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Introduction

GH31 a-glucosidases are retaining a-glucosidases that catalyze
the hydrolysis of a-glycosidic linkages in oligosaccharides and
glycoconjugates. GH31 a-glucosidases are involved in several
physiological processes, including the processing of newly
biosynthesized glycoproteins in the endoplasmic reticulum, the
breakdown of glycogen in the lysosome, and the hydrolysis of
disaccharides in the gastrointestinal tract. GH31 a-glucosidases
perform essential biological functions that have attracted
considerable attention as therapeutic targets, with drugs for
lysosomal storage disease,® diabetes,* obesity,® virus infections,®
and tumors’ having been developed. Furthermore, the thera-
peutic benefits of targeting GH31 a-glucosidases have facili-
tated the development of new inhibitor classes, including
disaccharides,®® iminosugars,' carbasugars,'* peudoaminosu-
gars,"" and non-glycosidic derivatives."*>* However, there
remains a major need to discover and design selective o-
glucosidase inhibitors from the perspectives of both cellular
tools and therapeutic agents.

Salacinol (1), a natural product, was isolated from the stems
and roots of Salacia reticulata, which has been used to treat
diabetes in Ayurvedic medicine (Fig. 1).>*** After the discovery of
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structure-activity relationship studies reveal that the salacinol side-chain stereochemistry significantly
influences binding to GH31 a-glucosidases.

salacinol (1), related sulfonium sulfates, such as kotalanol,*
ponkoranol,* and salaprinol,** as well as desulfonated analogs,
including neosalacinol (2) (Fig. 1), neokotalanol,® neo-
ponkoranol,* and neosalaprinol,”” were subsequently isolated
from the same plant genus plant as the compounds responsible
for antidiabetic activity. In vitro and in vivo activity studies
revealed that the antidiabetic activity is due to the inhibition of
intestinal a-glucosidases.”® Furthermore, Lineweaver-Burk
plots of the inhibition of intestinal a-glucosidases by 1 revealed
a competitive type of inhibition on intestinal a-glucosidases.”
On the basis of these results, clinical trials using the extract of S.
reticulata on patients with type-2 diabetes showed promising
therapeutic effects and minimal side effects.” Intensive
structure-activity-relationship (SAR) studies around 1 have also
been conducted around the world; indeed, we revealed the
following important structural features of the side-chain
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Fig. 1 Structures of naturally occurring salacinol (1), neosalacinol (2),
and their derivatives 3—13 described in this study.
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Table 1 Apparent inhibitory constants (Kf*P) and ICsq values (uM) for

1-13¢

a-Glucosidase GAA?

A. niger B-glucosidase®

1 0.12 + 0.02 >1000
2 3.6 +0.3 >1000
3 (H) 0.022 £ 0.007 >1000
4 (0-CH,3) 0.034 £ 0.009 >1000
5 (0-Cl) 0.030 £ 0.009 >1000
6 (0-CF3) 0.017 + 0.010 >1000
7 (0-NO,) 0.17 £ 0.05 >1000
8 (3'-epi-1) 1.0 £ 0.1 >1000
9 (3"-epi-2) 2542 >1000
10 (2"-epi-1) 2794 + 294 >1000
11 (2'-epi-2) 2742 £ 230 >1000
12 (2/,3"-epi-1) 3893 + 262 >1000
13 (2/,3"-epi-2) 463 + 36 >1000
Voglibose 7.6 £0.8 >1000
Acarbose 40 £ 2 >1000

“ Mean + SEM. ? Apparent K;. Assays conducted at pH 5.2 using a-p-NPG
as the substrate. © Apparent ICs,. Assays conducted at pH 4.6 using B-p-
NPG as the substrate.

structure of 1: cooperativity between 2’S-OH and 4’-OH moieties
is essential for the onset of the potent a-glucosidase inhibitory
activity,*® while the O-sulfonate anion moiety on the 3’-oxygen is
not necessary.* We subsequently have developed an array of
neosalacinols 3-7 bearing 3'-O-(ortho-substituted benzyl)
groups through comprehensive SAR studies (Fig. 1).*> The 3'-0-
benzylated analogs 3-7 displayed in vitro inhibitory activities
toward rat intestinal maltase (ICso = 0.13-0.66 pM) (Table 1),
which highlighted that they are the most potent thiosugar-
based inhibitors synthesized to date.** Furthermore, in vivo
activity studies involving 3-7 revealed the effective suppression
of blood glucose levels in mice.>® While salacinol (1) and its
analogs 3-7 have been studied in detail using intestinal o-
glucosidases, thiosugar-sulfonium salts remain an underex-
plored sector of lysosomal a-glucosidase chemical space. With
this in mind, we sought to evaluate the compatibilities of
thiosugar-based intestinal a-glucosidase inhibitors with lyso-
somal a-glucosidase GAA. To complete these SAR studies, we
synthesized 8, 10, and 12, and the related de-O-sulfonated
versions 9, 11, and 13 (Scheme 1). We analyzed the abilities of
these thiosugar sulfonium salts (1-13) to inhibit the enzymatic
activities of recombinant human a-glucosidase GAA and rat
intestinal disaccharidases, as determined by their inhibitory
constants (K;) or ICs, values, and also demonstrated their
inhibitory properties toward B-glucosidase.

Results and discussion

By applying Ghavami's conditions for the synthesis of salacinol
(1), coupling reactions of thiosugar 17 was reacted with cyclic
sulfates 14-16 in 1,1,3,3,3-hexafluoroisopropanol (HFIP); o-
facial attack of 14-16 at the sulfur atom of 17 preferentially
occurred to give coupled products 18-20 in yields of 76%, 87%,
and 89%, respectively. Compounds 18-20 were subsequently
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treated with aqueous TFA to simultaneously remove each p-
methoxybenzyl (PMB) group and benzylidene acetal moiety,
which gave the desired sulfonium salts 3'-epi-1, 2'-epi-1, and
2/,3"-epi-1 in good yields (Scheme 1). As shown in Table S17t
(ESI), 3-epi-1, 2'-epi-1, and 2',3"-epi-1 showed "*C NMR spectral
data that are similar to those of 1, which confirms the formation
of salacinol-type sulfonium inner-salt structures.

To remove the sulfo group at the C-3' oxygen atom, 3’-epi-1,
2'-epi-1, and 2',3’-epi-1 were subjected to acidic methanolysis,
which give the corresponding sulfonium salts, namely 3'-epi-2,
2/-epi-2, and 2/,3'-epi-2 (X = CH308S03); their counterions were
then exchanged using IRA400] (Cl~ form) to give the corre-
sponding chlorides (3'-epi-2, 2"-epi-2, and 2/,3"-epi-2, X = Cl) in
good yields. "*C NMR spectroscopic data for 3'-epi-2, 2'-epi-2,
and 2/,3-epi-2 are similar, with the exception of the C-3’
methine carbon signals (6¢y 74.2-75.1), which are significantly
upfield shifted compared to those of 3'-epi-1, 2’-epi-1, and 2,3’
epi-1 (6cy 82.0-82.8), confirming their de-O-sulfonated struc-
tures (Table S1f). The syntheses of cyclic sulfates 14-16 are
described in Scheme S1.}

Our biochemical studies began by examining of the inhibi-
tory properties of salacinol (1) and neosalacinol (2) toward o-
glucosidase GAA (recombinant myozyme from genzyme, family
GH31) at pH 5.2 using 4-nitrophenyl-a-p-glucopyranoside (o-p-
NPG) as the substrate (Fig. S1t and Table 1). Prototypal 1
exhibited tight binding toward GAA, with a calculated KPP.
values of 0.12 & 0.02 uM (Fig. S1 and Table 1). In contrast, the
KiPP value of the de-O-sulfonated analog 2 toward GAA was
calculated to be 3.6 £ 0.3 uM, which is clearly inferior to that of
1 (Table 1 and Fig. S1f). In addition, voglibose and acarbose,
which are widely used clinical intestinal a-glucosidase inhibi-
tors, are interestingly less potent toward GAA than 1 and 2, with
KiPP values of 7.6 & 0.8 uM and 40 =+ 2 pM, respectively (Table 1
and Fig. S21). Based on these results, we conducted a compar-
ative SAR study against GAA using potent intestinal a-glucosi-
dase inhibitors 3-7. Of the five, four analogs 3-6 showed strong
inhibitory activities toward GAA, with calculated K{P values of
0.022 + 0.007 uM, 0.034 £ 0.009 puM, 0.030 £+ 0.009 pM, and
0.017 &+ 0.010 uM, respectively (Fig. S31 and Table 1). Interest-
ingly, the most potent intestinal o-glucosidase inhibitor (7)*
was less potent inhibition (K{P? = 0.17 £ 0.05 uM) (Table 1 and
Fig. S31) than the other 3'-O-benzylated analogs 3-6. We
conclude that ortho-substitution of the benzene ring and/or the
electronic effects of the benzene-ring substituents appear to
have no effect on GAA-inhibition characteristics, albeit with one
exception. We therefore suggest that 3’-O-benzylation is an
effective protocol for increasing binding affinity to GAA.
Furthermore, in silico docking studies of salacinol (1), neo-
salacinol (2), and the 3’-O-benzylated analogs 3-7 with GAA
strongly support the observed K{PP trend (Fig. S4 and S57).
Although GAA and intestinal a-glucosidases are classified in
family GH31, these results may highlight microenvironmental
active-site differences between them.

We next evaluated the role of the stereochemistry of the
salacinol side chain on inhibitory activity toward GH31 o-
glucosidases (rat intestinal disaccharidases vs. GAA). As shown
in Table 2, the 3'-epi-1 (8) exhibited weak binding affinity toward

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Scheme 1 Synthetic routes to side-chain stereo-derivatives of 1.

rat intestinal sucrase and isomaltase (ICs: 19 and 6.4 pM for
sucrase and isomaltase, respectively); however, it completely
lacked activity toward rat intestinal maltase (ICs, > 100 puM). In
contrast, the de-O-sulfonated version of 8, 3'-epi-2 (9) exhibited
stronger inhibitory activities toward three rat intestinal disac-
charidases than 8 (9: IC5, = 0.69 pM for sucrase, ICs, 0.58 uM
for isomaltase, and ICs, 4.3 uM for maltase). It was especially
interesting that de-O-sulfonation significantly enhanced inhib-
itory activity toward rat intestinal maltase. Furthermore, by
benchmarking against the inhibitory potency of 2 (IC5, 25 pM
for maltase), we conducted that a combination of the 3'R-OH
and 2'S-OH moieties is more suitable than 3'S-OH and 2'S-OH
for the onset of potent maltase inhibitory activity. On the other
hand, four stereo-derivatives 10-13, each of which contains the
2/R-OH unit, exhibited virtually no binding to the rat intestinal
disaccharidases, which highlights the importance of the coop-
erative roles of the 2’S-OH and 4’-OH moieties.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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We next assessed the binding properties of 8-13 toward GAA
(Table 1 and Fig. S6%); 3'-epi-1 (8) and 3'-epi-2 (9) are GAA-
binding compounds, with KPP values determined to be 1.0 +
0.1 uM and 25 =+ 2 pM, respectively, which are nine- and seven-
times higher than those of 1 and 2 (Table 1 and Fig. S6t). On the
other hand, stereo-derivatives 10-13 exhibited no inhibitory
activities was observed (Table 1 and Fig. S67). As a result, the
molecular recognizing abilities of GH31 a-glucosidases appear
to be relatively tolerant of the stereochemistry at the 3’-position,
but can strictly discriminate the stereochemistry at the 2'-
position.

We next assessed the ability of 1-9 to specifically inhibit
GH31 a-glucosidases. Hence, we examined their abilities to
inhibit B-glucosidase from Aspergillus niger** at pH 4.6 using 4-
nitrophenyl-p-p-glucopyranoside (B-p-NPG) as the substrate.
None of these compounds displayed any inhibitory activity
toward B-glucosidase from A. niger under our assay conditions,
with apparent ICs, values > 1000 pM (Table 1 and Fig. S71).

RSC Adv, 2021, 11, 3221-3225 | 3223
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Table 2 Enzyme inhibiting efficacies of 1-13 toward rat intestinal
disaccharidases®

Compound Sucrase Isomaltase Maltase
1 1.6 5.2° 5.2°
2 3.6 0.45 25

3 (H) 0.44° 0.14° 0.32°
4 (0-CH,) 0.41° 0.48° 0.66°
5 (0-Cl) 0.090° 0.26° 0.31°
6 (0-CF;) 0.15° 0.19¢ 0.33¢
7 (0-NO,) 0.042° 0.21° 0.13°
8 (3'-epi-1) 19 6.4 >100
9 (3"-epi-2) 0.69 0.58 4.3
10 (2'-epi-1) >100 >100 >100
11 (2"-epi-2) 85 >100 >100
12 (2/,3"-epi-1) >100 >100 >100
13 (2/,3"-epi-2) 84 34 >100
Voglibose 0.20¢ 2.14 1.2¢
Acarbose 1.5¢ 646° 1.7¢

@ Apparent ICs, in (uM). * Ref. 24. € Ref. 32. ? Ref. 35. © Ref. 36.

These results demonstrate that thiosugar-based sulfonium salts
1-9 appear to be highly selective for GH31 a-glucosidases over A.
niger B-glucosidase.

Conclusions

In summary, we demonstrated that salacinol-type a-glucosidase
inhibitors exhibit ligand compatibility for the GH 31 family.
Salacinol (1) and its 3'-O-benzylated analogs 3-7 displayed
submicromolar-inhibitory activities toward human lysosomal a-
glucosidase. Simple SAR studies demonstrated that the side-
chain stereochemistry has a large effect on binding to GH31
a-glucosidases. We expect that the thiosugar skeleton may be
valuable for the design of selective inhibitors that target glyco-
sidases that recognize and process differently configured and
substituted carbohydrates.
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