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Novel bis(dipyrrinato)zinc(i) derivatives having 4-[bis(2,4,6-trimethylphenyl)boryliphenyl (ZnBph) or 4-
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Introduction

Triarylborane derivatives exhibit a characteristic absorption/
fluorescence owing to an intramolecular charge transfer (CT)
transition from the 7 orbital of aryl group to the vacant p orbital
on the boron atom (7(aryl)-p(B) CT) and, therefore, various tri-
arylborane derivatives have been reported.”™ Triarylboranes are
also able to tune the spectroscopic and photophysical properties
of a metal complex by being introduced to the periphery of its
ligand(s). As a pioneering example reported by Kitamura and
coworkers, a CHCl; solution of [Pt(Bph-tpy)Cl]" (Bph-tpy = 4'-{4-
[bis(2,4,6-trimethylphenyl)boryl]phenyl}-2,2":6',2"-terpyridine)
showed intense phosphorescence even at room temperature
(emission quantum yield = 0.011) whereas a metal-to-ligand CT
(MLCT) excited state of a [Pt(tpy)Cl]" (tpy = 2,2':6',2"-terpyridine)
derivative is typically nonemissive in a solution phase."”” The
enhanced emission from [Pt(Bph-tpy)Cl]" originates in syner-
gistic CT interactions between MLCT in the Pt(tpy)Cl moiety and
m(aryl)-p(B) CT in the triarylborane unit. Interestingly, an anal-
ogous complex, [Pt(Bdu-tpy)Cl]" (Bdu-tpy = 4'-{4-[bis(2,4,6-tri-
methylphenyl)boryl]-2,3,5,6-tetramethylphenyl}-2,2:6',2"-terpyr-
idine), did not exhibit such room-temperature phosphorescence
at all. The difference in the phosphorescence ability between the
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the pure wrt* excited state of ZnBdu. The synergistic Tmt*/ILCT excited state was weakly fluorescent, and
the fluorescence was enhanced upon binding of fluoride to the boron atom.

complexes was explained by a disconnection of the CT systems in
[Pt(Bdu-tpy)CI]" due to the perpendicularly-oriented durylene
(2,3,5,6-tetramethylphenylene) group. Thus, the triarylborane has
become one of the choices to control photophysical/
photochemical properties of a metal complex.’**” However, the
number of the reports focusing on effects of a linker between the
triarylborane and metal-complex moieties is still limited.***

We recently reported synthesis, spectroscopic and photo-
physical properties of cyclometalated iridium(m)* and platinum(u)
complexes with an arylborane-appended dipyrrinato ligand(s).**
These complexes showed intense visible absorption (molar
absorption coefficient e = 10 M~ em™! (M = mol dm?) at ~490
nm) and visible-near-IR phosphorescence ascribed to the syner-
gistic MLCT/mmt*/m(aryl)-p(B) CT transition. Dipyrrinato metal
complexes exhibiting the CT-type excited states are characteristic
at this stage since most of the excited states of dipyrrinato metal
complexes are ascribed to wm* transition in the dipyrrinato
ligand.**™> Especially, two stereoisomers of bis(5-{4-{bis(2,4,6-tri-
methylphenyl)boryl]phenyl}dipyrrinato)platinum(u), PtBph, pos-
sessing the square-planar and distorted tetrahedral geometries
show different absorption/emission spectra not only in the MLCT/
moe*/w(aryl)-p(B) CT band but also in the ligand-centered (LC)
band. Both crystallographic data and theoretical calculations
suggest that a dihedral angle between the dipyrrinate and bridging
phenylene moieties in the square-planar isomer is larger than that
in the distorted tetrahedral one. The results remind us of the
earlier Pt-tpy system and importance of further understanding of
the ligand itself in an arylborane-appended metal complex.

In order to extract the molecular/electronic effects of the
ligand itself in an arylborane-dipyrronato metal complex, we
chose dipyrrinato zinc(n) complexes. They exhibit intense
visible absorption (absorption maximum wavelength A,ps =
470-500 nm; ¢ ~ (5.0-10) x 10* M~* em ™) and fluorescence
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ascribed to pure LC ww* excited states owing to the inert d*°
nature of the zinc(u) center.”*** Furthermore, the spectroscopic
properties of a dipyrrinato zinc(n) complex are dependent on
the substituent group at the 5-position of the dipyrrinato ligand.
For example, Lindsey and coworkers revealed that bis[5-(2,4,6-
trimethylphenyl)dipyrrinato]zinc(u) (Znmes) showed much
higher fluorescence quantum yield (@; = 0.36) than bis(5-phe-
nyldipyrrinato)zinc(u) (Znph, ¢ = 0.01) by effects of both fluo-
rescent and nonfluorescent pathways.” It has also been
reported that the fluorescence from Znmes is quenched in
a polar solvent by a thermal deactivation of the excited state via
a CT-type state.’®**** These results indicate that structures of
aryl groups at 5-position of the dipyrronato ligands and the
introduction of intramolecular CT interactions are key points to
control the spectroscopic/photophysical properties of a bis(di-
pyrrinato)zinc(u) complex. The 7t(aryl)-p(B) CT of an arylborane
group is, therefore, one of possible candidates to tune the
points. We synthesized novel bis(dipyrrinato)zinc(u) derivatives
having 4-(dimesitylboryl)phenyl (ZnBph) or (dimesitylboryl)
duryl group (mesityl = 2,4,6-trimethylphenyl and duryl =
2,3,5,6-tetramethylphenyl) at 5-position of the dipyrrinato
ligands (ZnBdu), whose structures are shown in Chart 1. The
bridging phenylene and durylene moieties in the complexes
gave significant differences especially in the fluorescence and
fluoride-binding properties. The characteristic photophysical
properties of the former complex (ZnBph) can be explained by
gained intraligand charge transfer (ILCT) character in the
excited state and discussed in terms of the molecular geome-
tries obtained by theoretical calculations.

Experimental section
Chemicals

All the reagents including organic solvents were commercially
available and used without further purification. 5-{4-[Bis(2,4,6-
trimethylphenyl)boryl|phenyl}dipyrrin was prepared according
to the literature methods.** 4-[Bis(2,4,6-trimethylphenyl)boryl]-
2,3,5,6-tetramethylbenzaldehyde (2) was synthesized similarly
to the phenyl analogue. All the synthetic reactions and subse-
quent workup manipulations were carried out under air unless
otherwise noted.

Physical measurements and instrumentations

NMR spectra were recorded on a JEOL JNM-AL 400 Fourier-
transform NMR spectrometers (400 MHz). The chemical shifts

Chart 1 Chemical structures of ZnBph (R = H) and ZnBdu (R = CH5)
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of the 'H, "*C{"H}, ""B{'"H} and ""F{'"H} NMR spectra deter-
mined in CDCI; were given in ppm relative to tetramethylsilane
(0.00 ppm for 'H and "*C{"H}) as an internal standard, or boron
trifluoride diethyl-ether complex (0.00 ppm for “'B{'H}) and
hexafluorobenzene (—164.9 ppm vs. CFCl; for 'F{'H}) as
external standards. High-resolution fast-atom bombardment
mass spectroscopies (HR-FAB-MS) were carried out on a JEOL
JMS-700N spectrometer. Elemental analyses (C, H, N) were
performed by a Perkin Elmer 24001l elemental analyzer. UV-vis
absorption spectra were recorded on a Jasco V-560 spectro-
photometer. The corrected emission spectra were obtained by
using a Jasco F-6500 spectrofluorometer (excitation wavelength
= 365 nm). Fluorescence decay measurements were conducted
by using a Hamamatsu Photonics picosecond fluorescence
lifetime measurement system C11200 equipped with pico-
second light pulser PLP-10 as a 405 nm excitation light source.
Emission quantum yields were determined by using a Hama-
matsu Photonic Absolute PL Quantum Yield Measurement
System C9920-02 (excitation wavelength = 365 nm). For the
photophysical ~ measurements,  spectrophotometric-grade
toluene was used as supplied.

Synthesis of (4-iodo-2,3,5,6-tetramethylphenyl)bis(2,4,6-
trimethylphenyl)borane (1)

Synthesis was performed with minor changes in the reported
procedures.”” An oven-dried Schlenk tube was evacuated and
filled subsequently with an argon gas. 1,4-Diiodo-2,3,5,6-
tetramethylbenzene (2.8 g, 7.2 mmol) and dry diethyl ether
(20 mL) was added, then, cooled to —78 °C in an acetone/dry-ice
bath. n-Butyllithium in n-hexane (1.6 M, 5.2 mL, 8.3 mmol) was
added to the reaction mixture at —78 °C. After stirring at —78 °C
for 1 h, the reaction mixture became a pale-yellow suspension.
Bis(2,4,6-trimethylphenyl)boron fluoride (2.1 g, 7.9 mmol) dis-
solved in dry diethyl ether (20 mL) was added to the reaction
mixture, then, the mixture allowed to warm to room tempera-
ture and continuously stirred overnight. The reaction mixture
became a yellow suspension. After an addition of HCl(aq) (1 M,
20 mL), the mixture was extracted with diethyl ether (30 mL x
2). The combined organic extract was washed with water (50
mL), dried over anhydrous Na,SO, and concentrated under
reduced pressure. The crude product was washed with n-hexane
(50 mL) to give pure 1 (2.0 g, 59%) as a colorless solid. "H NMR
(400 MHz, CDCl3) 6: 6.73 (4H, s, m-Ar-H of mesityl), 2.43 (6H, s,
2,6-CH; of duryl), 2.26 (6H, s, p-CH; of mesityl), 2.09 (6H, s, 3,5-
CH; of duryl), 1.94 ppm (12H, s, 0-CH; of mesityl).

Synthesis of 4-[bis(2,4,6-trimethylphenyl)boryl]-2,3,5,6-
tetramethylbenzaldehyde (2)

An oven-dried Schlenk tube was evacuated and filled subse-
quently with an argon gas. 1 (2.0 g, 4.9 mmol) and dry tetra-
hydrofuran (20 mL) was added, then, cooled to —78 °C in an
acetone/dry-ice bath. n-Butyllithium in n-hexane (1.6 M, 4.4 mL,
7.0 mmol) was added to the reaction mixture at —78 °C. After
stirring at —78 °C for 1 h, the reaction mixture became an
orange suspension. Dry N,N-dimethylformamide (2.0 mL) was
added to the reaction mixture at —78 °C. After stirring at —78 °C

© 2021 The Author(s). Published by the Royal Society of Chemistry
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for 1 h, the reaction mixture became a yellow solution. Then,
HCl(aq) (1 M, 50 mL) was added and stirred for another 4 h. The
reaction mixture was extracted with ethyl acetate (30 mL x 2).
The combined organic extract was washed with water (50 mL),
dried over anhydrous MgSO, and concentrated under reduced
pressure. The crude product was purified by recrystallization
from ethyl acetate to give pure 2 (1.3 g, 65%) as a pale-yellow
solid. "H NMR (400 MHz, CDCl;) d: 10.7 (1H, s, CHO), 6.75
(4H, s, m-Ar-H of mesityl), 2.31 (6H, s, 2,6-CH; of duryl), 2.27
(6H, s, p-CH; of mesityl), 2.02 (6H, s, 3,5-CH; of duryl), 1.95 ppm
(12H, s, 0-CH; of mesityl).

Synthesis of 5-{4-[bis(2,4,6-trimethylphenyl)boryl]-2,3,5,6-
tetramethylphenyl}dipyrrin (3)

2 (501.4 mg, 1.22 mmol) was dissolved in neat pyrrole (25 mL)
and degassed by a nitrogen-gas bubbling for 30 min. Tri-
fluoroacetic acid (20 pL, 0.23 mmol) was then added, and stirred
at room temperature for 10 min. The reaction mixture was
diluted with CH,Cl, (50 mL), washed with NaOH(aq) (1 M, 50
mL) and dried over anhydrous MgSO,. After removing MgSO, by
filtration and evaporation of CH,Cl, under reduced pressure,
the remaining pyrrole was removed by vacuum distillation with
heating (40 °C). Then, the product was added to a solution of p-
chloranil (500 mg, 2.04 mmol) in CH,Cl, (50 mL). The solution
color changed from yellow to dark yellow-green. The solution
was stirred overnight and, then, filtered and evaporated to
remove resultant insolubles and CH,Cl, respectively. The
reaction mixture was processed by reprecipitation (CH,Cl,/n-
hexane) and silica-gel column chromatography, eluting with
CH,Cl,, to give the pure product (125 mg, 20%) as a pale yellow-
green solid. "H NMR (400 MHz, CDCl;) 6: 7.66 (2H, s, 1,9-Ar-H of
dipyrrin), 6.78 (4H, s, m-Ar-H of mesityl), 6.39 (2H, dd, J = 1.1,
4.1 Hz, 2,8-Ar-H of dipyrrin), 6.36 (2H, dd, J = 1.6, 3.8 Hz, 3,7-Ar-
H of dipyrrin), 2.29 (6H, s, p-CHj; of mesityl), 2.05 (6H, s, 3,5-CH3
of durylene), 2.01 (12H, d, J = 7.9 Hz, 0-CH; of mesityl),
1.94 ppm (6H, s, 2,6-CH; of durylene). FAB-MS (CH,Cl,) m/z: 525
(M + HI).

Synthesis of bis(5-{4-[bis(2,4,6-trimethylphenyl)boryl]phenyl}
dipyrrinato)zinc(u) (ZnBph)

To a CH,Cl, solution (50 mL) of 5-{4-[bis(2,4,6-trimethylphenyl)
boryl]phenyl}dipyrrin (100 mg, 0.21 mmol), a CH3;0H solution
(10 mL) of Zn(OAc),-2H,0 (138 mg, 0.63 mmol) was added and
stirred at room temperature. After stirring overnight, the solvent
was evaporated under reduced pressure. The crude product was
purified by silica-gel column chromatography, eluting with
CH,Cl,. Recrystallization from CH,Cl,/methanol afforded pure
ZnBph (98.5 mg, 45%) as an orange solid. "H NMR (400 MHz,
CDCl3) 6: 7.60 (4H, d, J = 7.6 Hz, 2,6-Ar-H of phenylene), 7.55
(4H, d, J = 6.9 Hz, 3,5-Ar-H of phenylene), 7.54 (4H, s, 1,9-Ar-H
of dipyrrinate), 6.86 (8H, s, m-Ar-H of mesityl), 6.68 (4H, d, ] =
3.8 Hz, 2,8-Ar-H of dipyrrinate), 6.38 (4H, d, J = 3.8 Hz, 3,7-Ar-H
of dipyrrinate), 2.33 (12H, s, p-CH; of mesityl), 2.02 ppm (24H, s,
0-CH; of mesityl). C{"H} NMR (CDCl;) 6: 149.9, 148.6, 146.4,
142.3, 141.8, 140.9, 140.3, 139.0, 134.8, 132.8, 130.4, 128.3,
117.2, 23.5, 21.3 ppm. "'B{'"H} NMR (CDCl;) é: 75.7 ppm. HR-

© 2021 The Author(s). Published by the Royal Society of Chemistry
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FAB-MS (CH,Cl,) m/z: calculated for CgeHgsB,N4Zn' ([M +
H]"), 999.4687; found, 999.4687. Anal. calcd (%) for CegHgsB,-
N,Zn-CH,OH: C, 77.96; H, 6.64; N, 5.43. Found: C, 77.61; H,
6.63; N, 5.31.

Synthesis of bis(5-{4-[bis(2,4,6-trimethylphenyl)boryl]-2,3,5,6-
tetramethylphenyl}dipyrrinato)zinc(u) (ZnBdu)

To a CH,Cl, solution (30 mL) of 3 (125 mg, 0.24 mmol),
a CH3O0H solution (10 mL) of Zn(OAc),-2H,0 (158 mg, 0.72
mmol) was added and stirred at room temperature. After stir-
ring overnight, the solvent was evaporated under reduced
pressure. The crude product was purified by silica-gel column
chromatography, eluting with CH,Cl,. Recrystallization from
CH,Cl,/methanol afforded pure ZnBdu (80.8 mg, 61%) as
a yellow-brown solid. "H NMR (400 MHz, CDCl;) é: 7.50 (4H, s,
1,9-Ar-H of dipyrrinate), 6.79 (8H, d, J = 6.8 Hz, m-Ar-H of
mesityl), 6.57 (4H, d, J = 4.0 Hz, 2,8-Ar-H of dipyrrinate), 6.38
(4H, d,J = 4.2 Hz, 3,7-Ar-H of dipyrrinate), 2.30 (12H, s, p-CH; of
mesityl), 2.10 (12H, s, 2,6-CH; of durylene), 2.05 (12H, s, 3,5-CH3
of durylene), 2.02 ppm (24H, s, 0-CH; of o-mesityl). *C{'H}
NMR (CDCl;) 6: 150.3, 149.0, 144.6, 141.0, 140.8, 140.3, 139.4,
138.9, 134.9, 132.1, 131.3, 129.0, 128.8, 117.0, 29.7, 23.3, 22.9,
21.2, 19.9, 17.4 ppm. "'B{'H} NMR (CDCl;) é: 79.8 ppm. HR-
FAB-MS (CH,Cl,) m/z: calculated for C,,HgB,N,Zn" (M +
H]"), 1111.5939; found, 1111.5938. Anal. caled (%) for C,4Hgo-
B,N,Zn-CH;OH: C, 78.71; H, 7.40; N, 4.90. Found: C, 78.89; H,
7.35; N, 4.77.

X-ray crystal structure determinations

Diffraction data were collected at —180 °C under a steam of cold
N, gas on a Rigaku RA-Micro7 HFM instrument equipped with
a Rigaku Saturn724+ CCD detector by using graphite-
monochromated Mo Ko radiation. The frame data were inte-
grated using a Rigaku CrystalClear program package,® and the
data sets were corrected for absorption using a REQAB program.
The calculation was performed with a CrystalStructure software
package®® except for refinement, which was performed using
SHELXL Version 2018/3.%” The structures were solved by direct
methods and refined on F* by the full-matrix least-squares
methods. Anisotropic refinement was applied to all non-
hydrogen atoms with the exception of the crystal solvents. All
hydrogen atoms were put at calculated positions.

Computational methods

Theoretical calculations for the complexes were conducted with
Gaussian 16W software (Revision A.03).°® Optimizations of the
ground-state geometries of the complexes were performed by
using the B3LYP density functional theory (DFT).**”® The
LanL2DZ*” and 6-31G(d,p)’™ basis sets were used to treat the
geometrical structures of the zinc and all other atoms, respec-
tively. Time-dependent DFT (TD-DFT) calculations were then
performed to estimate the energies and oscillator strengths f of
electronic excitation transitions generating the 50 lowest-energy
singlet excited states. All of the calculations were carried out as
in toluene by using a polarizable continuum model (PCM).”
Optimized geometries, Kohn-Sham molecular orbitals and

RSC Adv, 2021, 11, 6259-6267 | 6261
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natural transition orbitals (isovalue = 0.03 e A*) were visual-
ized by GaussView 5.7

Results and discussion
Synthesis and characterization

Novel dipyrrinato zinc(u) complexes ZnBph and ZnBdu were
successfully synthesized in moderate yields (45% for ZnBph,
61% for ZnBdu) by mixing Zn(OAc),-2H,0 and relevant dipyrrin
in a dichloromethane/methanol mixture at room temperature.
The complexes were identified by the "H and *C{'H} NMR
spectroscopies, HR-FAB-MS and elemental analysis. In the "H
NMR spectra of ZnBph and ZnBdu (see Fig. S3 and S47), four
protons at 1- and 9-positions of dipyrrinate moiety were
observed as singlet at 7.50-7.54 ppm which was shifted to
upfield upon the complexation. Two doublets ascribed to
protons at 2,8- and 3,7-positions were observed at 6.38-
6.68 ppm. The trends are similar to other bis(dipyrrinato)zinc()
complexes.® Single crystals of ZnBdu suitable for X-ray crys-
tallographic analysis were obtained from CH,Cl,/n-pentane.
The X-ray structure of ZnBdu is shown in Fig. 1(a), whose
crystallographic data is summarized in Table S1.f The zinc
center takes a tetrahedral geometry with a dihedral angle for
two Zn-N,(dipyrrinato) planes being 90°. The distance between
the zinc center and each pyrrolic nitrogen is 1.983 A, which are
similar to those in Znph (1.973-1.988 A).** The dihedral angle
between a dipyrrinato ligating and bridging durylene moieties
was 77.9°. The value is similar to those of the previous iridiu-
m(m)* (71.1°) and platinum(r) complexes (80.7° and 68.7°).*>
The boron atoms in the arylborane groups take a planar sp*-like
configuration with B-C bond lengths being 1.57-1.58 A and
C-B-C angles being ~120°. Dihedral angle between the dur-
ylene and BC; plane was 54.1°. These structural characteristics
of ZnBdu in the crystalline phase are indicative of the conju-
gation between the dipyrrinate moiety and boron atom in the
ligand. The structures of the complexes were compared on the

°
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basis of the DFT calculations because single crystals of ZnBph
suitable for X-ray structural analysis were not obtained in spite
of many efforts for recrystallization from various conditions.
Optimized geometries of ZnBph and ZnBdu are shown in
Fig. 1(b) and (c), respectively. The zinc centers in both
complexes take tetrahedral geometries, and zinc-nitrogen
distances are in the range of 2.059-2.063 A. The dihedral angle
between dipyrrinato ligating moiety and bridging phenylene
group (6;) in ZnBph (64.1°-64.3°) is smaller than that in ZnBdu
(89.0-89.2°). Similar tendency was also observed for the tilt
angle between arylene group and the BC; plane in the arylbor-
ane moiety (6, = 21.7°-25.6° and 57.1°-57.7° for ZnBph and
ZnBdu, respectively). On the basis of these angles, (cos §; X
cos 6,) values as measures of the conjugation between the =
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Fig. 2 UV-vis absorption (broken lines) and fluorescence spectra
(solid lines) of ZnBph (red) and ZnBdu (blue) in toluene at 298 K. The
integrations of the fluorescence spectra in a wavenumber scale
correspond relatively to the fluorescence quantum yields of the
complexes. Inset: normalized fluorescence spectra.
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Fig.1 Perspective view of crystal structure for ZnBdu ((a) 50% probability ellipsoids) and DFT optimized geometries of ZnBph (b), ZnBdu (c) and
ZnBph-2F~ (d): carbon (gray), nitrogen (blue), boron (red), zinc (orange) and fluorine (green). Hydrogen atoms are omitted for clarity.
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Table 1 Spectroscopic and photophysical properties of the dipyrrinato zinc(i) complexes in toluene at 298 K

Complex Aabs/mm (¢/10° M~ em ™) Agnm R T¢/ns kst ko™t
ZnBph 334 (4.3), 487 (09.2) 517 0.01 1.3 7.7 x 10° 7.6 x 10°
ZnBdu 333 (4.4), 486 (13.2) 504 0.34 2.7 1.3 x 10° 2.4 x 10°
ZnBph-2F~ 383 (1.6), 481 (09.4) 503 0.02 0.2 1 x 10® 5 x 10°
Znph® 485 500 0.006 0.09 7 x 107 1 x 10"
Znph* 322 (1.4), 482 (11.5) 500

Znmes® 487 501 0.36 2.7 1.3 x 10° 2.4 x 10°
Znmes® 345, 485 501

¢ Calculated by the equation, @¢ = k,/(k; + kn,) = k:Tr. b Data in toluene compiled from ref. 62. ¢ Data in CH,Cl, compiled from ref. 54.

orbital of the dipyrrinate moiety and the vacant p orbital on the
boron atom via the bridging arylene moiety in ZnBph and
ZnBdu were calculated to be 40 and 1%, respectively. The
smaller dihedral angle in ZnBph than in ZnBdu strongly indi-
cates enhanced electronic interactions between the dipyrrinato
zinc(n) complex and the arylborane moieties, and therefore
larger contribution of the arylborane moieties to the
spectroscopic/photophysical properties of a complex are
expected.

Absorption spectra

Fig. 2 shows absorption spectra of ZnBph and ZnBdu in toluene
at 298 K, and the spectroscopic properties are summarized in
Table 1. The complexes exhibited intense/narrow and weak/

a9

hole

particle

ZnBph

broad absorption bands at around 487 and 334 nm, respec-
tively. According to the DFT calculations (vide infra), the former
band is assigned to the typical wrt* transitions in a dipyrrinato
ligand and the latter is ascribed to 7t(aryl)-p(B) CT transitions in
an arylborane moiety, similarly to other arylborane-dipyrrinato
metal complexes.**> The absorption maximum wavelengths of
ZnBph and ZnBdu (1,,; = 487 and 486 nm, respectively) are
comparable with those of Znph and Znmes (2,,s = 485 nm and
487 nm, respectively) without any arylborane substituents.*
Interestingly, the molar absorption coefficients (¢) at the
maximum wavelength (A,ps) of the low-energy band of the
complexes (9.2 x 10* M™' em ' for ZnBph and 1.32 x
10° M~ cm ™' for ZnBdu) were larger than those of the aryl-
borane-dipyrrinato iridium(ur) and platinum(ir) complexes (¢ =
7.4 x 10* and 2.2 x 10* M™" em ™', respectively)*"*> whose mwm*

S;

ZnBdu

Fig. 3 NTOs for Sz and S, states of the complexes in toluene. Hydrogen atoms are omitted for clarity.
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Chart 2 Structural change of an arylborane compound upon the
binding of fluoride.

transitions synergistically interact with MLCT and/or m(aryl)-
p(B) CT ones. Such differences in the ¢ values indicates that an
introduction of the charge-transfer character to the wm* tran-
sition in a dipyrrinato-metal complex decreases the relevant
oscillator strength. Thus, smaller ¢ value of ZnBph suggests the
existence of the m interactions throughout the ligand presum-
ably owing to the smaller dihedral angles between dipyrrinate-
phenylene and phenylene-dimesitylboryl moieties. These
discussions were theoretically supported by TD-DFT calcula-
tions as summarized in Tables S2-S5.1 For both complexes,
intense absorption bands at ~487 nm appeared as electronic
transitions generating third (S;) and forth excited states (S,).
Fig. 3 shows natural transition orbitals (NTOs) for the S; and S,
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states of the complexes. Both S; and S, states of ZnBph originate
in electronic transitions from the dipyrrinate moiety to the
whole ligand, gaining the w(aryl)-p(B) CT character, whereas
those of ZnBdu are assignable to the pure wrt* transitions in a 5-
duryldipyrrinate moiety.

Fluorescence spectra and photophysical properties

As shown in Fig. 2, the fluorescence from ZnBph (®; = 0.01 in
toluene at 298 K) was significantly weak compared with that
from ZnBdu (¢ = 0.34). Furthermore, the fluorescence spec-
trum of ZnBph (maximum wavelength A; = 517 nm) was
broadened and shifted to lower-energy compared with those of
ZnBdu (504 nm), Znph (501 nm)* and Znmes (500 nm)® see
Table 1. The spectroscopic data of ZnBph indicate a partial
contribution of a CT character arising from the low-energy p(B)
to the fluorescent excited state and energetic stabilization of the
excited state by the solvation. In practice, the radiative rate
constant (k) of ZnBph (7.7 x 10° s, see Table 1) was 17-times
smaller than that of ZnBdu (1.3 x 10% s~ ") owing to a decreased
wavefunction overlap between the excited and ground states.

r
-
T

b)

-
(o))
T

)
1
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o0
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Fig. 4 UV-vis absorption and fluorescence spectral changes upon an addition of TBAF (0—4.0 equiv.) in toluene: ZnBph ((a and b) red to green)

and ZnBdu ((c and d) blue to yellow).
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Furthermore, the CT character in the excited state accelerated
thermal deactivation to the ground state as the nonradiative
decay rate constant (k,,) of ZnBph (7.6 x 10° s') was three-
times larger than that of ZnBdu (k,, = 2.4 x 10° s7%). It
should be noted that the k. and k,, values of ZnBdu are
comparable to those of Znmes (k. = 1.3 x 10° s™' and k. = 2.4
x 10® s71).> Thus, the strong fluorescence from ZnBdu would
originate in the pure mm* excited state and suppressed non-
radiative decay processes owing to the presence of the bulky
durylene bridging units. On the other hand, the k. and &, values
of ZnBph are significantly smaller than those of Znph (k, = 7 x
107 s ' and k,, = 1 x 10"° s71),3 suggesting the existence of CT
interactions in the excited state. As results, the fluorescence
from ZnBph was well characterized by the wm*/ILCT excited
state, and the participation of the ILCT character in the excited
state of a complex was revealed by varying the extent of -
conjugation between the dipyrrinate and arylborane moieties.

Spectroscopic responses to fluoride

Since the electron-deficient boron atom in an arylborane
derivative can bind with a small Lewis base such as fluoride
(Chart 2) with a binding constant being ~10° M~ we
carried out the fluoride-addition experiments for the
complexes. Fig. 4 shows absorption and fluorescence spectra of
the complexes in the absence and presence of tetra-n-buty-
lammonium fluoride (TBAF) in toluene. The absorbances of
each spectrum were divided by the total concentration of the
complex (cy) and optical path length (I) so that the vertical axis
corresponds to the molar absorption coefficient. Upon an
addition of TBAF to ZnBph, the t(aryl)-p(B) CT absorption band
at around 334 nm disappeared, and a broad absorption band at
around 383 nm appeared with an isosbestic point at 360 nm. In
addition, the fluoride binding shortened the maximum wave-
length of the lowest-energy mm*/ILCT absorption band of
ZnBph from 487 nm to 481 nm, similarly to that observed for
the relevant cyclometalated iridium(m) complex.** Complete
disappearance of the mt(aryl)-p(B) CT band and the complicated
spectral changes in the absorption band at ~480 nm indicate
successive bindings of two fluoride, affording a 1:1 adduct,
followed by a 1:2 adduct, ZnBph-2F . The spectroscopic
changes arising from the binding of fluoride to the boron atom
were strongly evidenced by 'H, "B{'H} and 'F{'"H} NMR
measurements as shown in Fig. S8, S10 and S13, respectively.
The "B NMR signal of ZnBph was drastically shifted from
75.7 ppm to 5.5 ppm upon the addition of fluoride as TBAF. The
broad signal was also observed at —174.41 ppm for the '°F NMR
spectrum of ZnBph in the presence of TBAF (4.0 eq.) owing to
the coupling to '°B (I = 3) and ''B (I = 3/2), indicating the
formation of B-F bond with ZnBph. In addition, the absence of
the signal at —84.04 ppm (corresponding to the signal of
CDCIF, generated by the reaction of fluoride with solvent
molecule CDCI;)” in the '°F NMR spectrum of ZnBph suggests
that fluoride quickly binds to the boron atom before proceeding
the exchange reaction of fluoride with chloride in the solvent
molecule. Consequently, the binding of fluoride to the boron

© 2021 The Author(s). Published by the Royal Society of Chemistry
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atom in ZnBph increased electron density around the boron
atom.

The structure of ZnBph-2F was theoretically investigated by
the DFT calculation and the optimized geometry is shown in
Fig. 1(d). Each boron atom possesses a tetrahedral geometry,
and the dihedral angles between a dipyrrinato ligating moiety
and bridging phenylene group (#,) were reduced to be 56.8°-
58.7°. The structural and electronic changes increased the
transition energy of the lowest-energy absorption band through
efficient electron donation from the fluorinated arylborane
group to the dipyrrinato moiety, leading to the decrease of
electron density on the dipyrrinato moiety and therefore the
downfield-shift of proton signals in the pyrrole rings (see
Fig. S157 for HOMO and HOMO-1). The fluorescence from
ZnBph was shifted to higher-energy with a slight decrease in
intensity and then enhanced largely upon a continuous addi-
tion of TBAF as shown in Fig. 4(b). The maximum wavelength (¢
= 503 nm) and band shape in the presence of =3.0 equivalence
of fluoride were almost identical to those of ZnBdu, and the k,
value of ZnBph-2F~ (1 x 10°® s') was also similar to that of
ZnBdu. Owing to these fluorescence characteristics, it can be
expected that the fluorescent excited state of ZnBph-2F~
possesses the pure 7wrt* character. Significantly smaller @¢(0.02)
of ZnBph-2F than that of ZnBdu can be explained by enhanced
thermal deactivation (k,, = 5 x 10° s~ ') via a rotation of the
phenylene moiety as reported for Znph and Znmes (k,, = 1.1 x
10'° and 3.2 x 10® 57" in toluene, respectively).** On the other
hand, there was no experimental evidence of the fluoride
binding to ZnBdu in the absorption, fluorescence and 'H, "'B
{'H} and ""F{"H} NMR spectra as shown in Fig. 4(c) and (d), S9,
S11 and S141 presumably due to the steric hindrance of the
durylene moieties. Thus, fluoride binding affinity of an aryl-
borane-dipyrrinato zinc(u) complex was controllable by the
bridging arylene moiety and, upon the fluoride binding, the
excited-state electronic structure of ZnBph was switched from
m*/ILCT to pure ™.

Conclusions

The bridging arylene moieties in novel bis(dipyrrinato)zinc(u)
derivatives having the arylborane groups at 5-position of the
dipyrrinato ligands had significant impacts on the absorption/
fluorescence spectra and fluoride-binding affinity of the
complex. The theoretical calculations suggest that ZnBph with
the phenylene linkers possesses smaller dihedral angles
between dipyrrinate-phenylene and phenylene-dimesitylboryl
moieties than the relevant values of ZnBdu with the durylene
linkers. The smaller dihedral angles in ZnBph afford the -
conjugation in the entire of the ligand and, therefore, the
electron-withdrawing arylborane groups participate in the
electronic structure of the complex. As a result, the excited state
of ZnBph was best characterized by the synergistic mwm*/ILCT,
whereas that of ZnBdu was the pure mm*. ZnBph could bind
with fluoride, and the excited state was switched from 7m*/ILCT
to pure ©wn* upon the fluoride binding owing to the disap-
pearance of the electron-withdrawing ability of the dimesi-
tylboryl moieties. Thus, we revealed the importance of the
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molecular design including the linker structure in metal
complexes with an arylborane group(s). Tuning of the extent of
the CT character in an excited-state metal complex will be an
important factor to control spectroscopic and photophysical
properties of metal complexes.
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