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Recently, ultrathin two-dimensional (2D) metallic vanadium dichalcogenides have attracted widespread
attention because of the charge density wave (CDW) phase transition and possible ferromagnetism.
Herein, we report the synthesis and temperature-dependent Raman characterization of the 2D vanadium
ditelluride (VTe;). The synthesis is done by atmospheric pressure chemical vapor deposition (APCVD)
using vanadium chloride (VCls) precursor on fluorphlogopite mica, sapphire, and h-BN substrates. A
large area of the thin film with thickness ~10 nm is grown on the hexagonal boron nitride (h-BN)
substrate. Temperature-dependent Raman characterization of VTe, is conducted from
temperature to 513 K. Remarkable changes of Raman modes at around 413 K are observed, indicating

room

rsc.li/rsc-advances the structural phase transition.

1. Introduction

Metallic transition metal dichalcogenides (TMDs) with fasci-
nating properties in their bulk counterpart such as charge
density waves (CDW),"” superconductivity,**® and magne-
tism,"** have attracted huge interest over several decades.
Charge density wave (CDW) is an incident originating from the
interaction of electron-phonon at one and two dimensions, in
which the phase transition is generally associated with an
obvious change of the resistivity and magnetic suscepti-
bility.**"” CDW has drawn special attention because of its
competition with superconductivity at low temperatures.'®
Dissimilar from superconductivity states, CDW states can
remain at room temperature and above,"” which extends the
probability for phase transition devices being handled at room
temperature. In recent years, a wide range of potential appli-
cations such as an oscillator,*® nonvolatile memory,* and high
sensitive room-temperature bolometer> have been reported
based on CDW phase transition.

Vanadium ditelluride (VTe,) is interesting as of now rarely
investigated 2D CDW materials.”*** VTe, is a member of group
VB TMDs with one layer of V atoms sandwiched between two
layers of tellurium atoms, stacked together by weak van der
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Waals forces. VTe, shows exceptional magnetic characteristics
at the 2D limit and CDW property.>**® Earlier study of VTe,
exhibits the structural phase transition at 482 K from the high-
temperature 1T phase to the low-temperature 1T" phase and the
CDW order of 3 x 1 x 3 in the 1T phase.?”*® Room temperature
ferromagnetism and two possible CDW transitions have been
reported in a few-layer 1T-VTe, at 135 and 240 K.**?® Ohtani
et al. reported the CDW transition temperature for VTe, is about
474 K by electrical and magnetic measurements.> Won et al.
reported the CDW phase transition of VTe, single crystal at 420
K synthesized by flux method.*® However, the periods of CDW
orders, electronic structure, and CDW mechanisms of VTe,
remain unclear.

Despite several investigations on vanadium ditelluride
(VTe,) due to the unique structural phase transition property,
the details synthesis process is still lacking. Typically 2D VTe,
materials are obtained via chemical vapor transport (CVT) and
molecular beam epitaxy (MBE) method. CVT usually needs high
pressures and long reaction times. MBE is an effective way to
prepare high-quality 2D materials. But, the lack of cost and
time-efficiency restricts the scalable application of this tech-
nique. Accordingly, developing facile, convenient, and batch
producible synthetic routes for VTe, material is highly neces-
sary. In recent years, to synthesis 2D materials, chemical vapor
deposition (CVD) is considered one of the main processing
methods. High crystalline quality and impurity-free samples
with the potential for scaling up are the fundamental advan-
tages of the CVD method. Here, we report the facile synthesis of
2D VTe, single crystals on fluorphlogopite mica and sapphire
substrates and large area VTe, thin film on the h-BN substrate
by APCVD method. The synthesized VTe, nanosheets are char-
acterized by optical microscope (OM), scanning electron
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microscopy (SEM), atomic force microscopy (AFM), energy-
dispersive spectroscopy (EDS), X-ray photoelectron spectros-
copy (XPS), and Raman spectroscopy. Moreover, the structural
phase transition is verified in the synthesized VTe, nanosheets
by the temperature dependent Raman characterization.

2. Experimental
2.1 Materials

VCl; (99.99%) and Te (99.999%) were purchased from Alfa
Aesar. All the starting materials were analytical grade and were
used without further purification.

2.2 CVD growth process of VTe,

A quartz tube with a diameter of 1 inch is used to synthesis the
VTe, single crystal. The length of the furnace is about 46 cm. A
mixture of H,/Ar was used as the carrier gas. Two quartz boat
with a volume of about 8 cm X 1.1 cm x 1.2 cm (each boat)
containing VCl; and Te powders were placed upstream of the
furnace at 300 °C and 450 °C respectively. Sapphire or freshly
cleaved (001) facet of mica or h-BN/SiO,/Si substrates were
placed in the downstream area of the furnace. The distance
between the precursors and the substrates ranges from 5 cm to
21 cm. To purge the reaction chamber, 500 sccm Ar flow was
introduced for 30 minutes before the heating process and then
followed by 100 sccm Ar and 20 sccm H, for growth. With
a ramp rate of 20 °C min ', the furnace was heated to the
growing temperature 800 °C. The growth time was 15 minutes.
The furnace was naturally cooled down.

2.3 Characterization of VTe,

The VTe, crystals were characterized using optical microscopy
(Olympus BX51M), SEM (Hitachi S-4800; acceleration voltage of
5.0 kV) equipped with an energy-dispersive spectrometer, AFM
(DI 3100 multimode microscope), and XPS (ESCALAB250Xi).
Raman spectra were measured on a home-built vacuum, vari-
able temperature, low-wavenumber Raman system with 532 nm
excitation. A NA = 0.82 low-temperature objective (LT-APO/VIS/
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Fig.1 (a) Schematic of synthesis setup and (b) the crystal structure of
1T-VTe,. Red and violet balls are indicating vanadium(V), and tellurium
(Te) atoms respectively.
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0.82, attocube systems AG, Germany) was used for laser
focusing and signal collection. Below 1 mW pm™> the laser
power was kept. Amplified-spontaneous emission (ASE) filters,
beam splitter, and notch filters (Ondax Inc., USA) were used to
achieve low-wavenumber detection.

2.4 Device fabrication and electrical measurement

A copper TEM grid was used as a shadow mask for metal
evaporation. As contact electrodes, 15 nm Ti and 50 nm Au were
used. Devices were put in the air and measured by a Keithley
4200-SCS semiconductor device analyzer.

3. Results and discussion

The synthesis procedure of VTe, flakes with the APCVD method
is schematically illustrated in Fig. 1a. Briefly, VCl; and Te
powders were used as the precursors. Fluorphlogopite mica/
sapphire/h-BN substrates were placed in different positions in
the downstream part of the furnace and reaction was carried out
usually at 800 °C. Fig. 1b shows the crystal structure of the 1T
phase VTe,. In the space group, P3ml (164) with lattice
constants of a = b = 3.636 A and ¢ = 6.51 A VTe, is crystallized

90.5 nm
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Fig. 2 (a) Optical microscopy (b) scanning electron microscopy (SEM)
and (c) atomic force microscopy (AFM) images of as-synthesized VTe,
single crystals on fluorphlogopite mica substrates. (d and e) Optical
and SEM images of the as-synthesized VTe; single crystals on sapphire
substrates respectively. (f) Elemental analysis of VTe, crystal on
sapphire substrate by energy-dispersive spectroscopy (EDS).
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Fig. 3 XPS spectra of 1T-VT,. (a) The V 2ps,, and 2py,, peaks are seen
to position at 513.1 eV and 520.7 eV respectively. (b) The Te 3ds,, and
3ds/» peaks are at 573.3 eV and 583.7 eV respectively.
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Fig. 4 (a) Optical microscopy, (b) scanning electron microscopy
(SEM), (c) atomic force microscopy (AFM) images and (d) room-
temperature Raman spectra of as synthesized VTe; thin film on the h-
BN substrate.

in a trigonal layered structure.” In octahedral coordination,
every monolayer is composed of a layer of hexagonally orga-
nized vanadium ions, sandwiched between two layers of tellu-
rium ions. The layers are held jointly by way of weak van der
Waals forces.
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The morphology of CVD grown VTe, crystals on mica and
sapphire is shown in Fig. 2a—e. We were able to synthesize VTe,
single crystals on mica and sapphire substrates at the suitable
growth parameters (see details in the Experimental section). It
is noticeable that the hexagon is the dominant shape of VTe,
crystals (Fig. 2a and d) implying the single-crystalline nature of
the samples. Atomic force microscopy (AFM) was used to
measure the thickness of as-synthesized VTe, crystal. Fig. 2c
shows the thickness of VTe, on the fluorphlogopite mica
substrate was 90.5 nm. Energy-dispersive spectroscopy (EDS)
was employed to identify the chemical composition of the
synthesized VTe, crystals on the sapphire substrate. Both V and
Te elements are visualized by the EDS profile (Fig. 2f).

Fig. 3 shows the X-ray photoelectron spectroscopy (XPS)
spectra of 1T-VT, single crystal grown on fluorphlogopite mica.
The binding energies of V 2p;/, and V 2p,,, are 513.1 eV and
520.7 eV respectively are near to those in 1T-VS, and 1T-
VSe, **** and lower than that in VO,.* The binding energies of
Te 3ds;, and Te 3dj/, are 573.3 eV and 583.7 eV respectively
comparable to the oxidation state of Te. In VTe,, the binding
energy difference (AE) between V 2p3/, and Te 3ds, is 60.2 eV,
which is near to that of V and Te primary substance (60.7 eV),
demonstrating that the V-Te bonds in VTe, are weak because of
the small electronegativity difference between V and Te.

Moreover, we have investigated the growth of 2D VTe, on h-
BN/SiO,/Si substrate (Fig. 4a—c). It has been seen that large area
VTe, thin film (size ~30-50 pm) with thickness ~10.8 nm were
grown on h-BN substrate applying the same growth condition
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(a) Temperature-dependent Raman spectra of VTe; single crystal at different temperature between 513 and 294 K. (b and c) Temperature

dependent Raman shift of the Raman modes 123.1, 142.9 cm™2. (d) Changes in linewidth of the Raman modes 123.1, 142.9 cm™* as a function of

temperature.
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Table 1 Comparison of the reported structural phase transition temperature of VTe,

Synthesis method Characterization technique Phase transition temperature Reference

CVD Raman spectroscopy 413 K This work

MBE Raman spectroscopy and electrical 135 K and 240 K 26
measurements

CVT Electrical and magnetic measurements 473 K 29

Flux method Electrical measurement 420 K 30

CVT Electrical and magnetic measurements 475K 52

used on sapphire and fluorphlogopite mica. Fig. 4d shows the
room temperature Raman spectra of VTe, film on the h-BN
substrate at different laser intensities. At the laser intensity of
10 mW, three main peaks are observable at 92.6, 120.6, and
139.8 cm™*. The Raman spectrum of VTe, crystal is consistent
with the previous reports.>® According to earlier room temper-
ature Raman measurements, the observable Raman peaks at
120.6 and 139.8 cm ™! are in plane E, and out of plane A;; modes
respectively.??° The weak Raman peak at 92.6 cm™ " could be
related to the E; phonons possibly coming from symmetry
points.***”

In recent years to explore the CDW phase transitions in
TMDs, different research tools have been employed, such as
scanning tunneling microscopy (STM),*»*%*° transmission
electron microscopy (TEM),*"*> and angle-resolved photoemis-
sion spectroscopy (ARPES),***** and Raman spectroscopy.
Raman spectroscopy is a non-destructive, high sensitive micro-
area analysis method. It has been adopted as a very reliable
technique to investigate the vibrational properties of 2D TMDs
materials. Over the past few years, temperature-dependent
Raman spectra of 1T-VS,?** 1T-VSe,,*>***® 1T-TaS,,”* 1T-
TaSe,,*” 2H-TaSe,,*** 1T-TiSe,,*® and 2H-NbSe, ** have been
reported. Fig. 5a shows the temperature-dependent Raman
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Fig. 6 Current (/4s) versus source-drain voltage (V) of as synthesized
VTe; single crystal. Sample length =13.63 um and width =6.14 um.

© 2021 The Author(s). Published by the Royal Society of Chemistry

spectra of VTe, single crystal (thickness of ~90 nm on sapphire)
in the temperature range between 513 and 294 K. There are two
Raman peaks observed at around 123.1, 142.9 cm " corre-
sponding to the E; and A, vibration modes, respectively. It is
noticeable that the overall Raman signal of VTe, crystal is very
weak from room temperature to 393 K, but become strong and
sharp when the temperature reached at 413 K. This phenom-
enon was reproducible to several run and samples. The
frequencies of the observed Raman modes are plotted as
a function of temperature (Fig. 5b and c). The energy changes of
the Raman modes 123.1, 142.9 cm ' are more explicit with
reducing the temperature. It has seen that the temperature
dependence of these Raman modes' frequencies is almost the
same and exhibits remarkable frequency changes at about 413
K, indicating that VTe, undergoes a structural phase transition.
This is also confirmed by the changes in the linewidth of 123.1,
142.9 cm™ ' Raman modes. In Fig. 5d, the changes in the line-
width of these Raman modes are plotted as a function of
temperature and shows a monotonous line expanding from the
temperature at 413 K. This result is consistent with the observed
CDW phase transition at 420 K by Won et al.** but different from
the observed structural phase transition at 474 K and 482 K.>**°
Table 1 summarizes the contrast of phase transition tempera-
tures of VTe, growth by different methods and characterized
using different techniques.

Furthermore, the electrical measurement was conducted for
as-synthesized VTe, single crystal (thickness ~90 nm, sample
length =13.63 pm, and width =6.14 um) on a mica substrate.
Fig. 6 shows a linear I44—Vy, curve with a resistance of =185 Q
and estimated conductivity is =1.3 x 10> S m~' at room
temperature.

4. Conclusions

In conclusion, we have successfully synthesized 2D VTe, single
crystals on mica and sapphire substrates and large area VTe, film
on the h-BN substrate via the APCVD method. Temperature-
dependent Raman shift, the linewidth of the 123.1, 142.9 cm™*
Raman modes of VTe, crystal show the structural phase transition
at around 413 K. Our investigation will provide the fundamental
spectroscopy for 2D VTe, crystal.
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