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Radical heteroarylation of unactivated remote
C(sp3)–H bonds via intramolecular heteroaryl
migration†

Zhu Cao,‡a Huihui Zhang,‡a Xinxin Wu,a Yahong Li *a and Chen Zhu *a,b

The radical-mediated heteroarylation of unactivated remote C(sp3)–H bonds via intramolecular heteroaryl

migration is achieved, leading to a variety of heteroaryl-substituted aliphatic ketones. A library of O-/S-/

N-containing heteroaryls such as benzofuryl, benzothiazolyl, benzothienyl, benzoxazolyl, oxazolyl, and

thiazolyl are amenable to the migration approach. The heteroaryl migration is triggered by an azido

radical-mediated hydrogen atom abstraction from unactivated aliphatic C(sp3)–H bonds. The transform-

ation features mild C–C bond cleavage, good selectivity for tertiary C(sp3)–H bonds, and broad functional

group compatibility.

Introduction

Heteroarenes are important structural motifs widely existing in
natural and pharmaceutical products, and materials science.1

Over the past century, tremendous efforts from organic chem-
istry communities have been devoted to construct heteroarenes
and investigate their transformations. Notwithstanding the
great progress achieved in heterocyclic chemistry, our group
has a long-term interest in developing ingenious approaches
to incorporate heteroarenes to target molecules by radical-
mediated functional group migration.2–4 For instance, radical-
mediated difunctionalization of alkenes via intramolecular
heteroaryl migration provides an efficient tactic for the conco-
mitant installation of a heteroaryl and another functional
group in an alkene.3 An upgraded docking-migration strategy
significantly extends the compatibility of substrates, allowing
the radical heteroarylation of more general alkenes.4

Direct functionalization of inert C(sp3)–H bonds represents
a powerful and atom-economical synthetic strategy.5 As a
complement to transition metal-catalyzed C(sp3)–H activation,
radical-mediated site-selective functionalization of C(sp3)–H
bonds has received rapidly increasing attention,6,7 and many

new reaction modes have been unveiled during the last
decade. It should be noted that although remote radical C–H-
functionalization has become a heavily investigated field of
the chemical community, the remote C(sp3)–H arylation as
addressed herein is particularly challenging and only very few
examples have been reported complementing transition-metal-
catalyzed C(sp3)–H arylation that only work for primary and
secondary alkyl sites.6h,i In 2018, we disclosed a tertiary
alcohol-directed radical heteroarylation of unactivated C(sp3)–
H bonds via remote heteroaryl migration under photochemical
conditions (Scheme 1a).8 In the presence of an Ir complex as a
photocatalyst and potassium persulfate as an oxidant, the
nascent alkoxy radical enabled the hydrogen atom transfer
(HAT) and the ensuing heteroaryl migration. Although (benzo)
thiazolyl and pyridyl were readily incorporated at the
δ-position of alcohols, the substrates were limited to alcohols
bearing N-containing heteroaryls. Despite the fact that
O/S-containing heteroaryls have also showcased the migratory
aptitude,3h,i they were not tolerated under strong oxidation
conditions due to their high electron density, and thus failed
to generate the desired products. To address this issue, we con-
ceive an intermolecular HAT instead of the alkoxy radical-
mediated intramolecular HAT to generate the alkyl radical,
and meanwhile avoid the use of harsh conditions. Considering
that the azido radical is a common HAT species easily accessi-
ble under mild conditions,9 we envision that the azido radical-
mediated HAT might be compatible with the following O-/
S-containing heteroaryl migration, thus realizing the unpre-
cedented O-/S-heteroarylation of unactivated C(sp3)–H bonds
by a functional group migration strategy (Scheme 1b).

Herein, we provide the proof of principle for the hypothesis.
Compared to the previous protocol,8 the current one provides
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a broader substrate scope for the azido radical-mediated het-
eroarylation of C(sp3)–H bonds. In addition to N-containing
heteroaryls, O- and S-containing heteroaryls also readily
migrate in the reaction, leading to heteroaryl-substituted ali-
phatic ketones in synthetically useful yields. The transform-
ation features mild C–C bond cleavage, good selectivity for ter-
tiary C(sp3)–H bonds, and wide functional group compatibility.

Results and discussion

We commenced the investigation with the benzofuryl-substi-
tuted tertiary alcohol 1a as a model substrate and the combi-
nation of (diacetoxyiodo)benzene (PIDA) and sodium azide as
the azido radical source (Table 1). Among the screened organic
solvents, MeCN delivered the highest yield of the desired
product 2a (entries 1–7). Elevating the reaction temperature to
80 °C improved the isolated yield of 2a to 53% (entry 8). It was
found that changing the temperature to be higher or lower did
not further increase the yield (entries 9 and 10). The amounts
of PIDA and NaN3 were then examined (entries 11–15),
showing that the use of excess PIDA and NaN3 was indeed ben-
eficial for the reaction (entry 11). Slightly increasing the
volume of MeCN to 2.5 mL resulted in a better yield (entry 16).
The survey of hypervalent iodine (HI) reagents indicated that
PIDA is still the most efficient reagent (entry 16, entries
18–22). Surprisingly, BI-N3 capable of serving both as an
oxidant and azido radical source did not provide the expected
reactivity in the absence of NaN3 (entry 23).

With the optimized reaction conditions in hand, the gener-
ality of the protocol was assessed (Scheme 2). A variety of ter-
tiary alcohols bearing either an electron-rich or electron-

deficient substituent were converted into the corresponding
ketone products (2a–2t). The use of substrates with para-,
meta-, or ortho-substitution resulted in comparable yields (2b–
2d, 2e–2g, and 2k–2m), probably suggesting that the steric hin-
drance of tertiary alcohols did not affect the reaction yield
much. The moderate yields of products 2b–2d might be attrib-
uted to the competitive HAT with the benzylic C–H bonds of
substrates.10 Other tertiary C(sp3)–H bonds, such as the cyclo-
hexyl C–H bond (2u), and the C–H bond adjacent to the
O-atom (2v) were also regioselectively functionalized. Not only
aryl ketones but also some dialkyl ketones were generated,
albeit with decreased yields (2w–2y). In addition to benzofuryl,
other heteroaryls such as benzothienyl, benzothiazolyl, thiazo-
lyl, benzoxazolyl, and oxazolyl also readily migrated in the
reaction, leading to the desired products in synthetically
useful yields (2z–2af ).

In order to illustrate the utility of the product, the trans-
formations of 2a were performed. Upon treating 2a with

Table 1 Survey of reaction parametersa

Entry HI Solvent (mL) T (°C) Yieldb (%)

1c PIDA MeCN (2.0) 30 37
2c PIDA THF (2.0) 30 <10
3c PIDA PhCF3 (2.0) 30 25
4c PIDA DMF (2.0) 30 <10
5c PIDA EA (2.0) 30 31
6c PIDA DCM (2.0) 30 35
7c PIDA tBuCN (2.0) 30 <10
8c PIDA MeCN (2.0) 80 53
9c PIDA MeCN (2.0) 70 47
10c PIDA MeCN (2.0) 90 46
11 PIDA MeCN (2.0) 80 60
12d PIDA MeCN (2.0) 80 58
13e PIDA MeCN (2.0) 80 58
14 f PIDA MeCN (2.0) 80 44
15g PIDA MeCN (2.0) 80 36
16 PIDA MeCN (2.5) 80 70
17 PIDA MeCN (3.0) 80 65
18 PIFA MeCN (2.5) 80 30
19 BI-OH MeCN (2.5) 80 Trace
20 BI-OAc MeCN (2.5) 80 53
21 BI-N3 MeCN (2.5) 80 57
22 DMP MeCN (2.5) 80 <10
23h BI-N3 MeCN (2.5) 80 Trace

a Reaction conditions: 1a (0.2 mmol), HI (4.0 equiv.), and NaN3 (4.0
equiv.) in MeCN (2.5 mL), 80 °C for 12 h. b Isolated yield. c PIDA (2.5
equiv.), NaN3 (2.5 equiv.). d PIDA (3.5 equiv.), NaN3 (3.5 equiv.). e PIDA
(4.5 equiv.), NaN3 (4.5 equiv.). f PIDA (4.0 equiv.), NaN3 (2.0 equiv.).
g PIDA (2.0 equiv.), NaN3 (4.0 equiv.). hWithout NaN3.

Scheme 1 Radical-mediated heteroarylation of unactivated C(sp3)–H
bonds by means of functional group migration.
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methyl lithium, the tertiary alcohol 3 was generated, which
was then subjected to intramolecular annulation via dehydra-
tion in the presence of formic acid, leading to the valuable
ring-fused heterocyclic product 4 in a high yield (Scheme 3a).
Treating 2a with hydroxylamine hydrochloride and sodium
acetate generated the oxime 5, which served as the precursor
of Beckmann rearrangement to afford the corresponding
amide 6 (Scheme 3b).

Afterwards, the migration distance was varied in the sub-
strates to probe the transition states that might influence the
heteroaryl migration (Scheme 4). In Scheme 2, all products
were obtained via 1,4-heteroaryl migration, facilitated by a
kinetically favoured five-membered cyclic intermediate. The
1,2-/1,5-benzofuryl migration via a three- or six-membered

cyclic intermediate also proceeded, however, affording the
corresponding products 2ag and 2ai in low yields (Scheme 4a
and c). In sharp contrast, the 1,3-benzofuryl migration did not
proceed owing to the disfavoured four-membered cyclic inter-
mediate (Scheme 4b).

Based on the experimental results, a proposed mechanism
is shown in Scheme 5. The interaction of PIDA with NaN3 gen-

Scheme 2 Substrate scope. Reaction conditions: 1 (0.2 mmol), PIDA
(4.0 equiv.), and NaN3 (4.0 equiv.) in MeCN (2.5 mL), 80 °C for 12 h.
Yields of the isolated products are given. aPIDA (6.0 equiv.) and NaN3

(6.0 equiv.).

Scheme 3 Synthetic applications.

Scheme 4 Investigations on the preference of cyclic intermediates.

Scheme 5 Proposed mechanism.
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erates an azido radical that regioselectively abstracts a hydro-
gen atom from the tertiary C(sp3)–H bond with the lowest
bond dissociation energy. The resulting alkyl radical inter-
mediate A undergoes intramolecular cyclization to generate
the spiro radical intermediate B. The subsequent 1,4-hetero-
aryl migration via a five-membered cyclic intermediate results
in the metastable ketyl radical C. Finally, single-electron oxi-
dation of C with PIDA followed by deprotonation furnishes the
desired product 2a.

Conclusions

In summary, a radical-mediated remote heteroarylation of
unactivated C(sp3)–H bonds of tertiary alcohols has been dis-
closed, leading to a variety of useful heteroaryl-substituted
aliphatic ketones. The reaction proceeds via a cascade of
azido radical-mediated HAT and intramolecular heteroaryl
migration, in which an inert C–H bond and C–C bond are con-
secutively cleaved under mild conditions. A library of O-/S-/
N-containing heteroaryls, such as benzofuryl, benzothiazolyl,
benzothienyl, benzoxazolyl, oxazolyl, and thiazolyl, readily
migrate in the reactions. Mechanistic studies reveal that the
heteroaryl migration prefers a five-membered cyclic intermedi-
ate. Moreover, the transformation features broad functional
group tolerance and good regioselectivity. This protocol offers
an ingenious approach for selective functionalization of inert
C(sp3)–H bonds.
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