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The tablet manufacturing process is a complex system, especially in continuous manufacturing (CM). It

includes multiple unit operations, such as mixing, granulation, and tableting. In tablet manufacturing,

critical quality attributes are influenced by multiple factorial relationships between material properties,

process variables, and interactions. Moreover, the variation in raw material attributes and manufacturing

processes is an inherent characteristic and seriously affects the quality of pharmaceutical products. To

deepen our understanding of the tablet manufacturing process, multivariable modeling techniques can

replace univariate analysis to investigate tablet manufacturing. In this review, the roles of the most

prominent multivariate modeling techniques in the tablet manufacturing process are discussed. The

review mainly focuses on applying multivariate modeling techniques to process understanding,

optimization, process monitoring, and process control within multiple unit operations. To minimize the

errors in the process of modeling, good modeling practice (GMoP) was introduced into the

pharmaceutical process. Furthermore, current progress in the continuous manufacturing of tablets and

the role of multivariate modeling techniques in continuous manufacturing are introduced. In this review,

information is provided to both researchers and manufacturers to improve tablet quality.
1. Introduction

Tablets are the prevalent dosage forms, which have many
advantages, including high-precision dosing, good physical and
chemical stability, manufacturing efficiency, and low costs.1 In
the global pharmaceutical market, it has been speculated that
tablets are the preferred dosage form and tablet sales are ex-
pected to exceed US$500 billion by the end of 2027.2

Due to the enormous market share of tablets, higher
requirements have been put forward to improve product quality
and supervision. As mentioned by Yu and Kopcha, there is still
a long way to go to improve the quality of pharmaceutical
products.3 One of the major challenges is determining the
relationship between raw material attributes, process condi-
tions, and critical quality attributes.4 The tablet manufacturing
process involves powder blending, granulation, tablet
compression, and coating operation units. This process makes
it difficult for univariate methods to comprehensively study the
tablet manufacturing process.

Mathematical models, which could provide a scientic
understanding of the manufacturing process and predict the
state of the pharmaceutical system, play an important role in
a Academy of Chinese Medical Sciences,
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the tablet manufacturing process. According to an investiga-
tional report by Kourti and Davis in 2012,5 the application of
mathematical modeling can achieve lots of benets, including
improving product quality, and enhancing product and process
understanding. For mechanism models, the discrete element
method (DEM)6,7 and nite element method (FEM)8,9 have been
used less oen than the multivariable modeling technique in
tablet manufacturing, due to the complexity of raw material
properties and the continuum duality of particles.10 For
empirical models, multivariate modeling techniques are one of
the most commonly used statistical models. In the pharma-
ceutical eld, with the application of process analytical tech-
nology (PAT) and with the emergence of continuous
manufacturing (CM), multivariate modeling techniques are
feasible options for mathematically describing the pharma-
ceutical process.11 For example, regression models and latent
variable models (LVMs) can extract useful information related
to product quality from a large amount of data.

In this paper, different multivariate model techniques are
introduced for process understanding, optimization, quality
monitoring, and control in the powder blending process,
granulation, tableting and the coating process. To compre-
hensively investigate the roles of multivariate modeling tech-
niques in the tablet manufacturing process, relevant studies
published in the past 15–20 years (mostly within 15 years) were
searched on the Web of Science, by using the following search
RSC Adv., 2021, 11, 8323–8345 | 8323
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terms: QbD, empirical model, statistics model, pharmaceutical
tablet, blending, granulation, coating, continuous manufacture,
near-infrared (NIR), Raman, chemometrics, process model,
multivariate data analysis, and partial least squares (PLS). The
review is organized as follows: Section 2 briey exhibits the theo-
retical background of commonly-used multivariate modeling
techniques. Section 3 describes good modeling practice (GMoP) in
the pharmaceutical process. Sections 4 and 5 provide an overview
of multivariate modeling techniques in the basic unit operations
and continuous manufacturing of tablets.
2. Brief theoretical background of
commonly-used multivariate modeling
techniques

In the pharmaceutical process, multivariate methods can be used
to maximize speed and minimize costs.12 Multivariate analysis
(MVA)models, also called data-drivenmodels, are usually available
for analyzing data obtained from the pharmaceutical process. In
this review, we aimed to illustrate the applications of multivariate
modeling techniques within the tablet manufacturing process,
and, therefore, little effort has been expended on the theoretical
aspects of the multivariate modeling techniques. Brief explana-
tions of the theoretical background are given below.
2.1. Brief theory of simple regression

Various regression models can be used to investigate the rela-
tionships between independent and response variables.
Multiple linear regression (MLR) and polynomial regression are
oen used to analyze data from the design of experiment (DoE).
These models quantify the relationship between several
explanatory variables and one or more response variables.

The MLR model is tted by minimizing the sum of squared
residuals based on least squares. According to the principle, the
regression coefficient can be calculated with eqn (1)

B ¼ (XTX)�1XTY (1)

In eqn (1), Y, X, B, and XT represent the response variable matrix,
independent variables, regression coefficient matrix and transpose
Fig. 1 Simple interpretation of the LVM.

8324 | RSC Adv., 2021, 11, 8323–8345
matrix of the independent variables, respectively. However, the
inverse of XTX no longer exists due to collinearity between the
independent variables. Except for cases where X-variables are
controlled in designed experimentation, measured data in pharma-
ceutical applications are typicallymultivariate and collinear andMLR
cannot be used.13 As a special linear regression model, polynomial
regression describes the nonlinear relationship between indepen-
dent and dependent variables in pharmaceutical manufacturing.
2.2. Basic theoretical concepts in latent variable modeling

The latent variable model (LVM) is a statistical model that can
be used to process large amounts of correlated data. LVMs were
used for experimental data as early as the 1970s.14 By extracting
latent variables (LVs), an LVM projects original high-dimensional
data into a low-dimensional space, also called the latent space.
The new LVs still retain as much original information as possible.
Next, in the latent space, the relationships among samples, inde-
pendent variables, and response variables can be analyzed. Fig. 1
displays a straightforward interpretation of LVMs.15 For a detailed
introduction to LVMs, refer to related studies.10,13,16,17

In the last decade, principal component analysis (PCA),
partial least squares (PLS) and orthogonal partial least squares
(OPLS) were commonly used in the pharmaceuticalmanufacturing
process. However, PCA and PLSmodels are not suitable for dealing
with more complex datasets including more than two matrices.
Multi-block PLS (MB-PLS),18 L-shape PLS19 and joint-Y PLS (JY-
PLS)20 can analyze complex datasets, and quantify the relationship
between input matrices and output matrices.
2.3. Basic theoretical concepts about articial neural
networks

The articial neural network (ANN) model is a type of machine
learning tool, which attempts to imitate the neural structures of
the biological brain. In general, ANN models can be roughly
divided into two types: static ANN and dynamic ANN.21

Although many neural networks have been continually inven-
ted, all ANN models can be described by neurons, also called
processing elements (PE), learning algorithms, and connection
formulas.22 In the neuronal system, a PE receives one ormore signals,
and input data is multiplied by its weight. Finally, an activation
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Structure of a multilayer artificial neural network in pharmaceutical manufacturing.
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function can generate an output.23 For the detailed principle of ANN,
refer to previous publications.23–25 Fig. 2 shows a feedforward multi-
layer perceptron (MLP) network, which is the most frequently and
successfully used ANN model in pharmaceutical processes.21 MLP
can develop a non-linear mapping between independent variables
and response variables by using many parallel neurons.

However, building an ANNmodel involves lots of parameters
and activation functions. Hence, it is not easy to obtain any insight
into the structure of approximate functions. In other words, because
of intermediate equations, the relationship between the input and
output variables is not a direct path.26 Consequently, it is difficult to
gain themathematical equation between independent and response
variables.21 Although the ANN model is a black-box model, it is
a powerful tool to solve non-linear problems and multi-response
Fig. 3 Model development framework of pharmaceutical process.

© 2021 The Author(s). Published by the Royal Society of Chemistry
systems. One of its main advantages is that it does not require
a rule-based experimental design. Moreover, ANN can use historical
data or incomplete data to map functions. Because the ANN model
can be used to efficiently develop different response surfaces, it
plays a crucial role in drug delivery and pharmaceutical processes.22
3. Brief introduction to good
modeling practice in the
pharmaceutical process

To minimize errors in the process of modeling, or in analysis
and subsequent applications,27 it is necessary to implement
GMoP to build multivariate models.
RSC Adv., 2021, 11, 8323–8345 | 8325
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According to the practice guidelines for building a model,
the key components of GMoP should include model purpose,
model evaluation, and performance measures.28,29 To stan-
dardize the modeling process in the GMoP, a model develop-
ment framework is proposed (shown in Fig. 3). In the
pharmaceutical process, the rst step in developing the model
process is to put forward the issues according to the actual
situation and the modeling purpose. In the rst step, it is
important to choose an appropriate modeling technique. For
the second step, one needs to acquire data according to the DoE
or historical data in the manufacturing process. Subsequently,
the data should be organized and preprocessed before model
development. In this stage, it is suggested that exploratory
analysis of the data should be implemented to select variables.
Next, the model can be built, and the performance of the model
can be evaluated. In this step, especially the development of
multivariate models, the interpretability of the model needs to
be considered. Finally, aer validation, the developed model
can be used in the actual manufacturing process.

In the GMoP, model verication and validation are essential
parts of the modeling process before using the model for any
pharmaceutical unit operation, and are directly related to the accu-
racy and applicability of the model. Consequently, it is necessary to
perform model evaluation. For the model validation of the ANN
model and LVMs, chemometric indicators, such as correlation
coefficient and rootmean square error (RMSE), are in general used to
evaluate the model. To evaluate an MLR or a polynomial model, in
addition to the above-mentioned indexes, the model should be
further studied for statistical analysis, such as analysis of variance
(ANOVA). The premise for further application of these developed
models is that the P-value of the model is less than 0.05, and the P-
value of the lack of t is greater than 0.05. When the model meets
these requirements, the relationship between response variables and
independent variables is signicant, and the equation is well tted.

Model validation does not indicate model verication.
Nevertheless, in the actual modeling process, model validation
is always combined with model verication. The purpose of
model validation is to prove that the model recreates the
behavior of the system with high delity to meet the analysis
goal. The commonly-used validation method compares the
predictive model results to experimental data by using the
internal or external data set. According to ICH Points to
Consider (R2) guidelines,30 the model can be divided into three
categories: high impact models, medium impact models, and
low impact models. The developedmodel should be validated at
different levels based on the category used in practice. For
a high impact model, validation by the internal data set is oen
inadequate. It is necessary to use the external data set to validate
model performance. In addition, data sets used for validation
should take the expected variability into account in a future phar-
maceutical process. Model accuracy, especially for statistically-based
models, should be validated by uncertainty analysis.31,32 However,
a low impact model may not implement rigorous verication.
Finally, according to the pharmaceutical quality system of the
company, the validated model can be used in the manufacturing
process, and should be continuously updated and maintained.
8326 | RSC Adv., 2021, 11, 8323–8345
4. Application of multivariate
modeling techniques in tablet
manufacturing

The tablet manufacturing process generally includes three
pathways: i.e., direct compaction (DC), dry granulation, and wet
granulation. This section will summarize and discuss the
application of multivariate modeling techniques in the tablet
manufacturing process.
4.1. Pharmaceutical process understanding and
optimization based on multivariate modeling techniques

The main role of understanding the pharmaceutical process is
identifying and controlling critical sources of variation that affect
product quality. The objective is to understand how raw material
properties and process variables can affect quality attributes. Based
on process knowledge, pharmaceutical processes can be optimized.

4.1.1. Understanding and optimizing the blend process.
The blending unit operation is one of the basic processes for
preparing solid dosage forms. In addition, it is a critical unit oper-
ation for ensuring that pharmaceutical powder mixing is homoge-
neous. Only homogeneous powders can ensure the content
uniformity (CU) of active pharmaceutical ingredients (APIs).33,34

Blending uniformity (BU) is a critical quality attribute (CQA) of the
intermediate and nal product because it relates signicantly to
drug quality, safety, and therapeutic efficacy. However, during the
blending process, BU is strongly impacted by several factors,
including raw material attributes, mixing equipment, process
parameters and environmental conditions (Fig. 4).35–41

To explore the relationship between the above factors and
BU, the effects of rawmaterial properties and process parameters on
the mixing process can be explored by multivariate modeling tech-
niques. Table 1 shows the application of multivariate models in the
powder mixing process. It can be seen from Table 1 that multiple
regression models and LVMs were widely used. DoE-integrated
multivariate modeling techniques were oen utilized to quantify
the impact of various factors on the mixing process, which helps to
identify CMAs (critical material attributes) or CPPs (critical process
parameters). Based on established models, a design space can be
developed to control the mixing process, and this is benecial for
guiding and optimizing the mixing unit operation.

4.1.2. Understanding and optimizing the granulation
process. Granulation, as a process of powder agglomeration and
size enlargement, is a key pharmaceutical unit operation. Prior
to tablet compression, granulation can signicantly improve
the physical properties of the powder, including owability and
density.49–52 To obtain optimal characteristics of granules,
statistical or mechanistic models have been used to study the
physical properties of granules produced by various granulation
methods. In this section, the application of multivariate
modeling techniques to commonly-used granulation methods
is summarized, such as high shear wet granulation (HSWG),
roller compaction and twin-screw granulation processes.

HSWG is an important granulation method because of its
inherent advantages. It includes several operational steps, such
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Critical variability for blend uniformity.
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as mixing and wet mass. Therefore, this process is complex, and
inuenced by many factors, including agitator speed, massing
time, liquid addition rate, and interactions between them.
Based on the QbD approach, the CMAs and CPPs can be
Table 1 The applications of multivariate methods in the mixing process

Models Blender type

MLR KG-5 blender

MLR Continuous mixer

Polynomial V-blender

Quadratic model Cone shape tank

PLS Twin-screw blender

PLS Square cone mixer

PLS and MLR Continuous mixer

© 2021 The Author(s). Published by the Royal Society of Chemistry
identied in the HSWG process.53 In order to comprehensively
understand and study the HSWG process, multivariate
modeling techniques were applied combined with QbD or DoE
to explore the impact of the CMAs and CPPs on granule
Application References

The model was used to correlate the
critical formulation and CPPs with
the response variables. A design
space for the powdermixing process
was built

42

The relationship between residence
time and total particle length was
explored

43

The effects of CPPs on CQAs were
quantied to identify their
relationship, and the design space
was established

44

Based on the regression model, the
optimal mixing conditions,
including the impeller speed and
eccentricity, were found

45

In twin-screw blend feeding, the
relationship between blend
material properties and feeding
capacity was developed

46

The relationship between raw
material variability and mixing time
was quantied. The CMAs affecting
the mixing process were identied
according to VIP

47

The effect of material properties on
the mean residence time was
studied. The relationship between
bulk density and mean residence
time at different ow rates was
determined

48
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characteristics.54 Table 2 summarizes the application of multi-
variate modeling techniques in HSWG. For example, Zhang
et al.55 used QbD principles to improve their understanding of
the HSWG process. Firstly, the CPPs were screened through
a Plackett–Burman experimental design. Then, based on the
Box–Behnken experimental design, a multivariate analysis
(MVA) model was developed to investigate the relationship
between granule size and CPPs. Finally, a design space was
developed to optimize the HSWG process. Han et al.56 applied
risk assessment to determine three CPPs in HSWG based on
prior knowledge. In this study, the effects of agitator speed,
spray rate, and massing time on the CQAs of granules were
quantied by the MVA model.

For dry granulation, roller compaction is the most
commonly-used type of dry granulation in the manufacturing of
tablets. The roller compaction process does not use any liquid
binders, which are available for water or heat-sensitive phar-
maceutical materials.69 In the roller compaction process, mixed
powders are rst fed from the hopper to the compaction region
by a screw. Then, the powder in the compaction region is
pressed by rotating rollers to form a compacted ribbon.69,70

Finally, the ribbon is transported to a size reduction region,
where the ribbon is milled to the desired particle size.

The traditional trial and error approach is very time-
consuming and costly for developing or optimizing process
parameters. Therefore, several mathematical models were
established, including one-dimensional (1D), 2D, and 3D
models to study the roller compaction process.70–73 However,
due to the diversity of pharmaceutical powders and the
complexity of manufacturing solid dosage forms, these math-
ematical models are only suitable for particular powders and
roller compactors,74 making it challenging to build a “one size
ts all” model.75

The ribbon properties can signicantly affect the attributes
of granules, such as owability, granule size distribution (GSD),
and compressibility.52,76–78 They may inuence the tablet
compression process. Therefore, it is necessary to develop
multivariate models to investigate the roller compaction
process. In many studies, the MVA model was developed to
study the complex roller compaction process.79–81 For example,
Yu et al.74 developed a PLS model to explore the effect of raw
material properties on ribbon properties using 81 pharmaceu-
tical powders. Next, the CMAs and CPPs of roller compaction
were identied based on the VIP of the PLS model. Finally,
feasible material properties and operating regions were found
by developing a multi-objective design space. The applications
of the multivariate modeling techniques in the roller compac-
tion process are presented in Table 3.

With the background of continuous manufacturing (CM) in
the pharmaceutical industry, twin-screw granulation (TSG) is an
alternative technique for transforming a batch pharmaceutical
process to continuous manufacturing.91 It can granulate
powders to granules in a short time and efficiently mix API and
excipient.92 TSG includes three main components, respectively
conveying elements, kneading blocks and comb mixer
elements. To enhance the manufacturing efficiency of TSG, it is
important to comprehensively study the impact of formulation
8328 | RSC Adv., 2021, 11, 8323–8345
and process parameters on the granule attributes. Many studies
have reported on the relationship between CMAs, CPPs and
CQAs.93–98 For example, Keleb et al.99 found that granulation
yield decreased when increasing the screw speed. For the
application of multivariate modeling techniques in TSG,
Stauffer et al.100 developed an MLR model to investigate the
relationships between raw material variability, process vari-
ables, and CQAs, such as GSD and granule friability. In their
study, PCA was used to analyze the batch-to-batch variability of
physical properties. According to the process variables in TSG,
Ismail et al. built an ANNmodel to predict mean residence time
distribution based on the screw speed and L/S ratio in the
process of twin-screw granulation.101

In addition, a few studies have reported the effect of mill process
parameters on the granule properties in drying granulation. Most of
these studies focus on the properties of the ribbon. Consequently,
a comprehensive study of all the granulation processes combined
with multivariable modeling techniques is warranted.

4.1.3. Process understanding and optimization of tablet
compaction. In general, the tablet compression process
includes three consecutive steps: powder or granule die lling
rst, then compression, and nally ejection of the tablet.102 In
this process, tablet formation may involve rearrangement and
elastic and plastic deformation, thereby forming inter-
particulate bonds.103 In brief, the mechanism of forming
tablets is more complicated, leading to a complex tablet
compaction process. Even a small change in the compression
process has a serious impact.104 The multivariate modeling
technique is a useful tool to understand the tableting process.

4.1.3.1 Die lling in tablet compaction. The weight variation
between tablets, content uniformity, tensile strength, disinte-
gration time, friability, and dissolution were dened as CQAs.105

However, these CQAs mainly depend on die lling during tablet
compaction. Non-uniformity in die lling results directly in
variation in the weight and content uniformity of the tablets
and may critically affect the compression force.106 Hence, die
lling is a critical process for obtaining the required quality of
the tablet. Although a DEM could explain underlying physical
phenomena by rst principles107 and is used in the die lling
process,108–111 the computational costs were high. At present,
multivariate modeling techniques still play a key role in inves-
tigating die lling. Studies performed at Ghent University used
multivariate modeling techniques to systemically study the die
lling process of high-speed rotary tablet compactors.112,113 In
this study, a PCA model was used to analyze powder physical
properties or classify relevant data obtained by DoE experi-
ments. A PLS model was developed to investigate the relation-
ship between attributes of blend powder, process conditions,
and responses of product and process. This revealed that
powder owability, density, turret speed, paddle speed, feed
frame, etc. signicantly affect the die lling performance.
According to the developed model, the process conditions can
be optimized to meet target CQAs. In addition, multivariate
models combined with a DEM were applied to study the die
lling process. The main function of the DEM is to simulate the
die lling process and to visualize the movement of particles in
the die. Multivariate models, such as PLS and polynomial
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Applications of multivariate models in HSWG

Models Application References

Polynomial regression The effects of operational parameters, such as
impeller speed, dosing speed, chopper speed
and wet massing time, on granule size were
quantied

57

The effects of process parameters, including
granulation time, impeller, and formulation
variables, on packing coefficient and strength of
granules were investigated

58

The relationship between granulation variables
and the specic energy of the granules was
determined

59

The best-t equation was used to accurately
predict the Carr's index for granules under
different formulation factors

60

Polynomial, MLR The impact of formulation variables on granule
properties like owability and size was assessed,
which was benecial for selecting the desired
formulation

61

Combined with DoE, models which correlated
the process parameters with granule properties,
were developed. This provided the basis for
adjusting process parameters according to the
product quality attributes

62

Using DoE techniques, the effects of amount of
water and massing time on the key quality
attributes of granules were investigated

63

PLS The relationship between impeller speed and
total power spectral densities (TPSDs) was
developed. The research demonstrated that
audible acoustic emissions could monitor
process changes in real time

64

Gene expression programing model Impeller power can be predicted according to
the impeller diameter, impeller speed, the
percentage of the liquid and mean torque

65

PCA, MLR The relationship between process variables on
granule hardness and Carr's index was
developed. Based on the PCA model, it was
shown that there was a strong correlation
between the impeller speed and wet massing
time with the granule attributes

66

Polynomial, MLR, PLS, ANNs Based on various MVA models, the relationship
between three process parameters and CQAs of
granules such as mean size and owability was
quantied

67

PLS, MBPLS, OPLS Various MVA models were developed to
investigate the effects of HSWG process
variables and granule properties on tablet
quality

68
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models, were used to investigate the effects of potential CMAs,
potential CPPs, and their interaction on tablet weight variation,
segregation, tablet mass, etc.110,114

4.1.3.2 Tableting process. The tablet manufacturing process
can be regarded as a whole system. The effects of powder
properties, mixing parameters, granulation parameters, and
tableting parameters on CQAs can be comprehensively investi-
gated. Researchers at Wyeth Pharmaceuticals studied the
effects of granulation process parameters, granule properties
and tableting parameters on dissolution behavior.115 In this
© 2021 The Author(s). Published by the Royal Society of Chemistry
study, a PLS model was used to quantify the relationship
between these variables and to identify the CMAs and CPPs. Sun
et al.116 used a D-optimal experimental design to study tablet
quality. Tablets were prepared using various raw materials
under different process parameters of HSWG and compression.
In their study, a MBPLS model was developed to quantify the rela-
tionship between raw material properties, various process condi-
tions, tensile strength, and tablet disintegration time. The critical
pharmaceutical unit operation, CMAs and CPPs were identied by
the MBPLS model. Finally, according to the multiple linear
RSC Adv., 2021, 11, 8323–8345 | 8329
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Table 3 The applications of multivariate models in roller compaction

Multivariate model Application References

Polynomial model The inuence of process variables on ribbon
properties like density and granule size was
determined, which was helpful for obtaining
optimal process parameters according to the
target quality

82

The model was developed to explore the
relationship between process variables like roll
force, gap and bypass, and bypass potency

83

Using DoE, the effects of the particle size of the
raw material and fraction of API on the ribbon
attributes were investigated

84

Polynomial, MLR The quantitative relationship, which correlated
process variables with ribbon properties such as
normal stress and density, was investigated. It
can be used to predict the required process
parameters

85

The quantitative relationship between operating
process variables and pre-blend properties on
normal stress was determined. The effects of
normal stress and roller gap on the ribbon
density were investigated

86

The impact of process operating conditions on
the nip angle and ribbon density were
quantied through developing various
mathematical models in the scale-up process

73

PCA, PLS Based on the PCA and PLS models, the effects of
raw material attributes and process parameters
on the ribbon properties were explored

87

PLS Several models were developed to investigate
relationships between raw material properties,
process variables and the properties of ribbon
and tablet

88

JY-PLS The JY-PLS model was used for scale-up from
laboratory roller compactor to full-scale roller
compactor, which effectively reduced the risk of
the scale-up process

89

ANNs In roller compaction, the models were used to
investigate the relationships between the
formulation variables and tablet properties.
Furthermore, the formulation was optimized
according to the genetic model

90
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regression model, a multi-objective design space was established to
control tablet quality. Table 4 shows the many multivariate
modeling techniques for studying the tableting process.

In an LVM, such as a PCA or PLS model, multivariate
modeling techniques are mainly applied in the tableting
compression process. The MBPLS algorithm analyzes the
multiple block data from various unit operations in tablet
manufacturing, which is benecial for investigating the tablet
manufacturing process.

4.1.4. Coating process. Coating of tablets is an important
pharmaceutical process. In general, during the coating process,
tablets are repeatedly exposed to a spray that contains several
solutes and solvents. The coating process is repeated until the
desired coating quality and/or uniformity are achieved.126 The
purpose of coating includes masking the taste or odor to
improve compliance, thereby obtaining a better appearance and
8330 | RSC Adv., 2021, 11, 8323–8345
easier distinguishability, changing drug release behavior, and
adding a second API in the coat.127–129 The pharmaceutical
coating process needs to ensure that the tablets are coated
uniformly.130 To ensure uniformity of the coating, the variability
of the coating is mainly controlled by the thickness of inter- and
intra-coating. Although coating is a widespread pharmaceutical
process and has been used for many decades, there are still
some serious issues, such as a lack of comprehensive under-
standing of the coating process.131

To solve the above issues and promote a more in-depth
understanding, the multivariate modeling technique can be
used to study the coating process. Rege et al.132 applied the
Plackett–Burman experimental design to investigate the rela-
tionship between manufacturing parameters and nal product
quality. In their study, the effects of process parameters on the
CQAs were analyzed by an MLR model. The atomization
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Table 4 The applications of multivariate models in the tableting process

Model Application References

Polynomial model The relationship between raw material
properties and tablet tensile strength was
quantied

84

PCA The model was used to evaluate the relationship
between various powder properties for direct
compaction

117

PCA, PLS The PCA model can investigate the relationship
between various powder and compression
properties. The PLS model was developed to
identify key effecting factors, and to quantify the
relationship between those factors and tablet
tensile strength

118

The purpose of developing the PLS model was to
study the effects of input variables, such as
properties of raw materials or intermediates,
and process conditions on tablet dissolution

119

The PCA model can reduce the dimensionality
of the original data and explore the relationship
between different physical properties. The PLS
model was developed to investigate the effects of
raw material attributes, tableting process
variables and compression behavior indices on
the tablet quality attributes

120

PCA, MBPLS According to the PCA model, the variability in
powder and granules was analyzed. MBPLS was
used to identify critical factors and critical
process units. It can quantify the relationship
between process variables and tablet dissolution

121

PCA, MLR The linear model was used to determine the
effect of excipient properties on tablet
attributes, and the PCA model was built to
correlate the properties of ller and binder with
tablet properties

122

PLS The purpose of developing the PLS model was to
explore the impact of process variables on the
mass ow rate per unit orice area in the die
lling

123

MLR Based on the model, the effects of roller
compaction conditions and milling process
variables on the attributes of granule and tablet
were studied

124

ANN The relationships between material physical
properties, process parameters and tablet
quality attributes were determined

125
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pressure, pan speed, and coating time were identied as CPPs
affecting content uniformity. For the lm coating process,
Tanabe et al.133 generated a PLS model according to the data
derived from the production process. Moreover, Cahyadi et al.134

used a multivariate model combined with DoE to optimize
process parameters in the quasi-continuous tablet coating
process. Table 5 shows other studies involved in the application
of multivariate modeling techniques in the coating process.

In summary, the above-mentioned tables (from Tables 1–5)
show that PLS, MLR, and polynomial models are the most
widely used in the pharmaceutical process, while OPLS, MBPLS,
and ANN models only have a few applications. However,
manufacturing tablets that includes several operation units
may separate the process variables into specic blocks. MBPLS
© 2021 The Author(s). Published by the Royal Society of Chemistry
and OPLS can be applied to investigate the effects of each block
of data on the response variables.142 The most prominent
shortcoming of these methods in the process analysis is that the
prediction blocks are independent. In the actual manufacturing
process, the various process units are usually highly correlated;
therefore, the multivariate modeling technique should consider
these relationships. PLS-path modeling (PLS-PM) is benecial
for understanding the inner mechanism of the manufacturing
process by incorporating process knowledge into predictive
modeling.143 However, PLS-PM is rarely used in the tablet
manufacturing process. An ANN model is a black-box model.
However, in a recent study,144 an ANN model combined with
specialized soware identied CMAs and CPPs. This demon-
strated that an ANNmodel is not an absolute “black-box”model
RSC Adv., 2021, 11, 8323–8345 | 8331
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Table 5 The applications of multivariate modeling techniques in the coating process

Models Application References

MLR, polynomial The MLR model identies critical factors
affecting CQAs. The polynomial model
quanties the relationship between process
variables and CQA in the coating process. Based
on the model, the optimal region for process
variables was dened

135

According to a full factorial design, MLRmodels
were developed to quantify the relationship
between the coating process variable and loss on
drying, coating process efficiency, and coating
uniformity

136

Polynomial Using a full factorial design, polynomial models
were developed to correlate coating process
conditions with response variables, such as
coating uniformity and surface roughness

137

According to DoE, based on the polynomial
model, the effects of critical process variables on
coating uniformity were investigated at lab and
pilot scales

138

Based on the central composite design, the
polynomial model was developed to study the
relationship between key process parameters
and CQAs, such as weight gain and surface
roughness

139

Multivariant model According to a central composite – face-centered
response surface design, the relationship
between ve process parameters and CQAs like
tablet appearance were correlated by
a multivariant model. The optimal process
variables could be determined based on the
model

140

Quadratic polynomial A multivariate model, which links four
operating variables, such as spray rate, rotation
speed of pan, and spray temperature to the
weight variability index, was established

141
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and that ANN can be used as a valuable tool to understand and
optimize the pharmaceutical process. Liu et al. developed
a controllable and readable ANN model (CR-ANN),145 also called
a white-box model. The CR-ANN model can improve the read-
ability of the internal structure; therefore, it is easy to overcome
the shortcomings of a traditional ANN model. CR-ANN can be
further widely used in process understanding and optimization.
In particular, the mechanism model combined with multivar-
iate modeling techniques should be developed for the phar-
maceutical process, which will be conducive to
comprehensively gaining process knowledge. Thus, in the
future, it will be necessary to expand the application of this
modeling technique in the manufacturing process.
4.2. Pharmaceutical process monitoring based on
multivariate modeling techniques

To ensure consistency of product quality and stability of ther-
apeutics, it is necessary to monitor, analyze, and control each
unit operation. With American Food and Drug Administration
(FDA) guidance on PAT, most scholars and the pharmaceutical
industry applied the new process analysis methods to research
8332 | RSC Adv., 2021, 11, 8323–8345
the pharmaceutical process combined with multivariate
modeling techniques. Most of these studies used multivariate
modeling techniques to establish a multivariate calibration
model; then the calibration model was implemented to predict
the quality of the product in real time.

4.2.1. Monitoring blending processes. To effectively detect
the CQAs and gain a deeper understanding of the change in
dynamics of the mixing process, near-infrared (NIR) instru-
ments are widely used PAT tools to monitor the blending
process.47,146–151 The application of Raman spectroscopy in
a study of the mixing process has also been reported.152–154

However, in order to obtain meaningful results, spectral data
must be transformed by chemometrics.47 Multivariate modeling
approaches, which play an important role in translating spec-
tral signals to BU, can be applied to monitor the mixing process.

For qualitative methods, PCA, as one LVM, is one of the most
preeminent approaches that provides reliable results.49 PCA has
been used in many studies to detect and monitor mixing
homogeneity.49,155 For PCA, one method plotted the score graph
of the rst principal component (PC1) as a function of mixing
time. It assumes that mixed uniformity is achieved when the
© 2021 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0ra08030f


Table 6 Pharmaceutical applications of multivariate modeling techniques in monitoring the powder mixing process

Models Characterization methods Application References

PCR NIR Detection of blending homogeneity 156, 158, 161 and 162
NIR-CI Detection of blending end-point 163
NIR-CI Determination of mixture homogeneity 164
NIR Conrming the end-point of blending 165
Raman Conrming the end-point of blending 165
NIR The endpoint of the start-up phase 166
NIR Process spectral data 167
NIR Determining the blend uniformity 146

PLS NIR Detection of blending end-point 147, 158, 159, 165, 168 and 169
NIR-CI Verifying the NIRS analyzer response and assessing homogeneity 167
NIR Drug concentration 169
NIR Conrmation of blend uniformity 170
NIR Monitoring the drug level at the outlet of the continuous blender 166
NIR Measurement of contents 171 and 172
NIR Assessment of powder blend uniformity 146 and 173–176
NIR Evaluation of degree of homogeneity 177

PCA-ANN NIR Measurement of blend uniformity 175
ANN Image analysis Prediction of mixing time 178
ANN NIR Determining the blend uniformity 146
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score level is stable and close to a point.156,157 In another
method, the rst two principal components of homogeneous
powders (the target mixture) were analyzed. If the powders (the
Table 7 Applications of multivariate models in monitoring or detecting

Model Application

PCA, PLS The PCA model was used
ribbon density qualitativel
model can quantitatively m
density during the roller c
The envelope density and
the ribbon were monitore
The PCA model can be us
descriptors of the ribbon.
predicted by the PLS mod
The PCA model can obtain
between various ribbons, a
detect the porosity of the
The water contents in the
measured by in-line NIR b
model

PLS Granule properties like gr
detected in real time accor
It can be used to monitor
ribbon online
The content uniformity an
like moisture content or r
be determined in real tim
The key ribbon properties
and tensile strength, could
model
The model was used to pre
of ribbon
The attributes of akes, su
Young's modulus, and rel
monitored in real time

PLS, ANN Based on the models, the
Chinese medicine (TCM) g
detected

© 2021 The Author(s). Published by the Royal Society of Chemistry
test mixture) approach or overlap the target mixture cluster in
the score plot, this would indicate that the test mixture had
achieved a state of uniformity.157,158 For the PLS model, the
the granulation process
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content of constituents can be predicted during the mixing
process. Firstly, it is necessary to develop an off-line PLS cali-
bration model.159 Then, ingredient contents could be predicted
in real time during the mixing process. When the deviation of
component concentration reaches a pre-dened limit within
a specic time, it can be considered that the test mixture had
reached a state of mixed uniformity.160 Another multivariate
model is the ANN algorithm. An ANN model detects blend
uniformity in a similar manner to a PLS model. Compared with
a PLS model, the performance of an ANN model is excellent.146

However, in practice, considering the complexity and time-
consuming nature of developing an ANN model, ANN models
were applied relatively less oen. This is shown in Table 6.

4.2.2. Monitoring the granulation process. The multivar-
iate modeling technique is not only used to understand the
granulation process, but also to monitor the granule properties
or content of API based on PAT. For example, Khorasani et al.179

applied a PCA model to map the ribbon porosity distribution
based on near-infrared chemical imaging (NIR-CI) technology.
The API concentrations in the ribbon were quantied by a PLS
model. In many studies, NIR-CI or NIR were used, as shown in
Table 7. NIR or microwaves can measure key properties of the
ribbon online during the roller compaction process in real time.
For instance, Gupta et al.180 used a PLS calibration model to
simultaneously predict relative density, moisture content, and
tensile strength in real time. Gupta et al.181 used microwave online
real-time monitoring density, API content and moisture content of
ribbon based on ANN or PLS models. In this study, the perfor-
mance of the different multivariate models was compared. The
prediction accuracy of microwave and NIR sensors was also
Table 8 The applications of multivariate models in monitoring or detec

Model Tool Application

MLR NIR Detection of tabl
NIR Measurement of

PCA NIR Measurement of
PCR NIR Detection of tabl

NIR Measurement of
NIR Prediction of tab

PLS NIR Detection of tabl
NIR Prediction of tab
NIR Measurement of
Multispectral UV imaging Measurement of
NIR Measurement of
NIR Prediction of dis
NIR-CI Prediction of dis
Raman Prediction of dis
NIR Measurement of
NIR-CI Measurement of
Raman Measurement of
MIR Measurement of
Multispectral UV imaging Measurement of
NIR Measurement of
NIR Measurement of

ANN NIR Prediction of dis
Raman Prediction of dis
NIR Measurement of
NIR Detection of tabl

8334 | RSC Adv., 2021, 11, 8323–8345
compared. In addition, the multivariate modeling technique has
been widely used to predict or detect CQAs or API contents in the
twin screw granulation process.182–186

4.2.3. Monitoring or prediction of tablet quality. The
pharmacopoeia stipulates that items to be inspected for tablet
quality include content uniformity, hardness, dissolution, and
disintegration time. Content uniformity is a critical quality
parameter, which is directly related to drug efficacy. The distri-
bution of API in the tablet, which may affect texture and dissolu-
tion, is another CQA. The disintegration time affects the release of
the drug in vivo. Mechanical properties, such as fragility and
hardness, affect the transport and storage of the tablets. Hence,
non-destructive and quick detection of the quality of tablets is an
important task. For example, Blanco et al.199 usedNIR spectroscopy
to simultaneously detect the chemical composition and physical
properties of tablets. In many reports, the component content in
the tablet can be predicted by multivariate modeling tech-
niques200–203 in real-time monitoring of the tableting process. In
many studies, real-time release test (RTRT) models were devel-
oped, and aimed to monitor or predict the CQAs of the product
during the process, without requiring lengthy off-line assays.204 For
example, based on a PLS or MLR model, the content uniformity,
hardness, disintegration time, friability, and dissolution of tablets
can be tested in the manufacturing process,204,205 and can signi-
cantly reduce the release time. The applications of multivariate
modeling techniques combined with the PAT tool to predict or
monitor tablet CQAs are shown in Table 8.

4.2.4. Monitoring or prediction of the tablet coating
process. Based on the multivariate model, there are many
reports of using the PAT tool to monitor the coating process. As
ting CQAs for tablets

References

et hardness 199 and 206
drug content 207
drug content 208
et hardness 209–212
tablet weight variation 212
let porosity 209
et hardness 199, 206, 207, 213 and 214
let porosity 213
tensile strength 215–217
tensile strength 218
moisture 216
solution behavior 199 and 219–227
solution behavior 228
solution behavior 224
drug content 199, 201, 203, 214, 216 and 229–249
drug content 250 and 251
drug content 235, 248, 252 and 253
drug content 241
drug content 218
disintegration time 254
tablet weight 237
solution behavior 224
solution behavior 224
drug content 214, 229 and 255
et hardness 214
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Fig. 5 Diagram for NIR in-line monitoring coating process.
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the most commonly used PAT tool, NIR can measure and
monitor any CQAs during the coating process. Romer et al.
developed an off-line PLS model to in-line predict the coating
thickness in the lm process.256 Lee et al.257 used the following
equipment (Fig. 5) to in-line monitor the uid bed coating
process based on a PCAmodel and a PLSmodel. There are many
studies on NIR testing of the coating process based on a multi-
variate model, as shown in Table 9, which shows that NIR
combined with the multivariate modeling technique is widely
applied in the pharmaceutical coating process.

As another commonly used PAT tool, Raman spectroscopy is
also used in the pharmaceutical coating process. Hagrasy et al.
rst demonstrated that real-time monitoring of the coating
process could be achieved by using in-line Raman spectros-
copy.258 Muller et al.259–261 systematically investigated the appli-
cation of Raman spectroscopy in the coating process. In their
study, a calibration PLS model was built to link Raman spectral
data to diprophylline contents in the coating layer. According to
the PLS model, the diprophylline contents could be determined
in real time. The developedmethod was validated in accordance
with ICH guidelines. This proved the feasibility of in-line
monitoring by Raman spectroscopy of the coating process
combined with a multivariable modeling technique. In the
following study, Raman spectroscopy could measure other
CQAs, such as thickness based on the PLS model. Table 9
summarizes the applications of NIR and Raman spectroscopy in
Table 9 The applications of multivariate models in monitoring or detec

Model Application

PCA Clustering of spectral data
PCA Visualization of the coating process
PLS Prediction of coating thickness

End-point detection of a coating
Prediction of weight gain
Prediction of moisture content
Measurement of curing degree
Prediction of API content
Prediction of weight gain
Prediction of coating thickness
Prediction of moisture content

© 2021 The Author(s). Published by the Royal Society of Chemistry
the coating process, and shows that PLS models are widely used
in the coating process.

In summary, in pharmaceutical process monitoring, a PLS
model is one of the standard tools in the arsenal of making
predictions based on the large amounts of data collected during
production processes.143 A PLS model can extract the most
predictive and correlative information from a large number of
spectral and high-dimensional data. Consequently, a PLSmodel
is powerful in monitoring and predicting the tablet
manufacturing process. However, the disadvantage is that the
model handles all metrics without hierarchy or conditions.
Therefore, a PLS model is limited in understanding the phar-
maceutical process that produces variation in the measurement
data.272 Therefore, much of the process knowledge is still
untouched, because information about the pharmaceutical
process is not comprehensively included in predictive
modeling. The performance of an ANN model was proven to be
superior to conventional multivariate modeling techniques.273

For example, according to a study by Nagy et al.,224 it was found
that the prediction error provided by an ANN model was lower
than that of a PLS model in detecting dissolution behavior.
However, ANN models in pharmaceutical process monitoring
are still used relatively less oen, which is in agreement with the
ndings presented in a previous report.224 For an ANN model,
since the spectra contain thousands of variables, directly
inputting them as independent variables into the ANN model
will greatly increase the complexity of the model and signi-
cantly reduce the efficiency of modeling. This may be one of the
reasons why ANN model are used less oen in pharmaceutical
process monitoring. Dimensionality reduction of the spectral
data is an effective way to improve the efficiency of ANN
modeling, while maintaining a strong prediction performance.
In the pharmaceutical process, PCA is always used to reduce the
dimensionality of the data. Hence, an ANN model combined
with PCA is utilized to monitor CQAs in the tablet
manufacturing process.175
4.3. Pharmaceutical process control based on multivariate
modeling techniques

Pharmaceutical product quality is multivariate in nature, and
all measured properties must meet requirements simulta-
neously. Process control depends on an understanding of the
ting for the coating process

Analysis tool References

NIR 257 and 262
NIR 263
NIR 256, 257, 262 and 263
NIR 264
NIR 262 and 263
NIR 263, 265 and 266
NIR 267
Raman 259, 260 and 268–270
Raman 259
Raman 271
Raman 266
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Table 10 The applications of multivariate models in process control for the tablet manufacturing process

Model Application References

MSPC Based on the PCA model, the MSPC tool can be
developed to control the granulation and drying
process. Aer the deviation has been corrected,
the process system can return to a stable state

279

An MSPC tool was built based on PLS and PCA
models. The control chart was used to monitor
humidity and temperature in the granulation
process and to detect process abnormalities

280

PLS According to the feed-forward PLS model, it can
be used to determine the process conditions
based on the preceding conditions of unit
operation

254

According to the PLS model, the feed-forward
process can construct a control plan to
determine the optimal process conditions. Then
a release prole meeting the required quality
was obtained

281

The feed-forward model for tablet compaction
was developed based on NIR. Based on this
model, the process parameters that meet the
nal product quality can be predicted

282

Based on NIR, the PLS model can measure the
bulk density in real time. The measured signals
can be used for forward feed control to ensure
small density variation

283

Latent projection model According to the latent projection model, the
variations in raw material and from batch-to-
batch can be controlled by adjusting some
process parameters

284
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pharmaceutical process and the accumulation of relevant
knowledge. Multivariate modeling techniques, especially LVMs,
are important tools for pharmaceutical process control.

LVMs can be used to analyze the historical data from the
pharmaceutical process, and thus corresponding feedback or
feedforward control strategies could be developed. For example,
combined with the NIR tool, Hattori274 developed a robust feed-
forward control model based on a PLS model in the tableting
Fig. 6 Overview of the control strategy combined with risk managemen

8336 | RSC Adv., 2021, 11, 8323–8345
process. The process parameters predicted by the control model
could produce tablets that met the required quality. Westerhuis
et al.275 established a step-by-step control method for the wet
granulation and tableting process based on PLS and MBPLS.
First, the properties of the granules were determined by the
formulation variables and granulation process parameters.
Then, the tableting process parameters were adjusted according
to the properties of the granules. Consequently, this control
t tools.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Table 11 The applications of multivariate modeling techniques in continuous tablet manufacturing

Model Application References

PLS, PCA In the continuous powder blending and
tableting process, the PCA model, as an
exploratory data analysis tool, was used to
explore the effects of experimental variables on
PAT spectra. The PLS model was applied to
predict the CQAs of the tablet

300

In the CDC manufacturing process, the PCA
model was applied to identify possible outliers
or abnormalities. Transmission NIR
spectroscopy, combined with the PLS model,
was used to measure blending uniformity and
detect tablet content uniformity

301

In the CM line, the PLS model was performed to
detect CQAs. The multivariate analysis model
could be applied for process monitoring

302

The PCA model was performed to analyze
spectral data. The PLS model, which links
spectral data to response variables of interest,
was established. The developed multivariate
models can be integrated into the online
prediction tool

303

Based on the PCA and PLS model, multivariate
monitoring charts could monitor various units
in the continuous manufacturing process

304

PLS/PCA, multiblock PCA/PLS Various latent models were used to describe and
monitor the time variables in the continuous
twin-screw granulation and drying process. It
can detect and diagnose deviations in the
continuous manufacturing process

305

PCA, MLR In the RTRT of the tablet, the multivariate
model was developed to predict dissolution
proles in a CDC system. The NIR data were
processed by the PCA model. Based on the NIR
spectra, MLR could be applied to predict tablet
dissolution behavior

204

PLS Based on the calibration model, the powder
density in a continuous line can be predicted

306

The PLS model was developed to predict
blending powder bulk density in the CDC
manufacturing process based on the NIR data

283

Using the NIR tool, the developed off-line PLS
calibrationmodel couldmonitor the continuous
pharmaceutical manufacturing process's API
concentration

307

NIR spectroscopy as a PAT tool was used to
measure API content combined with the PLS
model

308

MLR MLR models were built to explore the
relationship between process conditions and
response variables, such as owability, ejection
force, and tablet strength. Based on the model,
a design space was developed for high-dose
tablets in CM

309

PCA The PCA model can extract concentration-
related information from NIR spectral data

310
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scheme for manufacturing tablets can adjust process condi-
tions to better meet the specications. Based on a PLS model,
Garćıa et al.276 developed a feed-forward control method to deal
with the variation in initial raw material quality in high-speed
© 2021 The Author(s). Published by the Royal Society of Chemistry
shear wet granulation. A comprehensive design space was
developed, considering a complex network of relationships
between process conditions and product quality. Muteki et al.277

developed a feed-forward control method for the process of dry
RSC Adv., 2021, 11, 8323–8345 | 8337
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granulation and tableting. For different batches of raw mate-
rials, this method can simulate and calculate the best operating
parameters, and reduce the differences in tablet quality.

In addition, based on the multivariate modeling technique,
the multivariate statistical process control (MSPC) tool deals with
large sets of data derived from pharmaceutical processes. It is an
effective tool for process control. For example, Burggraeve et al.278

developed a real-time online monitoring method for uidized bed
granulation based on LVMs. This method monitors the quality of
particles in real time, and products that do not meet the expected
quality requirements can be identied. Table 10 shows the appli-
cations of these models in manufacturing tablets.

In the tablet manufacturing process, multivariate modeling
techniques play an important role in process control. The core
of using the multivariate model technique for process quality
control is model inversion. According to the quality goals for the
nal product, optimal process operating conditions can be
solved by the developed model, which can accurately determine
the specic plan and autonomously control it. Consequently,
the risk of manufacturing a product outside the acceptance
criteria would be decreased. Based on the hierarchical three-
layer control design proposed by Su et al.,285 the above-
mentioned control strategies are layer 1 control approaches.
At this control level, an efficient feedback or feed-forward
control method is used to diminish the effect of variation that
may propagate in downstream unit operations.286 Another
feature of layer 1 control is that automatic adjustment usually
spans several pharmaceutical operation units. Real-time
monitoring of CQAs is one of the key components in layer 1
control. However, this remains challenging due to the
complexity of PAT tool calibration and model validation in real
time.287 In particular, PAT sensor positions, sampling problems,
and contamination can cause measurement dri and devia-
tions, which can affect the accuracy of real-time process data.
Therefore, it is necessary to systematically study the PAT tool
network design to develop approaches for maintaining reliable
measurements of CQA. In the future, layer 2 control design
should be developed in the tablet manufacturing process based
on dynamic models. At this control level, many advanced
process control techniques, such as predictive models and real-
time optimization, can be integrated to achieve multi-input
multi-output control. Even smart manufacturing (SM)288,289

can be developed for the pharmaceutical process, which can
rapidly and in real time optimize manufacturing pharmaceu-
tical products and the dynamic response to the demand for
pharmaceutical product quality.290 Combined with risk
management tools (Fig. 6), the consistency of the quality of the
nal product can be ensured.
5. Application of multivariate
modeling techniques in a continuous
manufacturing line

For manufacturing tablets, continuous manufacturing (CM), as
an approach for modernizing the production system, can
produce pharmaceutical products of higher quality.291 Because
8338 | RSC Adv., 2021, 11, 8323–8345
CM has many advantages, such as exibility, speeding up the
supply chain, lower risk of stock-outs, and reduced space and
investment costs,292,293 it has been widely used. Nowadays, seven
drug products from four different pharmaceutical companies,
Vertex, Johnson & Johnson, Eli Lilly and Pzer, have been
approved by different regulatory agencies for continuous
manufacturing.294 Drug products from CM have brought
signicant economic benets to these four pharmaceutical
companies. A study from Transparency Market Research fore-
cast that from 2016 to 2025, the market values of pharmaceu-
tical continuous manufacturing technology might increase
from US$1.74 billion to US$3.69 billion.295 Therefore, the CM of
pharmaceutical products has vast market prospects.

Using the quality by control (QbC) approach,287 multivariate
modeling techniques are a useful tool for studying continuous
manufacturing. For example, as an integrated continuous tablet
manufacturing line, the PROMIS-line was developed at the
University of Eastern Finland.296 Furthermore, in the process of
powder feeding, the PCA model was applied to analyze the
process data and the time evolution of powder feeding can be
visualized. In another study at the University of Eastern Finland
an end-to-end continuous direct compression (CDC) line was
built.201,297 In these studies, multivariate modeling techniques,
including PLS and OPLS models, were used to correlate spectral
data with API contents. Hattori et al.282 developed a feed-forward
control method to control a tablet continuous compression
process based on a PLS model. Pauli et al.298 applied LVM to
monitor the continuous manufacturing tablet process. In their
study, a PLS model was used to predict the API content to
evaluate blending uniformity and content uniformity in the
tablets. The PCA model qualitatively describes the process
monitoring. Stauffer et al.299 investigated the relationships
between the variability of raw materials, CPPs and CQAs based
on empirical models, such as PLS and MLR models. A design
space of the CM line was developed, which can guarantee the
consistency of the quality of the nal product and process
stability. Reports on the CM of tablets are presented in Table 11.

Although continuous manufacturing has many advantages
and CM lines, such as that of GEA Pharma Systems, have been
built,294 the progress towards CM is still slow.292 Furthermore,
CM is facing many challenges, such as developmental chal-
lenges, and supervisory and quality control challenges.291 In the
CM process, there is limited hold-up in each pharmaceutical
operation unit. Thus, the variability of raw materials in
upstream unit operations can rapidly and directly affect
downstream pharmaceutical processes, which can signicantly
impact nal pharmaceutical product quality.285 Furthermore,
control engineering theories for pharmaceutical continuous
manufacturing process have not yet achieved a common
understanding or wider application in the pharmaceutical
process. The material library, which was proposed to gain
sufficient knowledge about raw material attributes,74,311,312 has
not been studied for the CM process in solid oral dosages. In the
future, based on the material library, multivariate modeling
techniques or hybrid models should be established to study the
relationship between critical equipment settings (CEEs), CMAs,
CPPs and CQAs. Continuous improvement is another important
© 2021 The Author(s). Published by the Royal Society of Chemistry
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task in the CM process. However, relevant studies are rarely
reported by the pharmaceutical industry. Based on the QbC
concept, continuous improvement in pharmaceutical CM can
easily be achieved at multiple levels, such as process perfor-
mance monitoring, and predictive maintenance.287 To ensure
the consistent quality of the product at every pharmaceutical
operation unit, comprehensive control strategies and risk
analysis should be proposed and implemented in the pharma-
ceutical process.
6. Conclusion

The tablet manufacturing process is inherently multivariate
because it involves several basic pharmaceutical unit operations
and produces multivariate data. However, the multivariate
modeling technique is an appropriate tool to analyze these data.
Consequently, this article provides a review of the applications
of multivariate modeling techniques in tablet manufacturing.
Multivariate modeling techniques can be used to understand
the complex pharmaceutical phenomenon by investigating the
relationships between measured variables. It can, to some
extent, reveal the causes of process behavior, and plays an
irreplaceable role in process optimization, monitoring, control,
and continuous manufacturing processes. Through this review,
we have aimed to provide more information to both researchers
and manufacturers to improve tablet quality.
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