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MXene is a growing two-dimensional material family of transition metal carbides and nitrides and showing
great promise in various applications, treatment, composites,
electromagnetic interference shielding, etc. In all these applications, at least one of the MXene flake sides is

such as energy storage, water

in contact with a medium of interest. So the wetting behaviors of MXene are critical for the performance of
MXene. Although the hydrophilicity of MXene is unquestionable, the reported contact angles of MXene
have covered an extensive range. Additionally, the surface energy of MXene flakes is surprisingly poorly
known and rarely studied. In this work, the static contact angles of MXene films were studied using water,
glycerol, and diiodomethane. The surface energy of MXene films has a range of 49.92 + 2.01 to 62.44 +
0.25 mJ m~2, calculated based on the measured contact angles. The loading, drying and storage condition
of the MXene films have various impacts on their contact angles and surface energy. The root cause for the
wide-range of contact angles is related to the surface chemistry of the MXene films. Organic
contamination and surface oxidation are responsible for the scattering water contact angle. The contact
angles are mass loading-independent for MXene films with loadings from 0.3 to 2 mg cm™2. The surface
energy and its acid—base component are sensitive to the delamination methods and MXene compositions,
while the dispersion component of the surface energy is stable. These findings will provide valuable insight
and guidance for measuring contact angles of MXene films and the rational design and synthesis of
MXene-based films, composites, coatings, and energy storage devices.

1. Introduction

Two dimensional (2D) materials, such as graphene, have an
atomic-level thickness and outstanding physicochemical prop-
erties, providing various promising applications, such as in
coatings, composites, energy storage, water treatment, etc.">
The wetting behavior of 2D materials is critical for their appli-
cations since the solid-liquid interaction is indispensable for
their synthesis, device fabrication, and proper working. The
contact angle (CA) is one of the most important parameters
measured experimentally for characterizing the wetting features
of various solids,® including 2D materials. The CA values
describe a junction among three phases and are determined by
the used solvents as well as the composition and structure of the
solid surface involved.® Generally, a solid surface with a water
contact angle (WCA) less than 90° is considered hydrophilic,
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while a surface is considered hydrophobic with a WCA larger
than 90°.

Although some 2D materials are thought to be inherently
hydrophilic, their wetting behaviors are often perturbed by their
substrates, contaminants, and intercalated ions,*® which can
shift the WCA in a wide range. The unintentional contamina-
tion at the surfaces causes the scattering values of WCAs for 2D
materials, challenging the long-held belief on the wettability of
some materials, such as graphene and graphite.” However,
modulation of wetting behaviors of 2D materials also provides
unexpected and unique properties, endowing promising appli-
cations in various fields, such as water treatment.® The potential
applications of different 2D materials require understanding
and manipulating their wettability. However, the wetting
behavior of 2D materials except for graphene has been seldom
studied.® Even for the most studied graphene, there is a long-
standing and ongoing debate on its inherent hydrophilicity or
hydrophobicity,® indicating there are still knowledge gaps for
understanding the wettability of graphene, the most studied 2D
materials. The knowledge gap in wettability of other 2D mate-
rials is much larger than that of graphene due to less attention
to these newly emerging 2D materials, such as MXene.

MXene is a large and growing family of 2D transition metal
carbides, carbonitrides, and nitrides,” which was first invented
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in 2011 and has rapidly expanded since then.'®" The versatile
chemistry of the MXene family allows the choosing and tuning
of properties for desired applications, such as water treatment,
energy storage, composites, and catalysis."*** Solid-liquid
interaction plays critical roles in these applications; however,
there are few reports focusing on the wetting behaviors of
MXene. Although many works reported the WCAs of MXenes,
the scattering results range from 18.6° to 91°."*% Additionally,
there is a lack of explanation for these scattering WCAs, making
it difficult to draw any precise conclusion on which parameters
tunes the WCAs of MXene. More research is needed to under-
stand the wetting behavior of the MXene family fully.

The surface energy (SE) indicates the interaction between
a solid surface and the contacted liquid. The 2D material-liquid
interactions would perturb liquid structures, resulting in
distinctive behaviors and performance for sensors, energy
storage, and other applications.® Although numerous studies on
the assembly and application of MXene films or papers have
been reported,'® to date, only two published articles have
studied the surface free energy of MXene," ' while the focuses
of the two articles are not the SE.

In this work, MXene films assembled from delaminated
MXene nanoflakes were used for CA testing. Three test liquids,
including water, diiodomethane, and glycerol, were used. The
Lifshitz-van der Waals and Lewis acid-base (LW-AB) model***°
was utilized for determining the SE from the obtained CA data.
MXene films with a large range of mass loadings were tested.
The impacts of MXene loading, drying conditions, storage time,
delamination process and MXene composition on the CAs and
SEs were investigated. The reasons for the scattering CAs of
MXene films were analyzed, their condition-dependent SEs were
reported for the first time.

2. Experimental
2.1 Materials

TizAlC, powder and Ti,AlIC (500 mesh and with purity over 99%)
were purchased from Laizhou Kai Kai Ceramic Materials Co.,
Ltd. Lithium fluoride (LiF) was purchased from Alfa Aesar
(China) Chemicals Co., Ltd. Hydrochloric acid (HCl), diiodo-
methane (CH,l,), and glycerol (C;Hs(OH);) were bought from
Sinopharm Chemical Reagent Co., Ltd. All the chemical agents
were used as received. Deionized (DI) water (18.2 MQ cm) ob-
tained from AquaPro laboratory ultrapure water apparatus was
used in all experiments.

2.2 Selectively etching and delamination of MXene

The Tiz;C,T, MXene used in this study was obtained using the
same procedure reported in our previous work.* In a typical
run, LiF (1.32 g) was added to 20 mL of 6 mol L™ " HCI solution
and stirred for 10 min. Then, 1 g of Ti;AIC, powder was slowly
added into the etching solution, and the mixture was magnet-
ically stirred at 45 °C for 72 h. After etching, the product was
washed using DI water and centrifuged at 3500 rpm 6 times to
allow the pH of the supernatant to be neutral. After vacuum
dried for 48 h, the sediment was delaminated in DI water using

© 2021 The Author(s). Published by the Royal Society of Chemistry
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tip ultra-sonication for 1 h under flowing N,. The colloidal
suspension of exfoliated MXene was acquired after centrifuga-
tion at 3500 rpm for 30 min. The obtained colloidal suspension
had a concentration of 4.0-5.0 mg mL™".

For the preparation of Ti,AlC based MXene, 3 g of LiF was
dissolved in 20 mL of 9 mol L' HCI solution. Then, 2 g of
Ti,AlC powder was slowly added into the etching solution under
magnetic stirring. The etching was conducted at 35 °C for 18 h.
After etching, the mixture was washed with DI water and
centrifuged at 3500 rpm several times, until the pH value of
supernatant reached 6.5-7.0. Half of sediment was dispersed in
50 mL DI water using hand-shaken violently for 10 min. The
suspension of delaminated Ti,CT, (where T stands for func-
tional group) was obtained after centrifugation at 3500 rpm for
30 min. The concentration of Ti,CT, suspension had a concen-
tration of 8.0-8.5 mg mL .

2.3 Film fabrication and drying procedure

The MXene films were made via vacuum-assisted filtration of
the obtained MXene colloidal suspension through a poly-
propylene separator membrane (Celgard) with a diameter of
4 cm. The loading of MXene films was regulated by the amount
of the colloidal suspension of delaminated MXene with known
concentration. The Ti;C, T, MXene films with loading of 0.3, 0.4,
0.5,1.0, 1.5 and 2.0 mg cm~ % were assembled using the colloidal
suspension with a concentration of 4.66 mg mL™'. The Ti,CT,
films with loadings of 0.4 and 1.0 mg cm™> were made using the
same procedure with a concentration of 8.0 mg mL™".

Three different drying processes, including vacuum drying,
natural drying, oven-drying, were used for drying the as-
prepared MXene membranes. The MXene film with definite
loading, respectively, was put in a vacuum desiccator with
maintaining stable pressure at —0.8 kg cm™~? at room temper-
ature (MXene-V), or immersed in the laboratory environment
for natural drying (MXene-N), or put in an oven at 60 °C (MXene-
O). After a certain period of storage, the dried MXene films were
used for contact angle measurement.

2.4 Characterization

Raman spectra were obtained in the region from 100 cm™" to

800 cm ™' using LabRAM HR Evolution, with a 532 nm laser. The
MXene films were characterized via X-ray diffraction to analyze
the crystal structure using a Bruker D8 Advanced with filtered
Cu Ko radiation (A = 0.154 nm, operated at 40 kv and 40 mA).
The micro-morphology was analyzed using scanning electron
microscopy (SU8200, 5.0 kV). The chemical composition of
MXene films was characterized by FTIR Spectroscopy (Nicolet
6700, US) in the region from 4000 cm™* to 400 cm " and X-ray
photoelectron spectroscopy (Thermo, ESCALAB XI+, UK) in the
region from 1350 eV to 0 eV. The surface roughness of the
sample was obtained by contourgraph (Bruker, DektakXT).

2.5 Contact angle measurement

Static contact angles were measured at room temperature using
an industrial camera (UI-1220LE-M-GL, IDS-Germany) and
Surface Meter™ software (Ningbo NB Scientific Instruments

RSC Adv, 2021, 11, 5512-5520 | 5513
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Table1 The total surface energy and their components of the testing
liquid®*2

LW + —

Y Y Y L

(mm™?)  (mjm?) (mjm?) (mjm?)
Water 21.8 25.5 25.5 72.8
Diiodomethane 50.8 0 0 50.8
Glycerol 34 3.92 57.4 64

Co., Ltd). DI water, diiodomethane, and glycerol were used as
the testing liquids.>* The total surface energy and their
components of three testing liquids are list in Table 1. Liquid
droplets of 10 pL were slowly placed on the dried film and then
photographed using the industrial camera after 10 s. An average
value of contact angles was obtained from four or five droplets
to minimize measurement error.

2.6 Lifshitz-van der Waals and (Lewis) acid-base (LW-AB)
model

In the LW-AB model, the total SE is composed of a dispersion
component v*V due to Lifshitz-van der Waals interactions (SE-
LW) and an acid-base component y*® due to Lewis interactions
(SE-AB).192°

Therefore, the SE is expressed as:

Lw + 'YAB

(1)

Y=

where the acid-base component v*® consists of two contribu-
tions, one from an electron acceptor y' and other from an
electron donor vy~ . Accordingly, this component is written as:

YA =2y/yty- (2)

Furthermore, the liquid-solid interface energy is calculated
as:

Yis =L+ s — 2(\/7kwvéw +Vr s + x/vs,*vL*) 3)
where y; and vys are the liquid and solid surface energy,

respectively.
Combining the Young equation, it is acquired that:

(v +2¢/ v 77 ) (1 +cos 0) :2(\/W EARCE

+ Vst >

4)

where 6 is the contact angle of the MXene film.

3. Results and discussion

It is well-known MXene has an attractive combination of
excellent electrical conductivity and hydrophilia, making the
MXene family attractive and promising for coating, composite
fillers, and functional materials in an aqueous environment.®
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Fig. 1 Water contact angles of reported MXene films from literature.
Wang N, et al.,** Yang W, et al.,* Liu J, et al.,*® Liu J, et al,?” Ding L,
et al.,*® Ling Z, et al.,*® Fan Z, et al.,*® Ghidiu M, et al.,** Jin X, et al.,*
Zhang T, et al,*® Zhou H, et al,** Du F, et al,** Zhao M, et al.,*
Lorencova L, et al.,* Kang K. M, et al.,*¢ Luo J, et al.,*” Shen J, et al.,**
Chen S, et al.,*® Wei S, et al,* Bian R, et al.,*° Liu G, et al.*

The WCA has been used as the indicator of MXene's hydro-
philicity in most reported papers (see Fig. 1). However, the
scattering results of the WCAs, as shown in Fig. 1, suggest that
the reported hydrophilic features of MXene based materials
would be different from each other, although most of the WCAs
are smaller than 90° with only one exception.'” There are few
researches or explanations for these scattering WCAs of MXene.

The CAs of MXene films stored under three different
conditions as stated in experiment section, were tested over
a storage period of 168 h. All the tested MXene films are
wettable to the used solvents as the CAs are all smaller than 90°.
While their CAs show different time-dependent changes due to
the impact of the stored conditions. The MXene-N films show
WCAs ranging from 29.55° £ 2.06° to 41.55° £ 2.26°, with an
increasing trend over stored time (Fig. 2a). While their diiodo-
methane contact angles (MCAs) and glycerol contact angles
(GCAs) almost keep constant during storage (Fig. 2b and c). The
WCAs for the MXene-O films decrease with the exposure time in
air at 60 °C, with a maximum of 51.94° + 3.79° and a minimum
of 24.70° & 2.11°. Both the MACs and the GCAs of the MXene-O
films show increasing trends during storage at 60 °C in air. It is
also worth noting that the CA data for the MXene-O films show
a more obvious scattering feature. Most of the WCAs of MXene-
V films concentrate at around 27.12° while there is no clear
changing-trend over the storage. In other words, the WCAs of
the MXene-V films relatively keep constant compared with
MXene-N and MXene-O films. The constant features are more
notable for the MCAs and GCAs of the MXene-V films.

The characterization sheds light on the drying procedure-
dependent CAs for the MXene-N, MXene-O, and MZXene-V
films. The SEM images show that all the tested MXene films
share a similar front surface and cross-section morphology as
the fresh MXene film, independent of their drying procedures
(Fig. 3 and S1t). Similarly, the surface roughness of MXene film
was obtained by contourgraph; compare to the fresh MXene
films, arithmetic mean roughness of MXene films after drying

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig.2 Contact angle of MXene-N, MXene-O and MXene-V films over storing time. (a) WCA, (b) MCA and (c) GCA of MXene-N. (d) WCA, (e) MCA
and (f) GCA of MXene-0O. (g) WCA, (h) MCA and (i) GCA of MXene-V. The loading of MXene-N, MXene-0O, and MXene-V films is 1.0 mg cm™2. Dash

lines are a visual guide.

shows a tiny difference, also unrelated of their drying proce-
dures (Fig. S2t). The XRD patterns indicate the crystal struc-
tures of MXene-N, MXene-O, and MXene-V stored for 168 h
remain the same as the fresh one (Fig. 4a). The peaks locating at
5.86° for the fresh MXene film have moved to 6.30°, 6.51°, and
7.09° for MXene-N, MXene-V, and MXene-O, respectively. The
diffraction peak shifted to higher angles corresponds to
a decreased interlayer distance due to the removal of

intercalated water molecules during drying. Raman spectros-
copy was used to analyze the surface changes of the MXene
films due to its surface-sensitivity. As shown in Fig. 4b, MXene-
N and MXene-V films have the same Raman peaks like those of
the fresh MXene film, indicating natural and vacuum storages
over 168 h have no visible impact on MXene films, while the
MXene-O film shows an extra peak at 154.3 cm™* besides the
peaks corresponding to MXene. The new peak at 154.3 cm ™"

Fig.3 SEM images of MXene-N, MXene-O and MXene-V films after 168
films, cross-sections of (b) MXene-N, (d) MXene-O and (f) MXene-V films

© 2021 The Author(s). Published by the Royal Society of Chemistry

h storage. Front surfaces of (a) MXene-N, (c) MXene-O and (e) MXene-V

. The loading of MXene-N, MXene-O, and MXene-V filmsis 1.0 mg cm 2.
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Fig.4 (a) XRD, (b) Raman and (c) FTIR spectra of various MXene films. All the films have an identical mass loading of 1.0 mg cm™2: (1) fresh MXene
film was tested after it was made. (2) MXene-V film stored at room temperature for 168 h in a vacuum desiccator maintaining stable pressure of
—0.8 kg cm™2. (3) MXene-N film stored in the laboratory environment for 168 h. (4) MXene-V film stored at 60 °C for 168 h.

corresponds to anatase TiO,,** indicating the inevitable oxida-
tion of MXene when stored in air at 60 °C. The MXene films were
analyzed with X-ray photoelectron spectra (XPS) to further study
the change in surface chemistry. It shows an obvious increase in
the oxygen groups on the surface of the MXene films. Compared
with fresh MXene film, O/C and O/Ti atomic ratios of the
MXene-O films increase by 15.8% and 119.7%, the MXene-N
film increased by only 8.7% and 47.5%, and the MXene-V film
increased merely by 5.3% and 29.5%, respectively (Fig. S31). The
oxidation, which often heterogeneously occurs on MXene flakes
and films, results in the changed CAs with a large scatter range.

The FTIR spectra show the composition change due to the
storage in different conditions (Fig. 4c). All the tested samples
share similar characteristic peaks at 3345 cm™', 1640 cm ™,
1060 cm ™' and 550 cm ™', which correspond to the stretching
vibration of O-H,'*** the stretching vibrations of C=0," the
stretching vibrations of C-O bond* and the stretching vibra-
tions of Ti-O bond,*® respectively. While MXene-O shows
a much wider peak around 550 cm™ " and the peak at 1640 cm ™"
is stronger than the counterpart of other samples. These
changes have resulted from the surface oxidation, which
introduces more Ti-O and C=O0. The MXene-N film shows two
extra peaks locating at 2850 cm ' and 2921 cm !, which
correspond to the symmetric vibration and the asymmetric
oscillation of -CH,-.*” The new peaks do not belong to the
intrinsic composition of MZXene, suggesting the organic
contamination happened during natural storage in the lab for
MXene-N. The contamination is quite universal for 2D

5516 | RSC Adv, 2021, 11, 5512-5520

materials,® since they have large surface areas and tend to
adsorb other molecules onto their surfaces. The organic
contamination would disrupt the intrinsic wetting behaviors of
2D materials. It has been reported that isolated MoS, demon-
strates hydrophilic behavior with a WCA of 69.0 £+ 3.8°.
However, its behavior turns to hydrophobic showing a WCA of
89.0 + 3.8° under ambient conditions due to organic contami-
nation.”* The organic contamination results in the drying
procedure- and time-dependent WCAs of MXene-N, which could
be one of the reasons for the scattering values for the reported
WCAs of the MXene materials. It should take care when the
preparation of samples for WCA testing. Since the uninten-
tional contamination would keep the intrinsic wettability of
novel 2D materials from the unambiguous measurement. We
showed that this problem could be solved via storing the 2D
materials under vacuum before the test. The measured WCAs of
the MXene-V over long term storage have shown relatively stable
values without visible changing-trends (see Fig. 2g).

LW-AB model was used to calculate the SE of MXene-N,
MXene-O, and MXene-V using the obtained CA data. This
model allows us to dissociate the total SE into nonpolar and
acid-base components, giving further insight into the surface
properties of the measured MXene films. The nonpolar
component comes from the dispersive forces or van der Waals
forces,® while the acid-base component has resulted from
electrostatic interactions and structural forces, such as
hydrogen bonding.® These components control the adhesive
forces between 2D materials and the contacted solvents. The

© 2021 The Author(s). Published by the Royal Society of Chemistry
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cohesive force maintains the solvent in the form of drops with
minimal surface areas. The balance between adhesive and
cohesive forces determine the wetting behavior of the solvent on
the 2D material surface. It is worth to note that the calculated SE
depends on the used models. The validity of the proposed
models is a long-going debate for decades.” LW-AB model is
one of the most commonly used models to calculate the SE of
2D materials, such as graphene.

Fig. 5 shows the total SE and its nonpolar (dispersive) and
acid-base components for MXene-N, MXene-O, and MXene-V. It
can be found that MXene-O has the largest total SE of 61.56 &+
0.97 mJ m™ 2, while MXene-V has the smallest one (54.37 & 1.12
m] m?) at the first 12 h. The SE values of MXene based films are
comparable to those of graphene (with a SE range of 65-120 mJ
m~?) and other 2D materials, such as BN, MoS,, WS,, and
MoSe, with a SE range of 65-75 mg m >.** The acid-base
component contributes to the increased SE of MXene-O, as the
dispersive components of the three samples share a similar
value of 47 mJ] m~> and keep almost consistent over the storage
period of 168 h. MXene-V shows the most stable total SE and
acid-base component, because it was kept under vacuum,
having little chance to contact with contaminants and oxidants.
While MXene-N and MXene-O show scattering SE values, which
could be the results of heterogeneous contamination and
oxidation. The FTIR, XPS and Raman spectra confirm the
speculation. The acid-base component of MXene-O increased
by 96.94%, compared with the counterpart of MXene-V stored
for 1 h. As the storage time prolongs, SE of MXene-O decreases
to 50.65 + 1.85 mJ] m >, approaching that of Ti0,.**' The
decreased total SE of MXene-O is caused by the minished acid-
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base component. The oxidation and covering with oxygen-
containing groups could passivate the surface and weak the
non-dispersive interaction. The unintentional modification
suggests it is possible to tune the SE via delicate surface engi-
neering of MXene. All the results indicate that great care should
be taken to obtain a faithful and repeatable WCAs and SE.
The MXene films with loadings of 0.4 mg cm™ > and 1.0 mg
cm~ > were taken as the representative samples since they have
typical thicknesses ranging from 0.8 pm to 3.5 um as shown in
Fig. 6a and b. The thickness range is quite common for various
applications, such as treatment, electrodes for energy storage,
composites, electromagnetic shielding, etc.>**>** It can be seen
that the total SE of MXene films with 0.4 mg cm ™2 is as stable as
the one with a loading of 1.0 mg cm ™~ (Fig. 6¢). Both films have
a SE of about 55.27 + 2.20 mJ m ™2, with the thinner film having
a slightly larger SE, which results from its acid-base compo-
nent. The SE keeps almost constant over 48 h storage under
vacuum no matter the loading or thickness of the films. The
measured WCAs (Fig. 6d) also indicates that the problem of
scattering CAs can be eliminated to a large extent. The MCA and
GCA also show thickness- and storing time-independent
performance, as shown in Fig. S4.f The WCA, MCA, and GCA
were also measured for a large loading range from 0.3 mg cm >
to 2.0 mg ecm >, corresponding to a larger thickness range
(Fig. 6f). The measured CAs also confirm the thickness-
independent wetting behavior of MXene films stored under
vacuum. The calculated total SEs of the MXene films with
loadings of 0.3-2.0 mg cm™ 2 are shown in Fig. 6e, with their
dispersive and acid-base components. The total SE is around
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Fig.5 The surface energies (SE) and their nonpolar (SE-LW) and acid—base (SE-AB) components of (a) MXene-N, (b) MXene-O and (c) MXene-V

films. Dash lines are a visual guide.
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57.13 £ 0.93 m] m~> for all the films, showing thickness-
independent performance.

Sonication is the most common way to produce MXene
flakes, although MXene can be delaminated without sonica-
tion.* The sonication process can exfoliate and cut 2D mate-
rials,* inevitably introducing defects into the as-produced 2D
materials. Therefore, the detailed sonication process could have
critical impacts on the surface chemistry of the as-prepared 2D
materials and their wetting behavior, being one of the under-
lying causes for the scattering CAs of MXene based materials.
We used both tip and bath sonication to produce Ti;C,T,
MXene flakes and assembled them into free-standing films
(labeled as T-T3C,T, and B-Ti;C,T,, respectively) with the same
loading of 1.0 mg ecm 2 As shown in Fig. 7a, B-Ti;C,T, has
a larger WCA and MCA compared with T-Ti;C,T,. While the
GCA for B-Ti;C,T, is smaller than that of T-Ti;C,T,. The calcu-
lated total SE and the acid-base component of B-Ti;C,T, are
larger than those of T-Ti;C,T,, while B-Ti;C,T, has a smaller
dispersive component than that of T-Ti;C,T, (Fig. 7b). The
different CAs and SEs indicate that the sonication types have
direct impacts on the wetting behavior and the interaction
between MXene surface and the tested solvents. The XRD and
Raman spectra show no visible difference between B-TizC,T,

60
a T-Ti,C,T, [7ZB-TiC,T,
'S v Ticr,
< 40
]
£ 7
: /
s %
€ 20 % 2
: z
é
0 T - T
water methylene iodide glycerol

Fig. 7

. (e) SE and (f) CAs of MXene films with various mass loadings.

and T-TizC,T,, as shown in Fig. S5.f The underlying reason
could be due to the various working pattern of sonication. We
tried to keep the sonication power and time consistent, but the
power can only be turned in a stepsize mode rather than the
continuous one. The bath sonication has a larger power (270 W)
compared with that of tip-sonication (260 W). Additionally, tip-
sonication worked on a plus mode. The power distribution and
local overheating could contribute to the heterogeneity of
MXene flakes, causing the difference in the CA and SE. It should
be noted that quantifying the heterogeneity of 2D material
surface is very challenge,* so does the specific contributions of
the acid-base components. More detailed and systematic work
is needed.

As mentioned above, the MXene family has a large number
of members with tunable composition.”" We etched and
delaminated Ti,AlC based MXene (labeled as Ti,CT,) and
measured its CAs. The composition and crystal structure of
Ti,CT, were characterized via X-ray diffraction and Raman
spectroscopy (see Fig. S6T). The SE was calculated using the
measured CAs. Since Ti,CT, is peculiarly susceptible to oxida-
tive damage in water (see Fig. S71), it was delaminated by hand-
shaking without sonication. To our best knowledge, it is the first
time to report the CA and SE of Ti,CT, based MXene films (see

o ® b vvicr, W28,
E P Avicr,
B ?7

% Y .
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g /é
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O 204 /
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a /
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TizC5T,), and Ti>,CT, nanoflakes delaminated via hand-shaking. All the films have a mass loading of 1.0 mg cm~2.
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(a) CAs and (b) SE of MXene films assembled of TizC,T, nanoflakes delaminated via tip sonication (T-TisC,T,) and bath sonication (B-
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Fig. 7). The WCA of Ti,CT, film is 27.68 + 1.33°, with an MCA of
26.60 £+ 1.82° and a GCA of 41.80 + 1.17°. The calculated SE is
50.40 4+ 0.96 mJ m~ 2, 90.15% of it contributed by the dispersive
component. The acid-base component accounts for only 9.85%
of the SE. Similarly, the CAs and SE of Ti,CT, film with the
loading of 0.4 mg cm > are accordant with those of 1.0 mg
ecm 2, showing the uniform thickness-independent perfor-
mance (see Fig. 7 and S8t). The CA and SE of Ti,CT, are
different from those of Ti;C,T,. Specifically, there is a clear
difference between the B-Ti;C,T, and Ti,CT, on MCA and GCA,
yet the difference between the T-Ti;C,T, and Ti,CT, is slight.
The SE of Ti,CT, is 16.31% and 10.27% smaller than the B-
Ti;C,T, and T-TizCT,, respectively. Commercial Ti AlC; is
unavailable at present, so we cannot measure CA and SE of
Ti,C3T, MXene. However, MXene, with a growing material pool,
provides a great opportunity to systematically study the wetting
behavior and SE of this promising material. The standard
procedure is highly needed to measure and report the faithful
and reproducible CA and SE.

4. Conclusions

Using water, glycerol, and diiodomethane, we have measured
the CAs of MXene films and calculated their SE and the corre-
sponding dispersion and acid-base components. The storage
condition- and time-dependent variation of CAs and SEs of
MXene films are found to be caused by hydrocarbon contami-
nation and surface oxidation. The contamination and oxidation
could be the reasons for the scattering CAs reported in the
literature. The problems of contamination and oxidation can be
eliminated by storing MXene films under vacuum, producing
reproducible and faithful CAs and SEs. Moreover, we have
studied how the CAs and SEs of MXene films are affected by
different mass loading (corresponding thickness), delamina-
tion methods, and MXene composition. Our measurements and
findings give a new insight into the wetting behavior of MXenes,
these exciting materials with growing family members.
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