Green strategies for transition metal-catalyzed C–H activation in molecular syntheses

Uttam Dhawa, Nikolaos Kaplaneris and Lutz Ackermann*

Transition metal catalyzed C–H activation has surfaced as a powerful tool to improve the efficacy of molecular synthesis. Last two decades have witnessed a considerable progress in the activation of otherwise inert C–H bonds. However, during recent years, focus has shifted to address rising concerns to achieve high levels of resource economy in molecular syntheses. Herein, we discuss the advent and recent emerging strategies to improve the sustainability and environmentally benign nature of C–H activation manifolds.

Environmentally-benign solvents

The tremendous progress of transition metal-catalysis is associated with an environmental disadvantage, because the use of organic solvents generates major amounts of waste, both in the chemical and pharmaceutical industries. Unfortunately, the commonly used organic solvents are volatile, toxic and flammable, which potentially, constitutes a major safety hazard that is considered undesirable for large production. Therefore, environmentally-benign solvents are in high demand for transition metal-catalyzed C–H activations as a sustainable alternative.

The application of environmentally-benign solvents in transition metal-catalyzed C–H activation is attractive, because they are readily available from biomass feedstocks and generally less toxic with high biodegradability, minimizing the environmental footprints. Apart from bio-based solvents, water also has found applications in various C–H transformations.

Polyethylene glycols (PEGs)

Polyethylene glycols (PEGs), available from inexpensive ethylene glycol, have gained considerable attention as green reaction media for organic transformations due to their favourable physicochemical properties and negligible toxicities. Commercially available PEGs have been recognized as promising green solvents in industries due to their non-flammable and non-corrosive nature.

In 2009, Ackermann reported on the first transition metal-catalyzed C–H arylation in PEGs as reaction media (Scheme 1). Chelation-assisted C–H arylation were achieved by the combination of catalytic amounts of [RuCl₃(H₂O)₆] and a co-catalytic amount of MesCO₂H (2,4,6-trimethylbenzoic acid) to furnish the desired biaryls in high yields. Various...
arenes 1 were arylated in a regioselective fashion by chelation-assisted ruthenium catalysis.

In a recent study, Li disclosed a related arylation of heteroarenes via C–H bond activation in PEG-400 with recyclable and inexpensive RuCl₃·nH₂O as the catalyst. A green synthesis of benzimidazoisoquinolines was reported by Chandrasekhar via a ruthenium-catalyzed alkyne annulation with 2-aryl benzimidazoles in a PEG-400/water reaction mixture at room temperature in the presence of Cu(OAc)₂·H₂O as oxidant (Scheme 2). Notably, the catalyst could be recycled without significant loss of catalytic efficiency. In contrast, when using toluene as the solvent a reaction temperature of 111 °C was required.

Bhanage employed recently a recyclable ruthenium/PEG-400 catalytic system for the oxidative annulation with internal alkynes via directed C–H activation for the synthesis of isoquinolinones, isocumarins, and N-methyl isoquinolinones by the cleavage of C–H, N–O and O–O bonds (Scheme 3a). Likewise, the oxidative alkenylation of N-methoxy-N-methylamides with substituted styrenes was achieved (Scheme 3b). Interestingly, the recyclability test for the ruthenium catalyst and PEG-400 provided satisfactory results without loss of the catalytic efficiency. The product isolation was conducted by extraction with diethyl ether, along with column chromatography using toluene and ethyl acetate as the eluents. In a recent study, the same group extended the approach towards N-tosylhydrazones for the synthesis of isoquinolinones via C–H/N–N activation.

In a related study, Cai reported on the synthesis of phthalides by recyclable ruthenium-catalyzed oxidative C–H alkenylations in a PEG-400/water (3 : 2) mixture. Various substituted benzoic acids and electron-deficient alkenes were amenable substrates for the alkenylation to afford the desired phthalides in good yields.

Ackermann demonstrated that PEGs are viable green reaction media for palladium-catalyzed C–H arylations. Co-catalytic amounts of MesCO₂H significantly improved the reaction efficiency for the direct arylation of triazoles under aerobic conditions with 5.0 mol% of Pd(OAc)₂ in PEG-20000 (Scheme 4). The catalyst was found to be easily reusable, taking advantage of the physiochemical properties of PEG-20000 without significant loss in activity.

Berteina-Raboin developed a sequential one-pot synthesis of 2,3-diarylimidazo[1,2-a]pyridines starting from easily-accessible 2-aminopyridines, α-bromo ketones, and aryl bromides in PEG-400 (Scheme 5). The use of Pd(OAc)₂ as the catalyst and KOAc as the base at 220 °C under microwave irradiation for 1 h gave the optimal results.
In 2015, Ackermann showed PEG-400 to be suitable solvent for Earth-abundant 3d metal-catalyzed C–H activation. Here, a combination of inexpensive Co(OAc)$_2$ and sacrificial oxidant Mn(OAc)$_2$ or AgOPiv afforded isoindoline derivatives 23 from aromatic benzamides 22 by C–H/N–H annulation with alkenes 15 under aerobic conditions (Scheme 6). Notably, organic solvents failed to provide the desired products in synthetically useful yields, highlighting the unique potential of PEG-400 as the reaction media. Several sensitive functional groups were well tolerated, providing versatile access to substituted isoindolinones 23.

Later, Cui employed picolinamides as a traceless directing group for the cobalt-catalyzed synthesis of isoquinonlines 25 via C–H/N–H activation using oxygen as terminal oxidant (Scheme 7). The reaction proceeded efficiently for a broad range of substrates including terminal and internal alkynes with excellent regioselectivities.

Furthermore, copper-catalysis was amenable for C–H alkylation in PEG-400. Here, catalytic amounts of CuBr were used for the kinetic C–H acidity guided alkylation of 1,3,4-oxadiazoles 26 by gem-dibromoalkenes 27 to afford the desired products 28 in moderate to good yields (Scheme 8). For the isolation of the desired products, simple extraction with ethereal solvents was carried out, followed by column chromatography.

γ-Valerolactone (GVL)

γ-Valerolactone’s characteristic features include a high boiling point, a low vapour pressure, low toxicity along with high miscibility with water and most importantly it is highly biodegradable. This environmentally-benign aprotic solvent is produced from levulinic acid which is itself derived from lignocellulosic biomasses. Due to its physicochemical properties, GVL has found widespread applications as an alternative to hazardous organic solvents in transition metal-catalyzed transformations, including cross-coupling reactions, hydroformylations and aminocarbonylations. In contrast, step-economic catalyzed C–H activations in renewable biomass derived solvent GVL have only recently been developed.

For instance, Larini and Cravotto disclosed the palladium-catalyzed C–H arylation of heterocycles 29 with aryl halides 2 in GVL as solvent (Scheme 9a). Remarkably, only 0.2 mol%
Pd(OAc)\(_2\) was sufficient for efficient regioselective C2 arylation of thiophenes 29 under microwave irradiation at 140 °C. The reaction conditions proved applicable to palladium-catalyzed synthesis of poly(3-hexyl)thiophene 31 by C–H (hetero)arylation polymerisation (Scheme 9b).

More cost-effective ruthenium-catalysts enabled the synthesis of phthalides 33 from aryl carboxylic acids 32 and alkenes 15 by Ackermann in biomass-derived GVL using molecular oxygen as the sole oxidant (Scheme 10).\(^{38}\) The oxidative double C–H functionalization was characterized by high positional selectivity and functional group tolerance, with sensitive bromo, iodo and hydroxyl groups being tolerated. The reaction mixture was extracted with H\(_2\)O and \(n\)-hexane/MTBE to remove the GVL.

In a recent study, the same group found GVL as an effective solvent for the ruthenium(II)-catalyzed distal C–H alkenylation of arylacetamides via weakly coordinating amide assistance.\(^{40}\) Ackermann also demonstrated GVL as a suitable solvent for Earth abundant 3d metal-catalyzed C–H activations. Thus, an ortho C–H arylation of benzamide 22 in GVL was realized (Scheme 11).\(^{11}\) In addition, challenging C(sp\(^3\))–H bond arylations were also achieved with arylsiloxanes in GVL as reaction media albeit at a higher temperature.

Furthermore, GVL has also found applications to heterogeneous palladium-catalyzed C–H activations as well as in the field of electrochemistry to enhance the sustainability in molecular synthesis (vide infra).

2-Methyltetrahydrofuran (2-MeTHF) is largely produced from renewable lignocellulosic biomasses.\(^{42}\) Favourable physiochemical properties of 2-MeTHF render it as an eco-friendly alternative to THF with lower miscibility with water and higher boiling point.\(^{43}\) In this section, we summarize the potential of 2-MeTHF as a green reaction media for catalyzed C–H activation.

McMullin, Williams and Frost disclosed ortho-C–H alkenylation of a variety of N-aryloxazolinone 36 using [RuCl\(_2\)(p-cymene)]\(_2\) as a catalyst in 2-MeTHF (Scheme 12).\(^{44}\) 2-MeTHF showed superior efficacy to typically used organic solvents for the desired alkenylated product with high levels of monoselectivity.

Ackermann employed 2-MeTHF for ruthenium-catalyzed remote meta-C–H functionalization of purines 38.\(^{45}\) Hence, the arene-ligand free complex [Ru(OAc)\(_2\)(PPh\(_3\))\(_2\)] enabled the meta-C–H alkylation of purines 38 via a ruthenium(II/III) manifold with excellent levels of chemo- and meta-selectivity (Scheme 13).

Sommer demonstrated a sustainable synthesis of n-type conjugated copolymers PNDIT2\(_43\) from 2,6-dibromonaphthalene diimide 42 using palladium-catalyzed direct arylations in 2-MeTHF (Scheme 14).\(^{46}\) The palladium catalyst delivered the desired product PNDIT2\(_43\) in 98% yield and with molecular weight of \(M_n\) ~20 kDa. Later, the synthesis of benzodithiopehne-alt-diketopyrrolopyrrole copolymer was achieved via a palladium-catalyzed direct heteroarylation polymerization (DHAP) in 2-MeTHF.\(^{47}\)
The Cook group employed an inexpensive and non-toxic iron catalyst for the ortho-alkylation of aromatic amides with alkyl bromides in biomass-derived 2-MeTHF as a green reaction media via bidentate 8-AQ assistance. The combination of catalytic amounts of Fe(acac)₃ as catalyst and dppe as ligand enabled primary and secondary alkylations in high yields and excellent regioselectivities.48

Water:micellar catalysis

Water is nontoxic, non-flammable, non-corrosive, naturally abundant and cost-efficient, providing key advantages as a sustainable, safe and environmentally-benign solvent.17 The eco-friendly nature of water emphasizes its significant potential as a reaction media for organic transformations, particularly in combination with non-renewable organic solvents for the workup procedures. However, the solubility and instability of organic or organometallic compounds in water often imposes significant limitations for the use of water as a solvent.49 Therefore, surfactants have emerged as enabling tools for realizing homogenous metal catalysis in water. In this section, we discuss micellar catalysis for transition metal-catalyzed C–H activations in water.

A mixture of 2% surfactant/H₂O was employed in the palladium-catalyzed C–H arylation of anilides 44 to provide diversely substituted biaryl compounds 46 (Scheme 15).50 Brij 35 was found by Lipshutz as an efficient surfactant for the C–H arylation with AgOAc as a stoichiometric additive at room temperature.

Later, ortho-acylations of anilides were also achieved in an aqueous solution of a surfactant via a palladium-catalyzed cross dehydrogenative coupling between anilides and aromatic aldehydes.51 Ackermann devised a ruthenium-catalyzed C–H arylation in water through micellar catalysis.52 The presence of a single component ruthenium catalyst and K₂CO₃ as base gave optimal results for the C–H arylation of sensitive ferrocenes 47 through weak thioketone assistance in a solution of 2% TPGS-750 in H₂O (Scheme 16).

Water itself has been found applications as a reaction medium for a variety of C–H bond functionalization reactions, catalyzed by palladium,53 rhodium,54 iridium55 and ruthenium.56 Similarly, water has also been found as an amenable solvent for Earth-abundant 3d metal-catalyzed C–H functionalization.57

In this context, in 2017, decarboxylative C–H/C–O functionalizations by manganese catalysis in H₂O were realized by Ackermann.58 Air- and water-tolerant manganese(i) catalysis enabled versatile C–H allylations of indole 49 with high levels of chemo- and regioselectivity (Scheme 17).

In addition, water-tolerant manganese(i)-catalysis was easily expanded to the unprecedented C–C activation of alcohol, leading to the allylated and hydroarylated arenes.59 It is noteworthy that similar reactivity of sequential C–H and C–C/C–Het bond activation was demonstrated by Glorius under neat reaction conditions.60
Generally speaking, green solvents have emerged as viable reaction medium for C–H activation reactions. However, to unleash the full potential, toxic organic solvents should ideally be avoided during the workup procedures for the isolation and purification of the target products.

Heterogeneous catalytic system

Despite significant advances in C–H functionalization with homogenous catalysts, a major challenge for large-scale applications is associated with the limited recyclability of the often expensive catalysts and difficult removal of undesired trace metal impurities. Hence, heterogenous catalysts are in high demand for sustainable molecular synthesis. Further recyclable heterogenous catalysts provide an opportunity for innovative transformations through the design of hybrid metal catalysts.

An early report on C–H arylations by Fagnou proved viable with the commercially available heterogeneous palladium catalyst Pd(OH)₂/C. Pearlman’s catalyst allowed for efficient intramolecular C–H arylation with aryl iodides and bromides (Scheme 18). Detailed experimental studies revealed in situ formation of the active homogeneous palladium species. In a related work, C-2 selective arylations of NH-free pyrroles were realized with the Pearlman’s catalyst.

In 2015, the Glorius group disclosed C–H arylations of triphenylene, napthalenes and anthracene with the combination of diaryliodonium salts and catalytic amounts of Pd/C. Aimed at improving catalyst recyclability, chemists have focused their attention on using different types of heterogeneous palladium sources for efficient arylation. Along with homogeneous palladium sources, the addition of catalytic amounts of copper has also been beneficial for the regio- and chemoselective arylations.

For example, a reusable copper-based catalyst system was used for the direct arylation of anilides with meta-selectivity using reusable heterogeneous copper nanoparticles (Scheme 19).

In subsequent studies, Wang further achieved the C–H arylation of various heterocycles in the presence of a heterogeneous catalyst CuO nano spindles in diglyme. Furthermore, heterogenous MOF based copper catalysts have found suitable application for the direct C–H arylation of heteroarenes.

Very recently, Ackermann achieved heterogeneous photo-induced copper-catalyzed C–H arylation of heteroarenes with aryl iodides at room temperature (Scheme 20). This photo-catalysis strategy proved to be highly robust leading to minimal leaching and enabling the recycling of the catalyst without loss of its efficiency.

While a significant number of heterogeneous catalytic based systems are based mainly on the arylation of aromatic substrates, recent interest on other types of C–C and C–Het bond formation reactions using recyclable heterogeneous catalysis has gained considerable attention.

In 2016, Ackermann and Vaccaro realized the heterogeneous palladium catalysis for the Catellani reaction in the renewable biomass derived green solvent GVL. The authors employed two different heterogeneous palladium sources, namely, Pd/Al₂O₃ and Pd EnCAT™, to enable difunctionalization with a variety of alkenes, providing access to diverse meta-substituted arenes. Notably, biomass-derived GVL proved to be the superior solvent among other typical organic solvents.

The same groups reported heterogeneous Pd/C for the C–H arylation of 1,2,3-triazoles with aryl bromides in GVL. Co-catalytic amount of MesCO₂H and CF₃CO₂K were used as ligand...
and base respectively for the direct arylation to provide access to fully decorated 1,2,3-triazoles in good to excellent yields with good functional group tolerance. Interestingly, the heterogeneous palladium catalyst was also applicable for the intramolecular C–H arylation of the substrate 63 to afford isoindole motif 64 in good yield (Scheme 22a). Later, Ackermann and Vaccaro further extended the heterogenous palladium-catalyzed direct C–H functionalization of 1,2,3-triazoles 65 using continuous flow regime in GVL as a green reaction media (Scheme 22b).

The Glorius group employed Pd/Al2O3 as a heterogenous catalyst for the direct C–H thiolation and selenylation reactions. The combination of Pd/Al2O3 and CuCl2 in dichloroethane or toluene gave optimal results for the synthesis of sulfenylated 69 and selenylated products 70 (Scheme 23).

Furthermore, C–H cyanations were achieved by heterogenous palladium(II) and magnesium–lanthanum mixed oxide. The combination of NH4HCO3 and DMSO served as cyano source to allow for regioselective C–H cyanations of heteroarrenes 1 (Scheme 24).

C–H halogenations were achieved using an easily synthesized Pd@MOF nano catalysts by Martín-Matute. The halogenation reaction was conveniently performed with the robust MOF-based heterogenous catalysts to deliver the desired products 73 and 74 under very mild conditions with excellent mono- and di-selectivities (Scheme 25). It is worth mentioning that the MOFs were recycled and reused without loss of efficacy.

meta-C–H Brominations of aryl substituted purine bases 38 were devised by Ackermann using a heterogenous ruthenium catalyst (Scheme 26). The robust heterogenous Ru@SiO2 catalyst proved broadly applicable for the meta-selective bromination with NBS with excellent level of positional selectivity to furnish the meta-brominated purine bases 76. Interestingly, the catalyst was easily recovered and reused without loss of catalytic efficiency.
In a very recent study, the same group reported the first recyclable hybrid-ruthenium catalysis for distal meta-C–H activation (Scheme 27).81 It is noteworthy to mention that meta-C–H alkylation was achievable under photoinduced conditions with the hybrid-ruthenium-catalysis manifold.

To extend the synthetic utility of the heterogenous catalysts, C–H oxygenation82 and C–H borylation83 were also developed with easily recyclable heterogenous palladium and iridium catalysts respectively.

Overall, significant momentum was gained in C–H activation by heterogenous catalysis to reduce the undesired trace metal impurities, and enable the efficient recycling and reuse of the transition metal catalysts.

Photocatalytic C–H activation

In the last fifteen years, photochemistry has witnessed a renaissance. Thus, photocatalysis was identified as a mild and efficient tool for challenging transformations.84 The merger of photocatalysis with transition metal-catalyzed85 cross coupling unlocked a dormant area of the chemical space.86

The generation of aryl radicals from aryl diazonium salts and subsequent addition of these radicals to various acceptors, in a Meerwein type arylation, is well established.87 In 2011, Sanford merged the versatile palladium-catalyzed C–H activation regime with photocatalytic generation of aryl radical (Scheme 28a).88 The use of Ru(bpy)\textsubscript{3}Cl\textsubscript{2} as an effective photocatalyst for the controlled generation of the aryl radicals under mild reaction conditions was crucial. The ortho-arylation of aranes bearing various directing groups was achieved by means of catalytic amounts of Pd(OAc)\textsubscript{2} and Ru(bpy)\textsubscript{3}Cl\textsubscript{2} in MeOH, at room temperature under CFL (compact fluorescent lamp) irradiation.

The proximity-induced regime for the functionalization of inert C–H bonds is restricted to the ortho position in relation to the directing group. To bypass this limitation many strategies have been developed89 including, use of templates,90 non-covalent interactions between the ligand and the sub-
strate, mediators for Catellani type reaction and σ-activation. Generally, these reactions require elevated reaction temperatures that restrict the synthetic utility of those highly sought transformations. Thus, Ackermann demonstrated that the meta-C–H functionalization regime that have already shaped into a powerful strategy for remote functionalization can be further improved by the merger with photocatalysis. Thus, the meta-selective C–H alkylation of arenes was achieved under exceedingly mild reactions conditions via visible-light irradiation at room temperature, without the aid of an exogenous photocatalyst (Scheme 28b). After extensive optimization, catalytic amounts of [RuCl₂(p-cymene)]₂ and (C₆H₆)₂PF(O)OH were found to promote not only the acid-assisted C–H cycloruthenation but also the visible-light induced homolytic cleavage of the alkyl bromides. With the optimized conditions in hand, the robustness of the methodology was demonstrated by the ample scope. Remarkably, compared to the previously developed ruthenium-catalyzed meta-C–H that require 100–140 °C, this reaction was conducted at room temperature. Subsequently, Greaney independently reported similar reactivity under blue-light irradiation. The same authors exploited the visible-light irradiation for the ruthenium-catalyzed ortho-C–H arylation of heteroarenes. The robust C–H arylation occurred at ambient temperature, enabled by an unprecedented inner-sphere electron transfer from bicyclemolated ruthenecarboxylic acid. In sharp contrast, the differentiation of C–H bonds based on their electronic environment is a common strategy. Thus azoles, bearing a relatively acidic C–H bond have been functionalized, without the assistance of a chelating group, by means of various transition metals under rather forcing reaction conditions. Thus, Ackermann reported on the photoinitiated copper-catalyzed C–H arylation of azoles at room temperature, using cost-effective CuI (Scheme 28c). Detailed optimization studies revealed the essential nature of the N,N-dimethylglycine as a ligand and LiOtfBu as a base. The mild nature and robustness of the protocol was reflected by the complete tolerance of various functional groups, the expedient and chemoselective synthesis of alkaloids. Interestingly, challenging oxazolines proved likewise to be viable substrates for this C–H arylation.

The productive merger of photocatalysis with C–H activation is not only restricted to redox-neutral reactions, but can also be expanded to oxidative reactions. The rhodium-catalyzed oxidative alkenylation of arenes bearing various directing groups is well established, but stoichiometric amounts of oxidants are required and generally elevated temperatures are employed in order to achieve high conversion. Thus, Rueping disclosed a rhodium-catalyzed Fujiwara–Moritani reaction enabled by visible light (Scheme 29a). The authors reasoned that the rhodium hydride species produced after β-hydride elimination can be recycled towards the active species by a photocatalytic oxidation, where O₂ acts as the terminal oxidant. After extensive optimization, benzamides were efficiently converted to the desired E-olefins with catalytic amounts of [Cp*RhCl₂], AgSbF₆ and [Ru(bpy)₃](PF₆)₂ in chlorobenzene at 80 °C under air. Under the optimized reaction conditions a plethora of functional groups were tolerated on the arene moiety and various alkynes were also employed. Subsequently, Rueping and Sundararaju employed this strategy, for high valent cobalt catalysis with photocatalysis (Scheme 29b). This approach represents a sustainable protocol with an earth-abundant cobalt catalyst in combination with an organic dye. Indeed, catalytic quantities of Co(acac)₂ and Na₂Eosin Y in combination with CF₃SO₂Na in TFE were effective to promote this oxidative cyclisation at room temperature.

C–H activation in flow

A straightforward transfer of the enormous potential of C–H activation from academia to the industries is through the use of flow technology, because flow setups improve heat and mass transfer, are generally safer as batch processes and are well suited for the use of highly reactive intermediates. Moreover, the inherent scalability of flow procedures represents an additional asset.

In this context, Gaunt and Lapkin developed an oxidative palladium-catalyzed C–H aziridination and subsequent ring opening in flow. In order to transform the process from the batch conditions to the desired flow setup the authors performed DFT calculations and constructed a predictive kinetic model that enabled the facile transfer to the flow conditions (Scheme 30). Under the optimized reaction conditions consisting of catalytic amounts of Pd(OAc)₂ and stoichiometric PhI (OAc)₂, Ac₂O and AcOH, that was crucial for reducing the concentration of the off-cycle resting state of the catalyst, the desired aziridine was isolated in 90% yield in only
10 minutes. In addition, the authors were able to devise a purification system in flow by connecting one column packed with a palladium scavenger and a second column with an amine scavenger. Flow technology offers unique opportunities for immobilizing a heterogeneous catalyst, enabling the facile reuse of the catalyst. Thus, after developing the directed Fujiwara–Moritani reaction catalyzed by simple palladium on carbon for batch synthesis Ackermann and Vaccaro probed the possibility of immobilizing the heterogeneous catalyst in a coil and performing the reaction in flow.108 Remarkably, their batch conditions consisting of Pd/C, benzoquinone as the oxidant, p-toluenesulfonic acid and GVL as solvent, were easily transferred to the flow setup with the catalyst immobilised to the coil (Scheme 31). The reaction between anilides 87 and acrylate 15 was run for 29 hours to produce up to 109 g of the alkenylated product. Control experiments demonstrated that the leaching of the palladium catalyst was minimal in GVL (up to 4 ppm) compared to other commonly used polar aprotic solvents such as DMF and NMP, clearly showcasing the enhanced durability of the heterogeneous catalyst in GVL. The high surface-area-to-volume ratio typical of flow reactors is ideal for performing photochemical reactions, since photochemical reaction are very difficult to be scaled up in batch setups, thus photochemical protocols that are developed in flow are more likely to be adopted from industries. To this end, Noël and Van der Eycken reported on the photocatalytic C–H acylation of indole derivatives 49 under palladium catalysis with aldehydes serving as acyl radical surrogates (Scheme 32).109 The authors optimized the reaction conditions for the acylation in batch, and were delighted to observe that the reaction conditions were compatible for reactions in flow as well, while observing an increased rate. With the optimized conditions in hand, consisting of catalytic amounts of Pd(OAc)2, Boc-Val-OH, fac-[Ir(ppy)3] as photocatalyst and tert-butyl hydroperoxide as terminal oxidant in acetonitrile, they expanded the scope of the acylation in batch and in flow. Interestingly, the isolated yields were comparable but the required 2 hours, which the batch protocol called for 20 hours. In addition, the mild reaction conditions enabled the acylation with a,a-disubstituted aldehydes to occur without any noticeable decarbonylation.

Despite the fact that the majority of C–H activation protocols has been developed with precious transition metals, C–H activation by 3d-transition metals has gained immense momentum during the last 10 years, due to its cost-effective and less-toxic nature.9,110 Thus, in 2017 Ackermann developed the manganese(I) hydroarylation of propargylic carbonates 91 in flow (Scheme 33a).111 Fine-tuning of the reaction conditions were required to bypass the inherent pathway for the β-oxygen elimination that leads to allene products, gratifyingly, the synergistic catalysis between MnBr(CO)5 and a Brønsted acid

Scheme 30 Continuous-flow synthesis of aziridines.

Scheme 31 Heterogeneous C–H alkenylations in continuous flow.

Scheme 32 C–H acylation of indoles by dual photoredox/transition metal catalysis.

Scheme 33 Manganese-catalyzed C–H activation in flow.
promoted the key protodemetalation in favour of the undesired β-oxygen elimination. With the synergistic regime in hand, various arenes and propargylic carbonates were efficiently coupled in only 20 minutes. In addition, metal impurities could be easily removed by implementing a scavenger column in flow. Remarkably, high levels of chemoselectivity and regioselectivity were obtained in only 1 minute, albeit at higher temperatures. Whereas, manganese(II)-catalyzed C–H activation offers a wide range of reactivity, due to the fact that the mechanistic pathways are presumably redox-neutral, arylation reactions are still elusive. Hence, in 2018 Ackermann reported on the directed C–H arylation of heteroarenes 93 with the aid of weakly-coordinating amides using the cost-effective MnCl2 as catalyst and neocuproine as ligand (Scheme 33b). The methodology features the use of a flow-setup in order to minimize safety concerns, since Grignard reagents were used. In addition, improved heat and mass transfer allowed the completion of the reaction in 100 min compared to the batch setup that required 16 h. Importantly, pyridines, pyrimidines and thiophenes were well tolerated showing the potential for medicinal chemistry.

Metallaelectro-catalyzed C–H activation

Transition metal-catalyzed C–H activation has emerged as a viable tool for molecular synthesis by reducing the formation of undesired byproducts. Yet, synthetically attractive oxidative C–H transformations pose significant limitations in terms of oxidant economy. The oxidative C–H activation primarily relies on stoichiometric organic oxidants including hypervalent iodine(III), copper(II), or silver(I) salts jeopardizing the overall sustainable nature of the C–H activation approach. While in few cases molecular oxygen has been used as terminal oxidant, this imposes additional restriction for its fixed redox potential and major safety hazard with flammable organic solvents. Since the pioneering studies of Kolbe and Shono, organic electro Synthesis has undergone a considerable recent renaissance. Particularly, the merger of transition metal catalysis with electrochemistry has enormous potential for the development of environmentally-benign diverse C–H functionalizations to form C–C or C–Het bonds using electrons as formal redox reagent for the re-oxidation of the metal centre. Thereby, super stoichiometric amounts of chemical oxidants can be avoided, thus enabling lower E-factors for resource economical synthesis. In this context, Amatore and Jutand achieved the electrochemical palladium(II)-catalyzed C–H bond olefination of N-acetylanilines 96 in AcOH in a divided cell set-up. Co-catalytic amounts of p-benzoquinone were needed as a redox mediator which can be regenerated at the anode to recycle the palladium(II) species in the catalytic cycle (Scheme 34a).

Palladium-catalyzed electrochemical oxidations with HX were accomplished by Kakiuchi. It is worth noting that in this protocol electricity was primarily responsible for the formation of the electrophilic Cl+ species (Scheme 34b). This protocol enhanced the atom-economy, since the lengthy and costly use of electrophilic halogenation reagents can be circumvented. Later, a related C–H perfluoroalkoxylation of phenyl pyridines 1 with perfluoroalkylated acids by Budnikova (Scheme 34c).

In a recent study, Kakiuchi used the bidentate chlorinated 8-aminoquinoline directing group for the electrochemical ortho-selective chlorination of electronically poor benzamides 22 for the synthesis of Vismodegib (Scheme 34d).

In subsequent studies, Mei developed for the first time palladium-catalyzed C(sp2)-H oxygenation of oxime derivatives 101 using anodic oxidation instead of stoichiometric amounts of toxic metal oxidants. The combination of catalytic amounts of Pd(OAc)2, carboxylic acids and their corresponding sodium salts gave optimal results again in a divided cell set-up (Scheme 35a). Other commonly employed chemical oxidants, such as PhI(OAc)2, t-BuOOAc, or NaNO3/O2, provided the desired product 102 in significantly lower yields, highlighting the unique potential of electricity as green terminal oxidant. Based on their initial findings, Mei reported the palladium-catalyzed oxidative C(sp2)-H methylation 105 and benzoylation 107 of oximes with methyl trifluoroborates 104 and benzoyl acetic acids 106 respectively (Scheme 35b and c).

All palladaelectrocatalytic C–H transformations require a strong N-coordination and a divided cell set up. However, organic electrochemical C–H activation is not limited to the strong nitrogen-centred directing groups. In recent years, ruthenium, rhodium and iridium catalysts have enabled the efficient electrooxidative C–H transformations.
with weakly coordinating substrates. Very recently, Ackermann reported on the first transition metal-catalyzed electrocatalytic organometallic C–H activation via weakly co-ordinating oxygen based carboxylic acids. Thus, an inexpensive ruthenium(II) catalyst in combination with NaOPiv, enabled the C–H/O–H functionalization of synthetically meaningful benzoic acids for alkyne annulations with high levels of efficacy, thereby avoiding the use of sacrificial metal oxidants, namely Cu(OAc)$_2$·H$_2$O (Scheme 36a).

Along the same lines, Ackermann devised an unprecedented rhodium(III)-catalyzed electrooxidative C–H/O–H alkenylation between benzoic acids and acrylates via weakly co-ordinating O-chelation with H$_2$ as the sole by-product (Scheme 36b and c).

Furthermore, the same group demonstrated the first electrocatalytic iridium-catalyzed C–H/O–H annulation of benzoic acids and acrylates. Catalytic amounts of p-benzoquinone were exploited as a redox catalyst to increase the turnover number (Scheme 36d). In a recent study Mei extended the iridium-catalyzed electrochemical vinylic C–H/O–H annulation with alkynes and synthetically useful acrylic acids to afford α-pyrones in good to excellent yields (Scheme 36e). The authors showed that under otherwise identical reaction conditions, commonly used chemical oxidants in combination with cobalt or ruthenium catalysis yielded poor regioselectivities with unsymmetrical internal alkenes, which demonstrates the advantage of this strategy over previously reported annulation protocols. In 2017, Ackermann reported on the first electrochemical C–H activation by Earth-abundant metal catalysis. Here, the authors employed Cp*-free Co(OAc)$_2$·4H$_2$O as an inexpensive precatalyst for the electrochemical C–H oxygenation of benzamides with alcohol (Scheme 36a). The reaction proceeded with a broad range of substrates and high levels of functional group tolerance at room temperature. In contrast, previous studies by Song and Niu required high reaction temperatures in the presence of stoichiometric amounts of silver(I) chemical oxidants. Intrigued by this report, the electrooxidative direct C–H amination of otherwise inert C–H bonds of aromatic benzamides was subsequently reported. Ackermann hence demonstrated for the use of biomass-derived, renewable solvent GVL in electrocatalysis for the amination of benzamides with secondary amines at a low temperature of 40 °C with H$_2$ as the stoichiometric by-product by cathodic reduction (Scheme 37b), representing a notable advancement towards sustainability, since previous amination protocols were largely restricted to the use of superstoichiometric chemical oxidant in organic solvent at higher temperature. Concurrently, Lei utilized 8-AQ as directing group for the C–H amination with cyclic secondary amines in acetonitrile media at an elevated reaction temperature of...
The Ackermann group realized an electrochemical annulation of C–H and N–H bond with alkynes using electricity as the sole oxidant (Scheme 37d). This environmentally-benign cobalt catalysis was performed in non-toxic H₂O as the reaction medium at room temperature. Benzamides, heterocycles and alkenes bearing pyridine N-oxide were found as amenable substrates for the electrochemical annulation to gain access to isoquinolone motifs. Later along these lines, Lei extended this approach towards the C–H/N–H annulation of ethylene and ethyne by amides (Scheme 37e). The electrochemical C–H/N–H annulation was not limited to terminal alkynes. Ackermann rationalized electro-oxidative internal alkyne annulation with electro-reductive removable benzhydrazide, demonstrating the unique potential of electricity (Scheme 37f). It is noteworthy that the authors employed an electroreductive hydrazone cleavage approach by the use of catalytic amounts of SmI₂ to cleave the benzhydrazides in a traceless manner. Considering the unique key structural motifs of allenes, Ackermann delineated the first direct use of allenes for electrochemical C–H functionalization. An unprecedented electrochemical cobalt-catalyzed C–H activation with allenes was realized with high regio- and site-selectivity under exceedingly mild reaction conditions in the absence of toxic chemical oxidants (Scheme 37g). Later, the oxidative C–H/N–H carbonylation with carbon monoxide as a readily available inexpensive C1 building block proved viable. In addition to carbon monoxide, Ackermann likewise showed the versatility of cobalt catalysis by using synthetically useful isocyanides (Scheme 37h). Mei and Ackermann disclosed C–H/N–H activations of hydrazides with 1,3-diynes using a robust earth-abundant cobalt catalyst to furnish the desired products in good to excellent yields (Scheme 37i). In a very recent study by the Ackermann group the potential of cobalt catalysts in an electrocatalytic C–H allylation of benzamides with nonactivated alkenes was disclosed in bio-mass derived green solvent GVL (Scheme 37j). In stark contrast, previous methods for C–H allylations were limited to the use of silver(I) chemical oxidants in organic solvents, jeopardizing the innate sustainability of C–H activation approach.

In a recent proof-of-concept study, Ackermann demonstrated the utilization of renewable solar and wind energy for electrocatalytic oxidative C–H activations. As a model study, the authors performed the cobalt electro-catalyzed C–H/N–H annulation of amide with alkyne in biomass derived glycerol as reaction media. The reaction was powered by either a
commercially available photovoltaic module or a commercially available wind turbine to drive to the desired transformation (Scheme 38).

With notable progress in Earth-abundant cobalt catalysis for sustainable electrocatalysis, there has been strong interest in further developing metallaelectro-catalyzed C–H transformations. Ackermann devised less toxic, cost-effective nickel complexes as efficient catalysts for the electrochemical C–H activations.

In 2018, Ackermann reported first electrochemical nickel-catalyzed C–H amination of benzamides 22 (Scheme 39a). The nickelaelectro-catalyzed chemo- and position-selective amination proceeded with a broad range of functional group tolerance. Along this line, the same group reported on nickelaelectro-oxidative C–H alkoxylations with challenging secondary alcohols 122 with H2 as the sole by product (Scheme 39b). It is worth noting that the chemical oxidants AgOAc, Cu(OAc)2, molecular oxygen, PhI(OAc)2, or K2S2O8 provided significantly lower yield of the desired product. Detailed mechanistic studies revealed an oxidation-induced reductive elimination at a nickel(III) center. Furthermore, the nickel-catalyzed C–H alkylation of benzamide 22 was achieved with broad functional group tolerance at room temperature in user-friendly undivided cell setup (Scheme 39c). In contrast, previous studies were largely limited to the use of strong bases and considerably higher reaction temperatures for nickel-catalyzed C–H alkylations.

Recently, Mei exploited copper catalysis for the electrochemical C–H aminations of electron-rich anilides 126 with electricity as terminal oxidant (Scheme 39d). In a related work, Nicholls and coworkers reported electro-oxidative amination of anilides with amines producing H2 as the sole byproduct. Concurrently, the Ackermann group disclosed cupraelectro-catalyzed C–H alkylnations of electron-rich and electron-deficient benzamides 22 for the synthesis of synthetically meaningful isoindolones 128 (Scheme 39e). Notably, the authors also demonstrated C–H/C–C functionalizations in a decarboxylative fashion with alkynyl carboxylic acids to afford the desired isoindolone 128 products (Scheme 39f).

Recently, iron catalysis has found considerable applications in molecular synthesis due to its low cost, low toxicity and as the most naturally abundant transition metal on Earth.

Scheme 38 Electrochemical C–H activation powered by renewable electricity.

Scheme 39 3d metal-catalyzed C–H activation.
Despite the recent attention iron-catalyzed C–H activation has gained, superstoichiometric use of corrosive, expensive chemical oxidants pose a major limitation to organometallic iron catalysis.156 To overcome these challenges, Ackermann reported the unprecedented ferraelectro-catalyzed C–H aylations at mild temperature using electricity as a green oxidant (Scheme 39g).157 Interestingly, the electro-oxidative aylations proceeded efficiently in the biomass-derived solvent 2-MeTHF. Ackermann enhanced the versatility of metallelectrocatalysis by the merger of electrocatalysis with environmentally-benign manganese catalysis. Non-toxic MnCl\textsubscript{2} was utilized for the electrochemical C–H arylation of amides 133 in the absence of any zinc additives (Scheme 39f).157

Despite significant advances of metalla-electrocatalysis, reports on enantioselective electrochemical transformations are scarce.158 Recently, the Ackermann group reported on the first asymmetric metalla-electro-catalyzed C–H activation.159 The authors disclosed the unprecedented use of transient directing groups for the asymmetric palladaelectro-catalyzed C–H olefinaions for the synthesis of enantiomERICALLY-enriched axially chiral biarylS and heterobiarylS 137 scaffolds under mild conditions (Scheme 40). Late-stage diversification of the products enabled the synthesis of highly enantio-enriched BINOLs, dicarboxylic acids and helicenes.

Conclusions

During the last decade transition metal-catalyzed C–H activation has emerged as a transformative platform for molecular syntheses. However, despite significant advances in C–H activations, the quest for sustainable and environmentally-benign strategies continues to be of central importance for resource economical C–H activations. Herein, we have highlighted key aspects for eco-friendly metal-catalyzed C–H activation (Scheme 41). The strategies discussed herein provide guidance towards more sustainable C–H transformations. Each approach, by itself, does not necessarily ensure ideal greenness, but their combination will lead to improved levels of sustainability. Namely, the following five key trends have been summarized: (1) the use of biomass-derived solvents is an important aspect to reduce the consumption of toxic organic solvents. This is particularly the case in industrial scale, since typical isolation methods, such as column chromatography generally employed in academic settings, are replaced by more sustainable methods. Particularly, in many cases similar trends have been observed for GVL compared to commonly employed polar aprotic solvents, such as DMF, DMA, and NMP. Similarly, biomass-derived 2-MeTHF is a safer alternative to flammable THF in many C–H activation processes. These empirical observations can encourage the practitioner to use these class of solvents more frequently. (2) The facile recyclability of the catalyst is another key aspect, potentially even for large scale applications. In recent years, heterogeneous catalysts have emerged for various C–C and C–heteroatom bond forming reactions with efficient recycling of the catalysts. (3) Furthermore, the merger of transition metal catalysis with photocatalysis has considerably enhanced the reactivity under exceedingly mild conditions. (4) The recent use of flow technologies for metal-catalyzed C–H activation reactions has shown enormous potential for the straightforward scale-up with safer setups and shorter reaction times. (5) Last but not least, metal-electrocatalysis avoids the use of toxic chemical oxidants or metal promoters by electricity as traceless inexpensive oxidant, representing a significant advance for resource-economical C–H activations. Very recently, metallelectrocatalysis has been realized with 3d metal catalysts as well as in green reaction medium, showcasing the high sustainability of the process. In view of current metal-catalyzed C–H activation portfolio, it is evident that the exponential growth for sustainable strategies in organic synthesis has gained considerable attention for resource economical transformations. Given the topical interest in resource-economical C–H activation, future exciting advances are expected in this rapidly evolving research arena, including, enantioselective heterogeneous catalysis and Earth-abundant electrocatalysis.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

Generous support by the DFG (Gottfried-Wilhelm-Leibniz award), the DAAD (fellowship to U. D.) and the Onassis Foundation (fellowship to N. K.) is gratefully acknowledged.
Notes and references

This journal is © the Partner Organisations 2021

26 S. L. Yedage and B. M. Bhanage, Ru(II)/PEG-400 as a highly efficient and recyclable catalytic media for annulation and olefination reactions via C–H bond activation, Green Chem., 2016, 18, 5635–5642.

This journal is © the Partner Organisations 2021

44 J. A. Leitch, P. B. Wilson, C. L. McMullin, M. F. Mahon, Y. Bhonoah, I. H. Williams and C. G. Frost, Ruthenium (II)-Catalyzed C–H Functionalization Using the Oxazolidinone Heterocycle as a Weakly Coordinating

Organic Chemistry Frontiers
Review

73 (a) W. Liang, T. Zhang, Y. Liu, Y. Huang, Z. Liu, Y. Liu, B. Yang, X. Zhou and J. Zhang, Polydimethylsiloxane

131 P. Gandepan, L. H. Finger, T. H. Meyer and L. Ackermann, 3d metallaelectrocatalysis for resource

155 (a) A. Fürstner, Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base

