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Nitrogen dopant induced highly selective CO2

reduction over lotus-leaf shaped ZnO nanorods†

Fang Lü,‡a Haihong Bao,‡a Fei He,‡b Gaocan Qi, *a Jiaqiang Sun, c

Shusheng Zhang, d Longchao Zhuo,e Hui Yang,*a Guangzhi Hu, f Jun Luo a

and Xijun Liu *ag

Heteroatom doping offers great promise for boosting the electrocatalytic activity for the CO2 reduction

reaction (CO2RR). Herein, nitrogen-doped ZnO nanorods with a lotus-leaf shape were constructed as

the active electrocatalysts, demonstrating enhanced CO2RR performance with a maximum CO faradaic

efficiency of 76% at �0.7 V (vs. reversible hydrogen electrode, RHE) and excellent durable activity of

more than 30 h. Density functional calculations reveal that doping nitrogen in ZnO induced the

reduction of free-energy barrier for the key intermediate (*COOH) formation and the enhancement of

electron exchange, thereby leading to a notable improvement in the CO2RR activity over these low-cost

N-doped ZnO nanorods.

Introduction

The greenhouse effect due to CO2 has seriously influenced the
carbon cycle in nature and posed a severe threat to human
life.1,2 Electrocatalytic CO2 reduction reaction (CO2RR) is a
promising technology that can convert CO2 to valuable feed-
stocks and chemical fuels.3–8 Thus far, great efforts have been
devoted to searching for suitable materials for CO2 electroreduc-
tion. Among these materials, transition metal electrocatalysts such
as Co,9 Ni,10 Bi,11 Cu,12,13 Ag14 and Zn15,16 are ideal candidates for
converting CO2 to chemical fuels because their d bands contain
valence electrons close to the Fermi level,17 thus beneficial for
overcoming the activation barriers of the reduction reaction.

In the past decades, earth-abundant and environmentally
friendly Zn-based materials have attracted much attention as
CO2RR electrocatalysts due to their high adsorption affinity
towards CO2 molecules.18,19 However, bulk Zn catalysts require
large overpotentials with low reaction activity, due to fewer
active sites.20 To enhance the catalytic activity, significant
efforts have focused on the structural design and morphology
of Zn-based catalysts, including dendritic Zn,21 hexagonal Zn,22

nanoporous ZnO23 and ZnO nanosheets.24 Previous studies
have confirmed heteroatom doping (such as B, N, P and S)
to be an effective strategy for increasing the electrocatalytic
activity. The introduction of dopants not only induces a great
change in the electronic structure and enhances the conduc-
tivity, but also reduces the activation energy barrier of the
electrocatalytic reaction.25–27 Recently, we have developed a
facile approach to dope nitrogen into Ti3C2 MXene nanosheets
for electrocatalytic CO2 reduction to produce CO.28

In this study, nitrogen-doped ZnO nanorods with lotus-leaf
shape were fabricated as active electrocatalysts for CO2 conver-
sion using a facile hydrothermal growth and subsequent
plasma treatment process. Compared with undoped ones,
N-doped ZnO nanorods exhibited a significant improvement
in CO generation with a maximum faradaic efficiency (FECO) of
76% at �0.7 V (vs. reversible hydrogen electrode, RHE) and
excellent durable activity of more than 30 h. Theoretical calcu-
lations confirm that the introduction of nitrogen dopants
is beneficial for reducing the activation barrier for the key
intermediate (*COOH) formation and enhancing the electron
exchange between N dopants and coordinated Zn atoms, resulting
in an outstanding CO2RR performance.
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Results and discussion

The N-doped ZnO nanorods were fabricated according to the
previously reported method29 and the schematic illustration is
shown in Fig. 1a. ZnO nanorods were first grown on ITO con-
ductive glass by the hydrothermal method, and the morphology of
ZnO looks like lotus leaves as observed by scanning electron
microscopy (SEM) (Fig. S1, ESI†). The N-doped ZnO nanorods
were obtained by following the plasma treatment process, and
these nanorods showed a similar morphology to that of lotus
leaves in the undoped ones, represented in Fig. 1b (Fig. S2, ESI†)
and transmission electron microscopy (TEM) (Fig. 1c) images. The
corresponding high-resolution TEM (HRTEM) image (Fig. 1d)
exhibits a lattice fringe distance of 0.26 nm, which corresponds
to the (002) plane spacing of ZnO material. Additionally,
N elements were distributed uniformly in the ZnO nanorods
according to elemental mapping images from energy-dispersive
X-ray spectroscopy (EDS) (Fig. 1e), and the content of nitrogen
dopants in these N-doped ZnO nanorods was about 0.52 wt%.

The crystallographic structure was investigated by XRD
patterns, (Fig. 2a) and all diffraction peaks for undoped and
N-doped ZnO nanorods were approximately identical with no
peak shifts, corresponding to the JCPDS files #75-1526 of ZnO.
Nevertheless, the change in the surface chemical structure of
N-doped ZnO nanorods was also measured by X-ray photoelectron

spectroscopy (XPS) and is shown in Fig. 2. The binding energies
of Zn 2p3/2 and Zn 2p1/2 peaks for N-doped ZnO nanorods are
1022.1 eV and 1045.1 eV, respectively. Obviously, the binding
energy for Zn2+ showed a right shift of B0.2 eV for N-doped ZnO
nanorods compared to the undoped ones (Fig. 2b). This
indicates that a part of electrons have been transferred away
from Zn, which may be caused by the introduction of N after the
plasma treatment. The O 1s spectrum shown in Fig. 2c exhibits a
very broad peak and can be deconvoluted into three peaks at
530.6 eV, 531.6 eV and 532.6 eV, which were assigned to O2� of
lattice oxygen, deficient oxygen and chemically adsorbed oxygen,
respectively.30 The binding energy of N 1s peak in N-doped ZnO
(Fig. 2d) also can be deconvoluted into two peaks at 397.6 eV and
399.4 eV, which were assigned to Zn–N31 and O–N32 species
(B400 eV), indicating that N atoms have been successfully
doped into ZnO nanorods.

The electrocatalytic CO2 performance of the electrodes based
on lotus leaf-shaped ZnO and N-doped ZnO nanorods were
evaluated in a H-cell separated by a Nafion-115 proton exchange
membrane with CO2-saturated 0.5 M KHCO3 (pH = 7.2),
as previously reported by our group.33 The linear sweep voltam-
metry (LSV) curves were obtained using 90% iR-offset to com-
pensate the drop of ohmic potential caused by electrolyte
resistance. All potentials were reported with respect to the
RHE, and each current density was normalized by the geometric
area of the electrode. From LSV curves (Fig. S3 and S4, ESI†), the
N-doped ZnO electrode showed lower overpotential and higher
current density under CO2 atmosphere compared to N2 atmo-
sphere, indicating better electrocatalytic activity for CO2RR.
However, the undoped ZnO electrode showed lower current
density under CO2 atmosphere compared to N2 (Ar) atmosphere,
indicating better electrocatalytic activity for hydrogen evolution
reaction. The N-doped ZnO electrode (Fig. 3a) exhibited a
reduction current density of 5.6 mA cm�2 at �0.7 V vs. RHE;
this value is 2.4 times greater than that of the undoped one,

Fig. 1 (a) Schematic illustration of the preparation, (b) SEM image, (c) TEM
image, (d) high-magnification TEM image, and (e) EDS elemental mapping
images of N-doped ZnO nanorods.

Fig. 2 The structural characterization of ZnO and N-doped ZnO nanorods.
(a) XRD patterns, (b) XPS spectra of Zn 2p, XPS fitting spectra of (c) O 1s and
(d) N 1s of N-doped ZnO.
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indicating a higher catalytic activity over the N-doped ZnO
nanorods as compared to the undoped counterpart.

The products were quantitatively analyzed by gas chromato-
graphy (GC) and 1H nuclear magnetic resonance (NMR) spectro-
metry. Consequently, only CO, H2 and CH4 were detected and no
liquid products were observed. The NMR spectrum of the N-
doped ZnO electrode for CO2RR recorded at �0.7 V vs. RHE is
shown in Fig. S5 (ESI†). The dependence of faradaic efficiency (FE)
for different products on the applied potentials for both electro-
des is shown in Fig. 3b. At a low applied potential of �0.3 V vs.
RHE, low FE values for CO (11 � 4%) and CH4 (7 � 4%)
production were observed over the N-doped ZnO electrode, while
H2 (70 � 4%) was the dominant product. With further increase in
the applied potential, a maximum FECO of 76 � 4% was achieved
at �0.7 V vs. RHE, as well as a small amount of CH4 (B8%) and
H2 (B14%) were detected. For observed products, the sum of FEs
was above 90.0% for the syngas with a ratio of CO/H2 of 5.4, and
also generates controllable ratios of syngas with varying potential
during the CO2RR. For the reference ZnO electrode, the hydrogen
evolution reaction (HER) dominated the entire potential in the
range from �0.3 to �0.8 V vs. RHE, and it showed a maximum
FECO of 28% at�0.7 V vs. RHE, indicating low activity for reducing
CO2 to CO.

The long-term stability of electrocatalysts is another crucial
indicator in evaluating the CO2 reduction performance. The current
density of N-doped ZnO electrode was relatively stable with a value
of 5.6 mA cm�2 at �0.7 V vs. RHE even after 30 h (Fig. 3c). Notably,
the corresponding FE for CO production was constantly main-
tained to be greater than 75% for a duration of 30 h. Meanwhile,
the structure and morphology of the N-doped ZnO after CO2RR
are shown in Fig. S6 (ESI†). Also, the corresponding Nyquist plot

after the long-term electrolysis of the N-doped ZnO electrode has
been obtained and is shown in Fig. S7 (ESI†). After long-term
electrolysis, the plot exhibited a little larger semicircle than
before CO2 reduction, which indicates a higher interfacial
charge-transfer resistance and a little decrease in the conduc-
tivity. The observed results showed that the N-doped ZnO
nanorods showed a good structural and electrochemical
stability.

The electrochemically active surface area of the electrodes
was determined by double-layer capacitance (Cdl) to investigate
the underlying kinetic mechanism for the enhanced CO2RR
performance. The measured Cdl of the N-doped ZnO nanorods
was 57.3 mF cm�2, approximately double that of the undoped
counterpart (28.6 mF cm�2), which confirms an increased
number of catalytically active sites because of N doping and
subsequently improved electroreduction activity. Furthermore,
the volumetric CO2 adsorption isotherms showed that N-doped
ZnO nanorods exhibited much higher CO2 adsorption capacity
(10.3 cm3 g�1) compared to that of the undoped counterpart,
confirming that N-doped ZnO nanorods have much more
abundant adsorption sites for CO2 on the surface due to the
doping of nitrogen. The charge-transfer resistance values at the
interfaces for the two electrodes were obtained by electro-
chemical impedance spectroscopy (EIS). The Nyquist plot of
N-doped ZnO nanorods exhibited a much smaller semicircle
and a steeper slope, which indicated a lower interfacial charge-
transfer resistance and better conductivity, suggesting a much
faster faradaic process. The Tafel plots (Fig. S8, ESI†) show that
in the linear Tafel region, N-doped ZnO nanorods exhibited a
lower Tafel slope (169 mV dec�1) than undoped ZnO nanorods
(192 mV dec�1), indicating that the single-electron transfer to

Fig. 3 The CO2RR performance of ZnO and N-doped ZnO nanorods. (a) LSV curves, (b) FEs of CO, CH4 and H2 at various applied potentials, (c) stability
test for N-doped ZnO nanorods at �0.7 V vs. RHE and the FE variation for CO production, (d) charging current density differences j plotted against the
scan rates, (e) CO2 adsorption isotherms, and (f) Nyquist plots of EIS.
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CO2 is the rate-determining step for CO2 reduction to CO34 on
the two ZnO electrodes, and N-doping of ZnO improved the CO2

reduction thermodynamic kinetics, which is consistent with
the LSV analysis (Fig. 3a).

To further provide a theoretical insight into the underlying
mechanism, we performed DFT calculations to calculate the
density of states, differential charge density and the Gibbs free
energy of the two nanorods. The projected density of states
(PDOS) of Zn d-orbitals in the two nanorods are presented in
Fig. 4a. N-Doped ZnO exhibits a significant increase in the
density of states near the Fermi level compared to the undoped
counterpart, which can enhance the electron exchange with the
reactants and intermediates during the reaction of Zn atoms,
thus improving the reactivity of CO2 electroreduction.35 The
differential charge density of O–N–Zn in N-doped ZnO (Fig. 4b)
revealed that the charge between N and active Zn atoms was
accumulated, and the electron exchange between the N dopants
and coordinated Zn atoms was much easier than that between
the O and Zn atoms.

On the basis of above results and Tafel values, a possible
mechanism for CO2 electroreduction to CO over N-doped ZnO
(Fig. 4c) was proposed, where the overall path proceeds as
CO2 - *CO2 - *COOH - *CO - CO, which is in agreement
with the previous reports.19,36 Initially, a CO2 molecule gets
adsorbed on the N site of ZnO surface and then generates *CO2.
After that, the adsorbed *CO2 couples with a proton from the
electrolyte to form *COOH intermediate, and this step is
identified as the rate-limiting step (RLS). Finally, the *COOH
intermediate leaves off the H+ + e� reactants to form H2O
product and produce CO. DFT calculations were performed to
gain the reaction free energy profile (Fig. 4d) and to analyze the
kinetics of elementary steps in the CO2RR catalyzed by these
two samples. It can be clearly seen that the activation energy
barrier of the *COOH intermediate for N-doped ZnO (0.31 eV) is

much lower than that of undoped ZnO (0.49 eV). Owing to the
difference of 0.18 eV in activation barrier, the *COOH inter-
mediate formation is much easier over N-doped ZnO and
further promotes CO formation at lower overpotentials. There-
fore, the reduction of the free-energy barrier and the enhanced
electron exchange induced by N dopants provide superior
CO2RR performance for N-doped ZnO nanorods with a lotus-
leaf shape.

Conclusion

In summary, N-doped ZnO nanorods with a lotus-leaf shape were
prepared by a simple hydrothermal synthesis and plasma treat-
ment method. It exhibited an enhanced CO2RR performance with
a maximum CO faradaic efficiency of 76% at �0.7 V vs. RHE.
Further, more than 30 h durability test confirmed its excellent
stability for the CO2RR. Theoretical calculations revealed that the
nitrogen dopants enhance the electron exchange between the N
dopants and coordinated Zn atoms, which induces the reduction
of free-energy barriers and thus facilitates the formation of the
intermediate (*COOH). Finally, these N-doped ZnO nanorods with
a lotus-leaf shape show superb CO2RR activity.
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