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Takeda G-protein-coupled receptor 5 (TGR5) is emerging as an important and promising target for the
development of anti-diabetic drugs. To understand the structural characteristics of TGR5 agonists, the

common feature pharmacophore models were generated and molecular docking was performed. The

ligand-based virtual screening combined with pharmacophore mapping and molecular docking was

performed to identify novel nonsteroidal TGR5 agonists. Finally, 20 compounds were screened for in
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vitro TGR5 agonistic activity assay, and results showed most compounds exhibiting TGR5 agonistic

activity at 40 uM. Among these compounds, V12 and V14 displayed obvious TGR5 agonist activity, with
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1. Introduction

Takeda G-protein-coupled receptor 5 (TGR5) belongs to the G-
protein coupled receptor family and was first identified as
a bile acid receptor in 2002.%> TGR5 is widely expressed in the
gallbladder, placenta, spleen, and intestine.®* The activation of
TGR5 can cause an increase of glucagon-like peptide-1 (GLP-1),
which activates intestinal cell secretion and plays a key role in
glucose metabolism and energy homeostasis.*® In addition,
TGR5 activation promotes energy expenditure in brown adipose
tissue and muscle by increasing the basal metabolic rate.*”
Therefore, TGR5 has emerged as an attractive therapeutic target
for the treatment of metabolic disorders, such as non-alcoholic
steatohepatitis, type 2 diabetes mellitus (T2DM), and obesity.*®

Medicinal chemistry approaches have discovered a variety of
TGR5 agonists (Fig. 1). These agonists can be divided into two
categories: steroidal and nonsteroidal agonists. The first series
is structurally based on bile acids (BAs), including cholic acid
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the ECso values of 19.5 uM and 7.7 uM, respectively. Compounds V12 and V14 could be considered
potential TGR5 agonist candidates and also may be used as initial hits for developing novel TGR5 agonists.

(CA),* lithocholic acid (LCA),"* and their semisynthetic deriva-
tives such as 6a-ethyl-23(S)-methylcholic acid (INT-777, a).*> The
second series of TGR5 agonists includes some small synthetic
molecules, such as [2-(2,5-dichlorophenoxy)pyridin-3-yl]-(3,4-
dihydro-2H-quinolin-1-yl)methanone (b) and 4-(3,5-bis(tri-
fluoromethyl)benzyl)-6-(2-fluorophen-yl)-4,5-dihydropyrido[3,2-
fl[1,4] oxazepin-3(2H)-one (c).”*** These compounds possess
excellent agonistic properties and are effective in the treatment
of nonalcoholic steatohepatitis, hypercholesterolemia, hyper-
triglyceridemia, and T2DM."

The aim of this study is to identify novel nonsteroidal TGR5
agonists through a computer-aided drug discovery approach.
The ligand-based pharmacophore modeling and molecular
docking were performed to determine the structural charac-
teristics and binding modalities of the TGR5 agonists. Then the
selected pharmacophore hypotheses were used to screen the
FDA approved database, Specs, TargetMol and in our library
databases. Further screening of the retrieved compounds was
performed using molecular docking. Finally, 20 commercially
available hit compounds were selected by our virtual screening
approach, and evaluated for their in vitro TGR5 agonistic activity
assay. Overall, the results of our study are expected to be useful
in the development of new TGR5 agonists.

2. Materials and methods

2.1. Common feature pharmacophore model

A pharmacophore is an abstract description of the structural
features that are necessary for molecular recognition of a ligand
by a biological macromolecule. In this study, the structures of
the TGR5 agonists were selected in a manner that would ensure
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Fig. 1 Structures of some known TGRS agonists.

that they were bioassayed under similar conditions. Nine
representative TGR5 agonists with diverse scaffolds were
chosen to form a training set (Fig. 2). The diverse conformations
within the training set were taken as the input ligands to create
pharmacophore hypotheses by using the ‘Common Feature
Pharmacophore Generation’ module in the Discovery Studio
program package. The common feature pharmacophore anal-
ysis was carried out using the HipHop program of Discovery
Studio 3.0.

In this study, feature mapping revealed that hydrogen bond
acceptor (A), hydrogen bond donor (D), hydrophobic group (H),
and ring aromatic (R) could effectively map all agonists in the
training set. The maximum pharmacophore hypotheses were
set to ten. The minimum feature option was 4, and maximum
feature option was 6. The principal and MaxOmit Feat values
were assigned to these training set compounds (Table 1).The
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Fig. 2 The structure of training set compounds.
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conformational models of the training set compounds were
built using the “best conformer generation” method with
a 10 kcal mol " energy threshold and the maximum confor-
mation was set to 200. Maximum pharmacophore hypotheses
was set to 10 and the minimum interfeature distance was set to
2.97 A. All other parameters were set by default. Ten pharma-
cophore models were produced and the best one was selected
for further study.

2.2. Pharmacophore validation

Decoy test method was used to evaluate the suitability of
pharmacophore to identify TGR5 agonists. The decoy set con-
sisted of 600 molecules which comprised of 30 known TGR5
agonists and 570 molecules with unknown activity randomly
selected from the ZINC database. To compare a single phar-
macophore to a set of ligands, we wused the Ligand
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Table 1 In vitro TGR5 agonists activities of the selected compounds
(EC50, nM)

Name ECs, (nM) Principal MaxOmitFeat Ref.
1 0.23 2 0 13
2 0.72 2 0 13
3 0.057 2 0 16
4 6.8 1 1 17
5 9.72 1 1 18
6 10 1 1 13
7 82 1 1 19
8 113 1 1 20
9 120 1 1 21

Pharmacophore Mapping protocol. Ligand Pharmacophore
Mapping module with best conformation generation and flex-
ible fitting sets was used. We then calculated parameters such
as total hits (Ht), active hits (Ha), % yield of actives (%A), % ratio
of actives (%Y), enrichment factor (EF), and goodness of hit
score (GH).

H
%od = 73 % 100%

%Y = % x 100%

Ha/Ht
EF = A/D

GH — Ha(3Ha + Ht) “ (1 B Ht—Ha)

4Ht x A4 D—-4

Here, D is number of compounds, A is number of active
compounds, Ht is number of hits retrieved, Ha is number of
actives in hit list, %A is a ratio of actives retrieved in hit list, %Y is
a fractions of hits relative to size of database (hit rate or selec-
tivity), EF is enrichment factor, and GH is Giiner-Henry score.

2.3. Molecular docking model

In order to evaluate the ligand interaction into TGR5 binding
pocket, the molecular docking was carried out using the
Schrodinger suite. A published crystal structure of P395 bound
within the active site cavity of TGR5 (PDB ID:7CFM) with the
resolution of 3.00 A served as a useful template for the dock-
ing.”> The TGR5 was prepared by the “protein preparation
wizard” module in Maestro. Missing residues in the protein
structure were reconstructed. Assigned bond orders to all bonds
in the TGR5 structure including het groups and added hydro-
gens to all atoms. Remove the original hydrogens before adding
hydrogens to the structure. The water molecules were removed
and energy minimization was done using OPLS_2005 force
field, restrained minimization with convergence of heavy atoms
to an RMSD of 0.3 A.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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The “Receptor Grid Generation” module in Maestro is used
to specify a receptor structure and set up the grid generation
job. The binding site was defined as the site sphere of 15 A
radius around the original ligand P395 in the co-crystal struc-
tures. Ligands were prepared using “LigPrep” module in
Maestro were minimized with OPLS-2005 force field. Ionization
states were assigned at pH 7.0 £ 2, the chirality was retained,
and the tautomers were generated. Finally, the “ligand docking”
was carried out using the maestro based on the grid using
standard precision (SP) and extra precision (XP) docking
precision with ligands docked flexibly. The docked conformers
were evaluated using GlideScore. All compounds were docked
flexibly into binding site. In molecular docking, 5000 poses per
ligand were generated for the initial phase of docking, out of
which 800 best poses were chosen for energy minimization.

2.4. Cell-based TGR5 agonism assay

A lentivirus expressing human TGR5 (NM_001077191.1) was
obtained from Hanbio Biotechnology Co. Ltd. HEK293T cells
were transfected with lentivirus and a stable cell line was iso-
lated using drug selection following standard techniques. LCA
was used as reference compounds. The test compounds and
reference compounds were prepared in DMSO at stock solu-
tions of 10 mM. TGR5-mediated cAMP generation was assayed
using a HTRF (Homogeneous Time-Resolved Fluorescence)
detection method (HTRF cAMP dynamic 2 Assay Kit; Cisbio cat
#62AMA4PEB) according to the manufacturer's protocol. For
agonist tests, 5 pl of cells were mixed with 5 ul of the test
compound and incubated 30 min at room temperature in the
white 384-well microplates. Then, 5 pl cAMP-d2 and 5 pl anti
cAMP-cryptate in lysis buffer were added to each well followed
by 1 hour incubation at room temperature. Signal was quanti-
fied on a CLARIOstar Microplate Reader (BMG LABTECH) and
calculated using the equation (665 nm/620 nm) x 10 000.

Table 2 Summary of the pharmacophore models for TGR5 agonists

Hypothesis Features” Rank”  Direct Hit" Partial Hit? Max Fit
01 HHHHAA 114.816 111111111 000000000 6
02 HHHHAA 114.617 111111111 000000000 6
03 HHHHAA 114.425 111111111 000000000 6
04 RHHHHA 113.818 111111111 000000000 6
05 RHHHHA 113.251 111111111 000000000 6
06 HHHHAA 112.834 111111111 000000000 6
07 HHHHAA 112.513 111111111 000000000 6
08 HHHHAA 112.302 111111111 000000000 6
09 RHHHHA 112.286 110111111 001000000 6
10 RHHHHA 112.114 111111111 000000000 6

¢ H, hydrophobic group; A, hydrogen bond acceptor; R, ring-aromatic.
b The ranking score of training set compounds fitting the hypothesis.
¢ Direct Hit indicates whether (“1”) or not (“0”) a molecule in the
training set mapped every feature in the hypothesis. ¢ Partial Hit
indicates whether (“1”) or not (“0”) a particular molecule in the
training set mapped all but one feature in the hypothesis. Numeration
of molecules is from right to left in both Direct Hit and Partial Hit.

RSC Adv, 2021, 11, 9403-9409 | 9405


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0ra10168k

Open Access Article. Published on 02 March 2021. Downloaded on 1/14/2026 1:52:38 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

Table 3 The validation results of the pharmacophore models

Hypothesis D A Ht Ha %A %Y* EF GH
01 600 30 72 28 93.3 38.9 7.78 0.47
02 600 30 56 30 100.0 53.6 10.71 0.62
03 600 30 76 24 0.8 31.6 6.32 0.35
04 600 30 46 30 100.0 65.2 13.04 0.72
05 600 30 66 28 93.3 42.4 8.48 0.49
06 600 30 80 26 86.7 32.5 6.50 0.39
07 600 30 76 26 86.7 34.2 6.84  0.40
08 600 30 74 26 86.7 35.1 7.03 0.41
09 600 30 64 30 100.0 46.9 9.38 0.57
10 600 30 69 28 93.3 40.6 8.12 0.48

% Here, D is number of compounds, 4 is number of active compounds,
Ht is number of hits retrieved, Ha is number of actives in hit list, %4 is
a ratio of actives retrieved in hit list, %Y is a fractions of hits relative to
size of database (hit rate or selectivity), EF is enrichment factor, and GH
is Giiner-Henry score.

3. Results and discussion

3.1. Common feature pharmacophore model and validation

The top-ten pharmacophore hypotheses were generated using
this training set with scores ranging from 112.114 to 114.816
(Table 2). These hypotheses could be classified into two groups
according to the pharmacophore features: HHHHAA (01, 02, 03,
06, 07, 08) and RHHHHA (04, 05, 09, 10). The hypotheses were
classified by their locations and the direction of their features.

3.2. Pharmacophore validation

To further validate the final pharmacophore models, the
Giiner-Henry (GH) scoring method was used to identify the best
pharmacophore model.**** The decoy set consisted of 600
molecules which comprised of 30 known TGR5 agonists®®>*-3!
and 570 molecules with unknown activity randomly selected
from the ZINC database. The results of the decoy set validation
are shown in Table 3. All of the 30 active molecules were
successfully identified by hypothesis 02, hypothesis 04 and
hypothesis 09, and the number of total hits were 56, 46 and 64,
respectively. GH score higher than 0.7 suggests a very good and
reliable model.**** Hypothesis 04 possess an excellent GH score
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of 0.72. Thus, it can be indicating that the hypothesis 04 is
a reliable model which may be valuable in identifying diverse
active TGR5 agonists from the database.

Finally, hypothesis model 04 was selected as the optimal
pharmacophore model. As shown in Fig. 3, hypothesis model 04
contained a six point pharmacophore containing one ring
aromatic (R), four hydrophobic groups (H), and one H-bond
acceptor (A), which were represented as orange, cyan, and
green, respectively. The training set compound 3 can be
matched to the pharmacophore model 04 (Fig. 3B).

3.3. Virtual screening

In order to identify novel TGR5 agonists, a multi-step virtual
screening workflow including ligand-based pharmacophore
screening, docking screening and finally a careful visual
inspection of the molecules was performed. Firstly, the 323 842
compounds of the DrugBank, Specs, TargetMol and in our
library databases were screened by Lipinski's rule filter to
remove unreasonable molecules using DruLiTo software.
Secondly, the validated ligand-based pharmacophore model
Hypo04 was used to screen. Based on the fit values (=2) for
a compound matching against pharmacophore, resulting in
2045 screening hits kept in the chemical library. Thirdly, the

Pharmacophore Screening

165856 Compou

323842 Compounds

Fig. 4 Workflow of the virtual screening protocol.

Fig. 3

(A) Selected common feature pharmacophore model 04 for TGR5 agonists consisting of one H-bond acceptor (A), four hydrophobic

groups (H) and one ring aromatic (R). (B) Pharmacophore model 04 mapping with active compound 3.
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Fig. 5 Structures of 20 hits selected by virtual screening.

retrieved compounds from the pharmacophore search were
saved as SD file and docked into the prepared receptor grid
using standard precision (SP) and extra precision (XP) docking
algorithm. The Glide XP scoring function was used to predict
binding affinity between compounds and TGR5. According to
the predicted binding energy (=—6), top 65 compounds were
picked out (see Tables S1 and S27). The flowchart of the virtual
screening is shown in Fig. 4. After careful visual inspection, 20
hit compounds (Fig. 5) were selected and purchased from
Target Molecule Corp. for in vitro bioassay test.

3.4. Invitro biological evaluation

The selected compounds were evaluated for their ability to
activate TGR5 by assessed for intracellular levels of cAMP. As
reference compound, the response of LCA at 10 pM was defined
as 100% TGRS activation. Vehicle control with 0.1% DMSO was
set to 0% TGRS5 activation. As shown in Fig. 6, most compounds
exhibited significant activity with more then 50% receptor
activation at 40 pM. At 10 pM, only two compounds (V12 and
V14) achieved more than 40% receptor activation, but the
remaining compounds less then 30%. The most potent
compounds V12 and V14 were further evaluated using a dose-
response experiment (see Fig. S11). Compounds V12 and V14
displayed obvious TGR5 agonist activity, with the EC5, values of
19.5 uM and 7.7 uM, respectively.

3.5. Molecular docking analysis

In order to understand the binding mode, the most active
compound V14 was docked into the active site of TGR5 by using the

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Glide XP. A published crystal structure of P395 bound within the
active site cavity of TGR5 (PDB ID:7CFM) with the resolution of 3.00
A served as a useful template for the docking. The docking confor-
mations within the catalytic site of TGR5 are displayed in Fig. 7A.

Compound V14 maps on the pharmacophore model 04 are
shown in Fig. 7B. Compound V14 maps well on the pharma-
cophore feature hydrophobic feature (H), hydrogen bond
acceptor (A), and aromatic ring (R). The imidazole group which
mapped as hydrogen bond acceptor (A) was able to make
hydrogen bond interactions with Thr243 and Ser247. The 2,4-
dichloroaniline moiety which was mapped as aromatic ring (R)
made pi-pi interactions with Phe96 and hydrophobic feature
(H) with the surrounding residues Phe96, Glu169, Leu174. 2,4-
Dichlorobenzyl alcohol moiety of the compound is a hydro-
phobic group, it can forms hydrophobic interaction with Leu74,
Trp75, Pro92, which maps well on the pharmacophore feature
hydrophobic feature (H).

=3 40 uM

1004

50

% Activity

oA 0 T A l
N O > OO RO SRR RCOCCIEY
DL L PP LL RO PO W W8 w0800 0

Fig. 6 Result of the preliminary bioassay screening. The response to
10 uM LCA was set to 100%.
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Fig. 7
compound V14.

4. Conclusion

TGR5 has emerged as an important and attractive therapeutic
target for the treatment of metabolic disorders, such as non-
alcoholic steatohepatitis, type 2 diabetes mellitus (T2DM), and
obesity. Computational technique like virtual screening as been
successfully applied for the generation of hit and lead structure
candidates.

To understand the mechanism of action of TGR5 agonists,
common feature pharmacophore models were generated and
molecular docking was performed. These models provided more
detailed information and better descriptions of ligand binding.
The common feature pharmacophore model consists of six
chemical features (RHHHHA): one ring aromatic (R), four
hydrophobic groups (H), and one hydrogen acceptor (A). Finally,
ligand-based virtual screening combined with pharmacophore
mapping and molecular docking was performed to identify novel
nonsteroidal TGR5 agonists. Twenty compounds were selected
for in vitro biological evaluation, and results showed that most
compounds exhibited between 50% and 80% receptor activation
at 40 uM. Among these compounds, V12 and V14 displayed
obvious TGR5 agonist activity, with the ECs, values of 19.5 uM
and 7.7 uM, respectively. Compounds V12 and V14 could be
considered potential TGR5 agonist candidate and also may be
used as initial hits for developing novel TGR5 agonists.
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