine moieties in a molecule can dramatically change its
properties through a direct and/or indirect effect of the fluorine
atoms.'*** In this paper we employ polarized Fourier Transform
Infrared (FTIR) to study the orientational order of the DTC5Cn
terphenyl dimer series. We have provided experimental and
theoretical evidence of stabilization of the nematic twist-bend
phase by arrays of multiple hydrogen bonds.
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Experimental
Materials

To explore the electronic effect on properties and stabilization
of the N1g phase and a delicate interplay between the Npg structure
and the strength of the intermolecular interaction we investigated
bent-shaped dimers containing double fluorinated terphenyl
moiety (Fig. 1). In the present paper we used FTIR polarized
spectroscopy to measure all absorbance components of the
homologous series of difluoroterphenyl dimers DTC5Cr, with odd
numbers of carbons in the linkage, n = 5, 7, 9, 11. Detailed
synthesis is presented in the paper by W. D. Stevenson et al.’ The
sample for the FTIR study was aligned in between the two optically
polished ZnSe windows. In order to obtain the homogeneous
orientation of molecules, windows were spin coated with a SE-130
commercial polymer aligning (Nissan Chemical Industries, Ltd).
The cells were assembled with parallel arrangement of the rubbing
direction. In order to obtain the homeotropic alignment of
samples we used a commercial solution of the AL 60702 polymer
(JSR Korea). Mylar foil was used as a spacer and thickness of cells
fabricated was determined to be in the range from 5.1-5.6 pm, by
the measurements on the interference fringes using a spectrom-
eter interfaced with a PC (Avaspec-2048). The sample was capillary
filled by heating the empty cell in the nematic phase, five degrees
below the transition to the isotropic phase. The quality of the
alignment has been tested using polarizing microscopy. The
texture of the sample was monitored using a polarizing
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MTCS: Cr 34 N 116.5 Iso

DTCS5CS: Cr 103.3 Sm 114.7 N1s 121.6 N 134.0 Iso

DTCSC7: Cr 98.6 N1 127.5 N 156.6 Iso
DTC5C9: Cr 95.9 N1 127.9 N 165.8 Iso
DTCSC11: Cr 94.3 Nt 1225 N 166.7 Iso
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microscope that was used for identifying the phase prior to its
investigation by polarized FTIR spectroscopy.

Infrared spectroscopy

The infrared spectra were recorded using an Agilent Cary 670
FTIR spectrometer with a resolution of 1 cm ™" and these spectra
are averaged over 32 scans. The experiment was performed
using transmission method with polarized IR beam (Fig. 1b). An
IR-KRS5 grid polarizer is used to polarize the IR beam. The IR
spectra have been measured as a function of the polarizer
rotation angle in the range 500-4000 cm™ ' of wavenumbers.
Measurements were performed on slow cooling and heating at
the rate of 0.1 K min~". Temperature of the sample was stabi-
lized using PID temperature controller within £2 mK.

In an orientationally ordered material the absorbance
components are dependent on the angle between the alignment axis
and the polarization direction of the incident beam. At a micro-
scopic level, the infrared absorption depends on the angle between
the molecular transition dipole moment y; of the particular
absorption band and the polarization of the IR beam. The average IR
absorbance A, = (Ax + Ay + Az)/3, of the particular vibrational modes
are determined by how the electric dipole moment of the system
changes with the atomic oscillations. To the lowest order, the
required quantities are proportional to the derivatives of the dipole
moment with respect to the vibrational normal modes, i, of the
system, evaluated at the equilibrium geometry. The IR absorbance
of the iy, vibrational mode is given by**

Fig.1 2/,3'-Difluoro-4,4"-dipentyl-p-terphenyl dimers (DTC5Cn) (n =5, 7, 9, 11). (a) Transition temperature and molecular structure of DTC5Cn.
(b) Schematic of polarized infrared transmission technique at a normal incidence of light. (c) Simulated structure of the helical conformer of
DTC5C5 molecule. g —angle, that para-axes of rigid cores make with each other.
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in
where: N is the number of molecules per unit volume, u is the
molecule dipole moment, and Q; is the normal coordinate
corresponding to the iy, mode.

For an anisotropic system the use of vibration spectroscopy
can provide information about the orientational order of indi-
vidual functional groups of molecules, and also about specific
intramolecular and intermolecular interactions of these groups.
In the LC phases the absorbance components of the selected
vibrational band are related to the orientation of corresponding
transition dipole moments.

A= J'”z A()dv (1)

o Nt d.,LLl 2
1 - 3¢
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a few steps. All possible conformation of dimers we have consid-
ered is defined by the values of dihedral angles ¢;-¢g (Fig. 1a). In
the first stage the energy barriers for the internal rotation of the
terphenyl (torsional angles ¢, and ¢3) have been determined. In
a further step, energy barriers for the rotation around the dihedral
angle (¢4, @4) between terphenyl and the linker/tail in the MTC5
monomer were determined. The approximate potential energy
functions have been calculated at intervals of 10. In the calcula-
tions, the torsional angles (¢1-¢,, each in turn) fixed at arbitrary
selected values while the other geometrical parameters were opti-
mized; relaxed potential energy scans were performed. This
procedure allowed determining the values of torsion angles for
which the minimum energy was obtained. As the energy barrier for

Axy = Ay — BBS{(ui)f - %((m)f + (ui)mz)} +éD{(/~Li)/2 - (:U'i)mz}:|

1

= o+ 835002 = 3007 + 00),7) 430007 - 0,9}

Where: S and D, are orientational order parameters, of the long
axis and molecular biaxiality, respectively, in the uniaxial
nematic phase. S = S7,, D = S — Sy

Following the Saupe ordering matrix,*»** the parameter S is
a measure of the increase in compatibility of the molecule long
axis with a nematic director while D describes the rotational
biasing of the short molecular axis. Assuming the transition
dipoles remain constant in the temperature range of liquid and
LC phase, if the correlations of the transition dipoles are
neglected, then by the summation rule, Bu® = A,.

Dielectric experiment

Electric permittivity were measured using HP-4192A impedance
analyser for the 5 pnm sandwiched cells made of gold plated elec-
trodes in the frequency range 10 Hz to 10 MHz. The electrodes
were spin coated with SE-130 and AL-60702 surfactants in order to
obtain planar and homeotropic sample orientation, respectively.
Amplitude of the probe field are applied in the range of 0.01-0.1 V
um™* in order to avoid nonlinearity. The measurements are made
under slow cooling (0.1 K min ") from the isotropic to nematic
and the Nyp phases. Temperature of the sample was stabilized
using PID temperature controller within +2 mK.

DFT calculations

All calculations in this study were performed using the Gaussian09
program, version E.01.** The molecular structures, the binding
energy of no-specific hydrogen bond, the harmonic vibrational
force constants, and absolute IR intensities were calculated using
a density functional theory (DFT) with the Becke's three-parameter
exchange functional in combination with the Lee, Yang, and Parr
correlation functional the B3-LYP method with the diffusion basis
set: 6-311+G.>*?® In order to find the most stable conformation of
the dimer the optimization of the geometry were performed in

© 2021 The Author(s). Published by the Royal Society of Chemistry

the internal rotation in the alkyl chain is very small (approx.
1 kJ mol %), therefore, we did not consider any other spacer and
tail conformations than the all-trans. In ordered phases, the alkyl
chains can in principle have all possible conformations, therefore
adopting all he all-trans conformation to be a better representation
of the average molecular shape of dimers.” In the next step, taking
into account the determined values of torsion angles, full optimi-
zation of the geometry was performed for DTCnC dimers with
a value of n = 5.7. All DFT optimization were carried out with the
following convergence criteria used with Berny algorithm (all
values in atomic units): the maximum component of the force was
set to 0.00045, the root-mean square (RMS) of the forces calculated
for the next step—smaller then 0.0003—the computed displace-
ment for the next step—smaller than 0.0018—and the RMS of the
displacement below 0.0012. These criteria restrict the dependence
of the final geometry parameters on the initial starting geometry.
Therefore, the vibrational calculations were done for the most
probable conformers with the lowest energy for the MTC, the
DTC5C5 and the DTC5C7. For B3LYP frequency calculations,
a pruned 99 590 grid was used to obtain a more accurate numerical
integration; it is important for computing low frequency modes.
Maximal force (in atomic units) that was lower than 3.6 x 10~ after
geometry optimization. The rotational frequencies were very close to
zero, the translational frequencies smaller than 7.5 ecm . The
theoretical vibrational frequencies were scaled by one coefficient
equal 0.98 in order to simplify the comparison with experiment.

Results of the experiment
Molecular structure and vibrations

The possible structures of the each arm of the dimer can be clas-
sified by the torsion angles: ¢;-¢g (see Fig. 1a). The rotation
around the inter-ring of the terphenyl showed the two most energy-
favorable conformers: helical (¢, = —40, 93 = —40) and twisted (¢,

RSC Adv, 2021, 11, 2917-2925 | 2919
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= 40, p3 = 40). On the other hand, the rotation around the bond
C-C-C-C between terphenyl and the linker or tail defined by ¢,
and ¢, angles showed a minimum energy for value of 90°. For the
fully optimized geometry for the DTC5C5 dimer, we obtained the
torsion angle values: ¢; = —90.25, ¢, = —43.7, ¢3 = —43.5, ¢4 =
93.4, 95 = 85.3, ps = —43.5, ¢, = —43.7, pg = —90.25 for helical
conformer and ¢, = —89.2, ¢, = —42.7, ¢; = 43.5, ¢, = —84.5, @5
= 95.6, pg = —42.8, ¢; = 43.5, pg = —90.93 for twisted conformer.
The value of the ¢,/¢s angle is the most crucial for determining the
bend angle of the molecule. In this case the opening angle of the
molecule was determined 110.6 degrees.

All of the observed bands in the Ny phase have been
explained by the coexistence of the helical and the twisted
conformers. Most of the observed bands are assigned to the
overlaps of the bands attributable to the helical and the twisted
conformers. Most changes in the FTIR spectra associated with
different terphenyl conformation concern bands in the wave-
number range from 500-800 cm™'. The infrared bands
observed at 1317, 825, 750, 660, 560 are assigned to the helical
conformer. The infrared bands at 485 cm™!, 630 cm *,
645 cm™ " and 800 cm ™" are attributed to the twisted conformer.
The calculated IR spectra of the twisted and the helical
conformers of monomer (MTC5) are shown in comparison with
the experimental spectra in the nematic phase of the MTC5 in
Fig. 2a. For better identification of main frequencies in the

(a)

o2 0.16 8ym
0.6 - Helical (D,) | 1.2
o e —— Twisted (C,,)
3
c
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dimers, we compared the experimental data for dimers with the
theoretical infrared spectra for longitudinal and transverse
transition dipole moments. Most of the fundamentals in the
range of 500-1700 cm ™" were very well reproduced by vibrations
in the experimental spectra, except the bands in the range of
2900-3100 cm ™', mainly because of the strong anharmonicity.
Fig. 2b and ¢ show comparison of the simulated spectra and
experimental one for the DTC5C5 dimer as an example.

Infrared absorbencies

Using polarized FTIR spectroscopy we can directly analyze the
temperature dependence of the absorbance components in the
temperature range of the nematic and the Ny phases. As it can
be predicted from the S parameter we can expect distinctly
different behavior of the absorbance components for the bands
that have transition dipole longitudinal and transverse with
respect to the core axis. By combining the FTIR results for
homogenous planar and homeotropic alignment of the sample
we can obtain all (Ay, Ay, Az) components of the IR intensities.
The average intensity 4, and the related transition dipoles were
analyzed for the series DTC5Cn in the temperature range of
the N and the Nig phases and for MTC5 monomer in the N
phase as a reference. Several vibrational bands are selected to be
analyzed in the mid FTIR range that offers significant dichroism
of the band. These are the phenyl stretching band (vCC) at

(b) g6. |
I DFT calculation D, conf
......... 1
S 5S4l
8 8 DTC5C5
> 2
8 g 0.2+
E —
0o |
600 800 1000 1200 1400 1600
Wavenumbers (cm™)
(c)
—l Nqg phase :
164......... 1 g
@
(] H
S 121 DTC5C5
0
[
? 0s- H
av
<
0.4- §
0.0 T T T T T
600 800 1000 1200 1400 1600

Wavenumbers (cm™)

Fig.2 Experimental and simulated spectra of the MTC5 monomer and the DTC5C5 dimer. DFT method: B3LYP/6-311+G. (a) Comparison of the
experimental spectra of the MTCS5 in the N phase with the theoretical spectrum for two conformers: solid red line — helical conformation, blue
solid line — twisted conformation. (b) Theoretical spectra of the DTC5C5 dimer for the helical conformation of the terphenyl (p; = —43.5, ¢, =
—43.2). Solid red line — longitudinal, short dot black line — transverse transition dipole moment. (c) Experimental spectra of the DTC5C5 dimer for
the 5.2 um planar sample in the twist-bend phase given as an example: solid red line — longitudinal, short dot black line — transverse.
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wavenumbers: 1485, 1460 and 1406 cm™*. The combinational
band at 905 cm ™" that can be assigned to the phenyl in plane
stretching with symmetric C-F stretching (»CC + »,CF) and
phenyl in plane deformation with asymmetric C-F stretching at
890 cm ! (BCC + v,,CF). Band assignments in the FTIR spectra
were made based on simulated spectra of the monomer (MTC5)
and the DTC5C5 dimer (Fig. 1).

Fig. 3 shows temperature dependence of absorbances for the
bands at 890 cm ™' (BCC + v,,CF) and 905 cm " (¥CC + »,CF),
which involve mostly the C-F bond of the aromatic cores. They
correspond to the longitudinal transition dipole and transverse
transition dipole, respectively. For the longitudinal dipole (« =
0) the A, component is initially growing in the N phase, then
starts to decrease in the Npg phase for the dimer DTC5C7
(Fig. 3). The trend is expected to be opposite for both perpen-
dicular components, Ax and Ay, but there is not much change
observed on entering the Nty phase. In this context it is inter-
esting to compare the absorbance dependence for the monomer
MTC5, which has the same aromatic core structure as the dimer
DTC5C7. In order to do so, we need to consider the angle (8,),
that the core makes with the bow string axis of the dimer (8, =
$/2). The angle is expected to be §/2 = 34.7° for an all trans
conformation of the dimer linkage as found from DFT calcu-
lations but in the higher temperature range the other
conformers can also contribute significantly (see Fig. 1c). The
corresponding order parameter of the monomer scaled for
dimer can be found as a product:

Spim = SmonP2(cos(62)) 3)

The best accordance of the Az, component of the monomer
scaled to the A; component of the dimer DTC5C?7, in the range

24!

oeee

T T T
120 140 160
T (°C)

Fig. 3 Normalized IR absorbance vs. temperature behavior for the
planar and homeotropic orientations of the monomer MTC5 and the
dimer DTC5C7 for the 890 cm ™! vibration (BCC + v,sCF). Longitudinal
Az and transverse Ay components for the planar sample; Ay absor-
bance for the homeotropic. Ag — average absorbance. Z is fixed parallel
to the optical axis in the N phase. Azm — component of the monomer
scaled to A; component of the dimer DTC5C7 by an angle 8, = 30°,
A'ZM — as above but the angle 8, is gradually increasing from 30° to
34.7°.

100
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of nematic phase, can be obtained for the angle §, that is
gradually increasing from 30° to 34.7°, the latter angle as ex-
pected from DFT simulation (Fig. 1c). The other reason for the
latter inconsistence might originate from the increasing of the
molecular tilt with respect to the ordering axis that preceding
the Nt phase. The case of the transverse dipole, Fig. 4, is more
complex since the parameter D can significantly contribute to
the formula for the absorbance components. Nevertheless, for
small values of the D - order parameter®® the behavior is just
opposite to the case of longitudinal dipole (Fig. 3) for the dimer
DTC5C7 (Fig. 4). Here again, a significant change of the trend
for the A, component of the absorbance can be observed while
the temperature behavior of the components Ak, Ay do not show
a significant change when observed on entering the Nrg phase.
On that basis we found a more general reason for the peculiar
behavior of the spatial components. This is coming from
summation rules. It is usually assumed, that the transition
dipoles are interacting independently with the field of the IR
beam and therefore they are commonly not temperature
dependent. As a consequence of the eqn (1), the average
absorbance depends only on the mass density of the sample.
Indeed the sum rule of the absorbance components for the
monomer MDT5 proves that transition dipoles u; for longitu-
dinal dipole remain constant within the whole temperature
range of the nematic phase. For transverse dipoles, however, the
dependence is steeper than expected from the density depen-
dence, Fig. 4. This is likely due to increasing dipole-dipole
correlations on cooling. If this is compared with the results for
the DTC5C7 dimer, as shown in Fig. 3 and 4 we can see that
transition dipoles show a good coincidence with the monomer
dipole within the nematic phase.

However in the temperature range of the Nrg phase there is
a strong inconsistency between the temperature behavior of
parallel A, and perpendicular Ay, A, absorbance components for
both types of bands: the longitudinal and transverse dipole. In

. 905 cm” —— A,

. .-.-.,,.,.“h senene Ay
..‘"'"":;--,' == Ay

44 :QEL‘“"%‘,:'_AO

< s
Ry
3 Si=. 9

‘S
.o

. i

N\, /

2- . -

DTC5C7 S
100 120 140 160
T (°C)

Fig. 4 Normalized IR absorbance vs. temperature behavior for the
planar and homeotropic orientations of the dimer DTC5C7 for the
905 cm™! vibration (8CC + »CF). Longitudinal Az and transverse Ay
components for the planar sample; Ay absorbance for the homeo-
tropic. Ag — average absorbance. Z is fixed parallel to the ordering
direction.
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Fig.5 The average absorbance vs. temperature behavior of dimers for
the 890 cm ™~ vibration.

the Nt phase, they decline significantly from their trends in the
nematic phase. For the longitudinal dipoles at the transition to
the Npg phase all dimers show a significant drop of the average
absorbance, A4y, and thus also du/dQ (Fig. 5). Both absorbance
and dipole are increased for transverse dipoles (see Fig. 6). This
is in contrast to the observations for the monomer where those
values remain unchanged. This observation is consistent for all
homologues in the series of DTC5Cn dimers. Fig. 5 and 6 show
a comparison of the temperature behavior of the average
absorbance for all dimers for the 890 and 905 cm™* vibration,
respectively.

Analyzing the results of temperature dependencies of the
average absorbance A, we can conclude that for the monomer it
behaves quite typically, i.e. the absorbance depends mainly on
the material density. Meanwhile, for the dimers it is clear that at
the transition to the Npg phase, the average absorbance
certainly cannot be attributed to the change of the density. The
primary reason for this behavior could be the change in the
arrangement going from the nematic to the twist-bend phase.
This behavior is due to the tight and specific packing of mole-
cules in the Ntg phase. There is also a tendency in the Nyg phase
to form separate domains of the same sense of chirality. The

3.2
905 cm™’ —o— DTC5C11
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—v— DTC5C5
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: R e
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Fig. 6 The average absorbance vs. temperature behavior of the
dimers for the 905 cm™* vibration.
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helixes of the same sense like to pack themselves in a “zipper-
like” way, within one domain or supramolecular fibers.> As we
recently reported for the DTCnC dimers,*® we observed a sudden
increase of the molecular biaxiality order parameter in the Nyp
phase, while in the N phase molecular biaxiality order was
found to be negligible. These findings motivated us to analyze
the possible intermolecular interactions that lead to the bond
orientation. In such type of arrangement it might be possible to
select the specific type of interactions that may change the
transition dipole moment of the vibrational bands. For the
further analysis we shall neglect all such interactions which are
already present in the nematic phase of the monomer. We also
used DFT modelling to analyze possible intermolecular inter-
actions that would lead to bond orientation and thus stabili-
zation of the twist-band phase.

Hypothetical arrangement of DTCnC molecules formed by
intermolecular weak interactions - DFT modeling

In order to confirm our assumptions about the geometry of the
helix and its close-packed structures, in which weak intermo-
lecular interactions of the hydrogen bond type may play
a significant role, we optimized the geometry for several systems
of two interacting molecules (see Fig. 7). To reduce the
computation time, we only considered one dimer arm in the
interaction pairs (MTC5). In the first step the global minimum
structure of single molecule was carried out as described in the
section “molecular structure and vibrations”. The input file for
the calculations contained optimized structures, both in twist
or helical conformation, where the distance of the closest atom
of one molecule was greater than 4 A from the nearest atom in
second molecule. In these input files, both interacting mole-
cules were positioned exactly parallel to each other with C-F
bond oriented in the same direction like in Fig. 7. (1) or oppo-
site (towards each other) like in Fig. 7 (2). Then one of the
molecule was shifted parallel to the other to avoid them stack-
ing in the local minima (3). For three different arrangements of
the interacting molecules, full optimization with the vibrational
frequency calculation was performed using B3LYP/6-311+G. The
determination of the interaction energy for a weakly bonded
system is mostly estimated with the use of the so-called super-
molecular approach, whereby the interaction energy difference
between the whole system and its subunits is given. Therefore,
in order to accurately determine the interaction energy, calcu-
lations have been performed by the supermolecular method
using the basis set superposition error (BSSE) correction by the
counterpoise (CP) method.**>>

The binding energy of the X-H---F-X hydrogen bonding has
been estimated to be between 4.5 and 8.5 k] mol ' depending
on arrangements. The highest energy of the intermolecular
interaction is obtained for the system (2) with two pairs of H---F
hydrogen bond (8.5 k] mol ). For the case (1), with the one pair
of H---F bond, the binding energy become smaller,
(6.4 k] mol™"), but for the case (3) is the smallest (about
4 kJ mol™"). All configurations are the result of a weak H--F
hydrogen bond with the interaction distance of the order of 2.7-
3.5 A. We observed a mesogen shift of one molecule by at least

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig.7 Domain structures of MTC5 molecules (helical conformer) formed by intermolecular hydrogen bonds after optimization using B3LYP/6-

3114+G method.

a third of the mesogen core length relative to the other inter-
acting molecule, as well as a significant tilt of the molecules
(Fig. 7). For all systems the vibrational dipole derivatives have
been calculated and compared with no interacting molecule.
We noticed that the conformation of terphenyl did not signifi-
cantly affect the cohesive energy of the H:-F bond and we did
not notice any substantial differences in the IR spectrum for the
vibrations in range 800-1600 cm ™. For this, the analysis of
changes in the dipole transition moment is present on an
example of the helical conformer.

We observed an increase of the perpendicular transition
dipole, i.e. for bands at 905 cm " and 1460 cm ™" wavenumber
by about 50%, and for parallel transition dipole (890 and
1485 cm™ ') a decrease of about 15% compared to a system
without specific hydrogen bonds. This results well coincides
with the experiment. Table 1 shows the dipole transition
moment changes in the presence of hydrogen bonding and

local orientational order for the case of arrangement (1) and (2).
In the case (3) changes are not so significant and statistically
scattered.

We have provided experimental and theoretical evidence of
the stabilization of the Npg phase by arrays of multiple
nonspecific short-range intermolecular interactions between
the hydrogen atoms and the fluorine atoms substituted in the
terphenyl ring, which as a high electron density area will act as
a proton acceptor.

Results summary

All discussed above intermolecular interactions, must lead to
the substantial bond order correlations in the Nt phase. The
formation of the heliconical bond order locks the molecular
twist-bend conformation, i.e., it makes the linkage effectively
rigid. This suppresses the entropic penalty of packing the

Table 1 Changes of the transition dipole moment: pre2/un? in the presence of hydrogen bonding and local orientational order

wre/un” for 890 cm ™!

s un” for 905 cm ™!

DFT DFT
2 pair
DTC5Cn dimer Exp. 1 pair H---F (1) 2 pair H--F (2) Exp. 1 pair H---F H--F
DTC5C5 0.99/0.83° 0.83 0.81 1.13¢ 1.45 1.55
DTC5C7 0.80 1.20
DTC5C9 0.77 1.23
DTC5C11 0.75 1.25
For 1485 cm™" For 1460 cm ™"
DTC5C5 0.88 0.84 0.82 1.13 1.23 1.33
DTC5C7 0.81 1.19
DTC5C9 0.78 1.205
DTC5C11 0.77 1.23

“ in Ny phase. ? in S;,A phase.
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flexible linkage next to a rigid arm, therefore favoring positional
disorder as was confirm by SAXS.* This means that the heli-
conical orientation is determined by the twist-bend molecular
conformation, and does not require the positional correlations
that would arise by “chaining” molecules to form a quasi-
polymeric structure.®® Therefore, the mechanism for the tight
pitch of the twist-bend nematic liquid crystal phase is quite
different from that of other systems such as proteins and DNA,
which require both molecular chirality and more significant
positional correlations that are generally absent in the Npg
forming dimers.

An interesting result from simulation was obtaining
a significant shift of interacting molecules for configurations
representing the system of multiple hydrogen bonds (Fig. 8).
This can be achieved only in the arrangement of the cores
significantly tilted with the respect of the helical axis. Notably,
results of from SAXS, GISAX and resonant XRD indicate that
a separation in local layers does not occur only between
aromatic and aliphatic moieties, but also between the aliphatic
spacers and aliphatic tails.> SAXS patterns of the N and Ny
phases are very similar; this suggests the presence of local
layering in the N phase as well, but there the conformations do
not synchronize to form a helix.

The proposed arrangement has also a strong influence on
the dielectric properties in the Ntp phase. As shown in Fig. 9 the
measured data indicated that the electric dipoles of the
difluorinated phenyl groups are arranged in an antiparallel
manner. Thus, the total electric dipole of the assembly
(molecular system) is considerably reduced in the Nyg phase,
Fig. 9. Dielectric permittivity as an average, (2¢ | +¢/3), refers to
the square of the fixed dipole of the set per molecule. We can
clearly see that this average shows a significant drop on entering
the Ntg phase. This is in accordance with results reported in
the N. Sebastian et al.*

Formation of the Npp phase, with short-range positional
order and longer-range bond order, reflects a subtle interplay
between the molecular bend and flexibility. The twist-bend
nematic phase forms as the odd-membered linkage becomes
sufficiently rigid along one axis to provide bend with angle
6 between the rigid arms and a twist with angle « between the
planes of the arms (propeller type structure).

Fig. 8 Visualization of the Ntg phase stabilization by arrays of multiple
hydrogen bonds (XF- - - -HX, X—benzene ring).

2924 | RSC Adv, 2021, 1, 2917-2925

View Article Online

Paper

457 e DTC5C7
427 €av
w
3.97 Nrg N

g

100 120 140 160
T (°C)

Fig. 9 Temperature dependence of parallel and perpendicular
components of the dielectric permittivity of the DTC5C7 dimer and its
average dielectric permittivity, measured at 1 kHz.

Conclusion

The most important observation from spectroscopic and
dielectric measurements is the sudden increase of the inter-
molecular interactions as the temperature decrease from the
nematic to the twist-bend phase. This is demonstrated by
significant increase of correlations of the induced dipoles in the
dimer cores. The longitudinal induced dipoles of the core show
negative correlations (antiparallel order) while lateral ones are
positively correlated. Dielectric data also confirm correlations of
the permanent dipoles. These results well corresponds with
a significant grow of the molecular biaxiality in the Ntp phase
transition in contrast the case of the N phase, where such
a biaxiality is absent. Several self-assembly of dimers pairs were
analyzed using DFT calculation by optimizing their energy. A
number of dimer arrangement showing hydrogen H---F bonds
were identified that leading to significant bond order.
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