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tive colorimetric sensors for the
selective detection of Cu(II)†

Meifang Liu, *a Kequan Wang,b Hanlu Wang,c Jie Lu,a Shukang Xu,a Lulu Zhao,a

Xilong Wangd and Junming Dud

A simple, sensitive colorimetric probe for detecting Cu(II) ions with fast response has been established with

a detection limit of 2.82 mM. UV-Vis spectroscopy along with metal ion response, selectivity, stoichiometry,

competition was investigated. In the presence of copper(II), the UV-Vis spectrum data showed significant

changes and the colorimetric detection showed a color change from colorless to yellow. After the

selective binding of receptor L with Cu(II), the UV-visible absorption at 355 nm decreased dramatically,

a new absorbance band appeared at 398 nm and its intensity enhanced with the increase in the amount

of Cu(II). Moreover, it exhibited highly selective and sensitive recognition towards Cu(II) ions in the

presence of other cations over the pH range of 7–11. The complex structure was verified by FT-IR

spectroscopy, elemental analysis and quantum mechanical calculations using B3LYP/6-31G(d) to

illustrate the complex formation between L and Cu(II). According to the Job plot and the quantum

mechanical calculations, the stoichiometric ratio for the complex formation was proposed to be 1 : 1.
Introduction

Over the past decades, there has been considerable interest in
the development of chemosensors for detecting heavy metal
ions as they are harmful to the environment and important
biological processes.1–7 As the third abundant element, cop-
per(II) ion plays vital roles in numerous physiological processes.
However, either excess or decient amounts may aggravate the
deterioration of vital organs and lead to the progression of
complications. When humans and animals are over-exposed to
Cu(II)-contaminated water, copper ions tend to accumulate,
which is toxic to the environment and ecosystem, and also has
an impact on the progress of Alzheimer's disease and Parkin-
son's disease.8–10 Therefore, numerous methods have been
developed for the trace detection of Cu(II) in biological and
environmental specimens, such as inductively coupled plasma
mass spectrometry (ICP-MS),11,12 atomic absorption spectrom-
etry (AAS),13,14 voltammetry,15,16 and total reection X-ray uo-
rimetry (TXRF).17–20 Among the common analytical methods,
most of them oen require expensive instruments and sophis-
ticated detection systems. At present, uorescence spectroscopy
is a frequently used technique for the detection of copper(II)
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ions in the biological and environmental media. In many cases,
uorescent sensors have limitations due to uorescence
quenching of numerous metal ions.21–26 Cu(II) also exhibits
uorescence quenching due to its intrinsic paramagnetic
nature.27–29 In practical applications, it is necessary to develop
a simple, convenient, and low-cost Cu(II) sensor. Therefore, the
design and synthesis of colorimetric sensors for the detection of
Cu(II) is very valuable.

Chemosensors for the selective detection of Cu(II) generally
have structures of chelating metal ions with heteroatoms
(nitrogen and sulfur), such as naphthalimide,30–32 naphtha-
lene,33–35 anthracene,36 anthraquinone,37 quinoline,38–41 thia-
zole,42 and macrocyclic43–45 derivatives. However, many of them
are obtained via complex synthesis procedures or require
expensive materials. For example, Zhang et al.46 reported that
the synthesis of a naphthalimide derivative required six steps.
Therefore, developing novel chemosensors for detecting metal
ions with synthesis and commercial availability are necessary.
In this study, chemosensor L based on a pyridyl-isoindoline-1-
one skeleton was easily obtained with good yield using simple
and inexpensive starting materials, which manifested highly
sensitive and selective colorimetric detection towards Cu(II)
with a color change from colorless to yellow in a mixed solvent.
The complex skeleton was veried by FT-IR spectroscopy,
MALDI-TOF, elemental analysis and quantum mechanical
calculations to illuminate the formation of the complex
between Cu(II) and L; the stoichiometric ratio of 1 : 1 for
complex formation and mechanism for the detection of the
Cu2+ ion with L were proposed.
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 (a) UV-Vis spectral changes of receptor L (50 mM) after the
addition of 2 equiv. of Cu2+ and 5 equiv. of other metal ions in the
EtOH/H2O solution (v/v, 4 : 1). (b) The color changes of L (50 mM)
upon the addition of various metal ions (5 equiv.) in the EtOH/H2O
solution (v/v, 4 : 1). (c) Fluorescent changes of L (50 mM) upon the
addition of various metal ions (5 equiv.) in the EtOH/H2O solution (v/v,
4 : 1).
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Experimental

All reagents were of analytical grade and used without puri-
cation. The inorganic salts of Fe2+, Ag+, Mg2+, Na+, Co2+, Ca2+,
Cr3+, Cd2+, Hg2+, Ni2+, Ba2+, Zn2+, Cd2+, and Cu2+ ions and 2-
pyridylaldehyde and isoindoline-1,3-dione were purchased
from Chemical Reagent Company.

Absorption spectra were recorded on a TU-1901 double beam
UV-Vis spectrophotometer. While 1H NMR spectra were ob-
tained on a Bruker Avance 600 MHz NMR. CD3OD and CDCl3
were used as the solvent. FT-IR and elemental analyses were
conducted on a Bruker Alpha spectrometer and Elementar Vario
EL CUBE, respectively. MALDI-TOF was performed on a Bruker
Autoex speed TOF/TOF mass spectrometer using dithranol
(cas: 1143-38-0) as the matrix. Quantum chemistry calculations
at the density functional theory of B3LYP were used to fully
optimize twomolecules, and the calculations were completed in
Gaussian09.

Elemental analysis

Anal. calcd for C14H9CuN3O4: C, 48.49; H, 2.62; N, 12.12; found:
C, 48.43; H, 2.29; N, 12.05.

Results and discussion

Receptor L was synthesized according to the literature
method.47 The synthetic routes of compound L are displayed in
Scheme 1. Starting from isoindoline-1,3-dione, the immediate
precursor isoindolin-1-one was synthesized with a 80% yield.
Upon heating a 1 : 2 : 4 mixture of isoindolin-1-one, 2-pyr-
idylaldehyde and K2CO3 at 110 �C for 24 h in toluene,
compound L was obtained in 85% yield and characterized via
FT-IR and 1H NMR spectroscopy techniques.

The colorimetric selective sensing ability of receptor L with
various cations in the EtOH/H2O (v/v, 4 : 1) mixed solution was
determined by UV-Vis absorption spectroscopy (Fig. 1a). It was
found that the absorption maximum of L was located at 355 nm
in the absence of metal ions. Only aer the addition of 2.0
equiv. of Cu2+, the absorption maximum of the complex L–Cu(II)
red-shied to 398 nm; however, other cations such as Co2+,
Mg2+, Na+, Ca2+, Cr3+, Ba2+, Fe2+, Zn2+, Co2+, Hg2+, Ni2+, Cd2+,
and Ag+ combined with L had no inuence on the spectra. The
new absorption band was attributed to the metal-induced
intramolecular charge transfer from receptor L to the Cu2+

ion.48,49 Compared with the photograph of receptor L with
various cations (Fig. 1b), the solution of L with Cu2+ ions caused
a rapid and sensitive color change from colorless to yellow,
which indicated that the receptor L could be used as a ‘naked-
eye’ indicator for copper ions in mixed solutions. In addition,
Scheme 1 Synthesis of compound L.

© 2021 The Author(s). Published by the Royal Society of Chemistry
chemosensor L for Cu2+ can strongly quench the uorescence of
a uorophore by the PET mechanism50 (Fig. 1c).

The detection limit of L for the analysis of Cu(II) was inves-
tigated by UV-Vis absorption spectra of L (5.0 � 10�5 M) in an
EtOH/H2O ¼ 4 : 1 solution upon addition Cu2+ at room
temperature, as shown in Fig. 2 (Fig. S1 in ESI†). With the
addition of Cu2+, the absorption band at 355 nm decreased
gradually, while the absorption band at 398 nm increased and
Fig. 2 UV-Vis spectral changes of L (50 mM) upon the addition of Cu2+

(from 0 up to 1 equiv.) in the EtOH/H2O (4 : 1) solution at room
temperature.
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Fig. 3 1H NMR spectrum of L and L with Cu2+ (ratio 1 : 1).

Fig. 4 Job plot for the binding of L with Cu2+. Absorbance at 398 nm
was plotted as a function of the molar ratio [Cu2+]/([L] + [Cu2+]). The
total concentration of Cu2+ with receptor L was 5.0 � 10�5 M.

Fig. 5 UV-Vis selectivity–competition study of receptor L with added
M(II) salts (5.0 equiv.), followed by the addition of 1.0 equiv. of Cu(II). [L]
¼ 5.0 � 10�5 M, absorbance changes monitored at 398 nm. Relative
intensity of L (0.01 mM) in presence of various metal ions in the EtOH/
H2O solution, detection wavelength: 398 nm.

Fig. 6 The cycle of L–Cu2+ and L + Cu2+ + EDTA.

Fig. 7 The structure of L and L–Cu2+ complexes optimized with
density functional theory of B3LYP.

Scheme 2 Proposed mode of complexation between L and Cu2+.
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reached its maximum at 1 equiv. of Cu2+. The isosbestic points
at 370 nm indicated that a single species between the Cu2+ and
receptor L was formed, and the maximum absorption peak of
11734 | RSC Adv., 2021, 11, 11732–11738
the spectrum could be redshied by 43 nm, and the color
changed from colorless to yellow. At 398 nm, the band gap with
a molar extinction coefficient of 1.2 � 104 M�1 cm�1 (�10%), is
not Cu-based d–d transitions due to the ligand-to-metal charge-
transfer (LMCT) mechanism.51 By calculation, the detection
limit of L for the analysis of Cu(II) was 2.82 mM with the linear
working range from 20 mM to 45 mM, which was determined
© 2021 The Author(s). Published by the Royal Society of Chemistry
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from the plot of the relative absorbance intensity I398 nm/I355 nm

as a function of the concentration of Cu(II) on the basis of 3s/k
according to the literature52,53 (Fig. S2 in ESI†). Compared to
other recently reported Cu(II)-sensors, the detection limit of our
sensor was higher, as shown in Table S1.†54–60 Although some of
the reported sensors provided better detection limits, some
proceeded with the “turn-off” mode for the detection of Cu(II)
and had inferior selectivity compared to that of our sensor in
this study.

Further study of the features of L–Cu(II) interactions was
obtained by 1H NMR experiments in the CD3OD solvent (Fig. 3).
By hydrogen spectrum analysis, the chemical shi of the
complex L–Cu(II) changed greatly aer the addition of copper
ions. Compared with 1H NMR before and aer the addition of
copper ions, the N–H chemical shi at 11.18 ppm became weak,
and the signal of C–H also slightly became broader. It is sug-
gested that nitrogen in secondary amides might be involved in
the binding of Cu2+, which was consistent with the previous
reports.61,62 The stoichiometry of L was obtained by the Job's
plot. The results showed that when the molar ratio was 0.5, and
the absorbance band of L–Cu(II) complex reached the
maximum, which indicated that the stoichiometric ratio of the
complexes between L to Cu2+ ions was 1 : 1 (Fig. 4 and S3 in
ESI†). In order to research the effects of other metal ions on the
complex of Cu(II)–L, competitive experiments were conducted
by the addition of copper ions (1 equiv.) to the solution of L with
other metal ions (5 equiv. of Na+, Co2+, Mg2+, Ca2+, Ba2+, Cr3+,
Fe2+, Co2+, Hg2+, Ni2+, Zn2+, Cd2+, and Ag+). As shown in Fig. 5
(Fig. S4 in ESI†), compared with the addition of Cu(II) to the
solution of L, the presence of competing metal ions did not
cause any distinct change in UV-Vis absorption spectra. Thus,
this displayed the stronger binding capacity of L towards Cu(II),
and simple receptor L could be used as a preferential selective
colorimetric sensor for Cu(II) in the presence of most interfering
ions.

We next investigated the effects of pH on the response of
complex L towards Cu(II) ions. It was clear that the absorption
spectrum of the ligand was almost unchanged and the proposed
L–Cu(II) sensor could be applied successfully over the pH range
7–11 (Fig. S5 in ESI†). With pH greater than 11, the precipitation
of Cu(OH)2 likely occurred in these conditions.63,64 With pH less
than 7, due to the protonation process, the absorption peak of
the complex L–Cu2+ at 398 nm decreases accordingly. In addi-
tion, to determine the repeatability and reproducibility of the L–
Cu(II) complex, a reversibility experiment was carried out with
the addition of EDTA, which had a stronger binding ability
towards Cu2+. It can be seen that with the addition of Cu2+ to L
the maximum absorption band appeared at 398 nm, as shown
in Fig. 6 (Fig. S6 in ESI†). Aer the addition of EDTA, the
maximum absorption band of the complex appeared at 355 nm,
and further addition of Cu2+ restored the location of the
maximum absorption peak at 398 nm.

Quantum chemistry calculations at the optimized geome-
tries of the free L and the L–Cu2+ complexes were conducted
with the density functional theory of B3LYP to fully optimize the
molecule, with a mix of basis sets composed of the split valence
double-z (DZ) basis set 6-31G(d) for C, O, N, and H atoms, and
© 2021 The Author(s). Published by the Royal Society of Chemistry
effective core potential LANL2DZ for the Cu atom. DFT calcu-
lations indicated that the HOMO and LUMO of L were delo-
calized in the whole p-moiety and there was little difference
between them (Fig. S7†). The band gap between HOMO (�5.7
eV) and LUMO (�2.0 eV) of L was calculated as 3.70 eV. On the
other hand, the HOMO orbital electrons of L–Cu(II) were
uniformly distributed in the p-moiety of the molecule and the
LUMO orbital electrons of L–Cu(II) mainly delocalized around
the nitrogen and oxygen atoms and copper ions. In addition,
the band gap between HOMO (�2.98 eV) and LUMO (�2.33 eV)
of the L–Cu(II) complex was decreased to 0.65 eV. The smaller
energy led to a large-scale spectral redshi, which met the
requirement for colorimetric detection from colorless to yellow.

To explain a mechanism for the detection of Cu2+ ions with
L, the FT-IR spectroscopy, MALDI-TOF, and elemental analysis
were carried out. The FT-IR spectrum analysis showed the N–H
stretching band at 3241 cm�1, and C]O stretching band at
1705 cm�1 in compound L. For compound L–Cu(II), it presented
the C]N stretching band at 1599 cm�1, and no N–H and C]O
stretching bands. Elemental analysis showed that the molecular
formula of the compound L–Cu(II) is C14H9CuN3O4, and the
molecular formula obtained was complex L–Cu(II) combined
with an anionic nitrate. From the analysis of MALDI-TOF, the
cluster peaks at 568.838 and 567.829 corresponded to [L + Cu2+

+ H+] (calcd ¼ 569.008), [L + Cu2+] (calcd ¼ 568.002), which
indicated that the complex L–Cu(II) has a bimolecular chelating
center [L–Cu2+–L–Cu2+]. The binding mode of compound L with
Cu2+ supported by the quantum chemistry calculation at the
optimized geometries is shown in the Fig. 7. Based on the
results from IR, elemental analysis, 1H NMR titration studies
and quantum chemistry calculation, the proposed binding
mode of ligand L with copper ions is through two nitrogen
atoms and oxygen atom of carbonyl groups connected to adja-
cent molecules, as shown in Scheme 2.
Conclusions

In conclusion, we provided a chemosensor sensor L with high
yield by using simple starting materials, which manifested
highly sensitive and selective colorimetric detection towards
Cu(II) with a color change from colorless to yellow. The experi-
mental results displayed the stoichiometric ratio of 1 : 1 for
complex formation were consistent with the quantum chem-
istry calculations.
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