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A naphthalene diimide side-chain polymer as an
electron-extraction layer for stable perovskite
solar cells†
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Sebastian O. Furer, bc Marie-Hélène Tremblay,a Stephen Barlow, a

Udo Bach bc and Seth R. Marder *a

Poly(N-(5-(5-norbornene-2-carbonyl)oxy)pentyl)-N0-n-hexyl-naphthalene-1,8:4,5-bis(dicarboximide) has been

synthesized by esterification of (N-(5-hydroxypentyl)-N0-n-hexyl-naphthalene-1,8:4,5-bis(dicarboximide)) with

exo-5-norbornene-2-carboxylic acid, and has been polymerized using the first-generation Grubbs

initiator. This side-chain polymer exhibits good transparency throughout the visible (absorption onset at

ca. 400 nm), good solubility in common low- and medium-polarity organic solvents, good resistance

to dimethylformamide, and appropriate electron affinity for use as an electron-extraction layer in lead-

halide perovskite solar cells. The performance of this polymer in n-i-p perovskite solar cells was

compared to that of several small-molecule naphthalene-1,8:4,5-bis(dicarboximide) derivatives and

of SnO2. Solar cells using the polymer exhibited open-circuit voltages of up to 1.02 V, short-

circuit currents of over 21 mA cm�2, and power conversion efficiencies (PCE) reaching 14% which

stabilize at 13.8% upon 90 s of illumination. Meanwhile control SnO2 devices exhibited a PCE of

ca. 16%, and small-molecule devices gave PCE values of less than 10%. The devices employing the

polymer exhibited improved long-term stability relative to the SnO2 control devices under continuous

illumination.

Introduction

Lead-halide perovskite solar cells (PSCs) have received increas-
ing attention since their debut in 2009.1,2 In recent years,
further optimizations of the various layers and interfaces have
allowed the emergence of PSCs with efficiencies exceeding
25%.3 Hole- and electron-transport materials (HTMs and ETMs,
respectively) in PSCs serve not only to transport charges, but
also to improve the stability of the cells and to reduce charge
recombination. A variety of organic and inorganic ETMs have
been incorporated into n-i-p (negative-intrinsic-positive) and
p-i-n (positive-intrinsic-negative) PSCs.4–7

The ‘‘regular’’ (n-i-p) architecture for PSCs requires the
ETM to be deposited prior to the perovskite, and, therefore,
for solution-processed cells, to be insoluble in the perovskite

precursor solution. Insoluble metal oxides (e.g., SnO2, TiO2)
offer one possible solution.8–10 Although many approaches
require high-temperature (often 450–500 1C for TiO2

8,9) sintering
subsequent to casting the precursors from solution, limiting
compatibility with flexible substrates, recently room-temperature
methods for the deposition of efficient SnO2 layers have been
reported.11 Nevertheless, these oxides can possess trap states
that hinder charge extraction and TiO2 can even act as a
photocatalyst. There is also considerable interest in organic
ETMs as alternatives that can be processed at low temperature,
while also exhibiting good charge-transport abilities and
transparency.12–15 These include both vacuum-processable
and solution-processed materials;16 in some cases solution-
processable ETMs have been crosslinked subsequent to
deposition to prevent their dissolution during subsequent
perovskite deposition.17,18 Although fullerenes have been
widely used, non-fullerene electron acceptors with similar
reduction potentials may be advantageous in terms of transpar-
ency, cost, and/or tunability of reduction potential. Rylene
diimides have attracted attention as ETMs for n-i-p cells. These
include perylene diimides, such as B (Fig. 1), and related
thermally evaporable small molecules,19 solution-processable
small molecules,20 and solution-processable polymers.21
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Naphthalene diimide (NDI) derivatives (such as D and E, Fig. 1)
have been used in p-i-n devices,22–25 but there are few reports of
their use in n-i-p devices. However, in one study an insoluble
NDI (A, Fig. 1) was generated via high-annealing treatment of
soluble solution-cast precursor for use in n-i-p devices.26 A
coronene diimide small molecule (C, Fig. 1) has also been
used.27 Unlike their perylene and coronene counterparts,
naphthalene diimides (NDI) can exhibit minimal absorption
within the visible spectrum.

Since polymeric HTMs such as PEDOT:PSS, P3HT, PTAA,
and polyTPD28–31 have been reported to give impressive perfor-
mances in PSCs (PCE 4 19%), it may be beneficial to examine

electron-transporting polymers that are transparent in the
visible, with appropriate electron affinities, electron mobility,
solvent resistance, and solution processability. Moreover, such
polymers may facilitate a ‘‘polymer sandwich’’ architecture in
which both transport materials are polymeric, and which may
be particularly useful for flexible devices.

In this work, we report a new NDI side-chain polymer
(Fig. 1), which is transparent, solution processable, and ther-
mally stable, and which can be used to fabricate n-i-p devices
with efficiencies up to 14%. The utility of the polymer is
illustrated by comparison to other NDI small molecules as well
as SnO2 as a reference.

Fig. 1 Examples of rylene diimide ETMs reported in the literature (A–E) in the context of PSCs and NDI-based ETMs used in this work (1–4).

Scheme 1 Synthesis of side chain NDI polymer (NDI-1)
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Results and discussion
Synthesis

A naphthalene diimide polymer may help reduce aggregation
and crystallization and, thus aid the formation of uniform
continuous (i.e. pinhole free) thin films with reduced shunt
paths between the transparent conducting oxide (TCO) and the
perovskite. Although conjugated NDI polymers are well estab-
lished and have been used in p-i-n cells, many absorb strongly
throughout the visible spectrum, competing with perovskite
layer light absorption.32 Accordingly, we chose to synthesize a
side-chain polymer, which was expected to be colorless (NDI-1,
Fig. 1). The polymer synthesis (Scheme 1) involves four steps,
the first of which is an asymmetric imidization of the commer-
cially available naphthalene tetracarboxy-1,8:4,5-dianhydride. The
second step involves the imidization of N-hexyl-naphthalene-1,8-
dicarboximide-4,5-di(carboxylic acid) with 5-amino-1-pentanol
to afford the asymmetric hydroxyl-functionalized naphthalene
diimide. Thirdly, the monomer is produced by esterification
using exo-5-norbornenecarboxylic acid. Lastly, the regiorandom
polymer NDI-1 (Mn = 13.3 kDa, Ð = 1.3) is produced via ring-
opening metathesis polymerization using the Grubbs first-
generation initiator, Ru(QCHPh)(PCy3)2Cl2 (Cy = cyclohexyl)
(Fig. S1 and S2, ESI†). Several small-molecule NDI molecules
(2–4) were synthesized for comparison according to published
procedures,33 and were chosen to exhibit a range of reduction
potentials.

Characterization of the ETMs

Fig. 2A shows absorption spectra for NDI-1 in solution and in
films, while Table 1 gives absorption maxima for NDIs 1–4.
Both solution and films of the NDI derivatives exhibit absorp-
tions onsets at wavelengths shorter than 400 nm. Although
scattering is evident for films in the visible range, the trans-
mittance for a 30 nm-thick film still exceeds 80% through
the visible region (400–800 nm) (Fig. S7, ESI†). The electron
affinities of ETMs are critical for efficient charge extraction
from the perovskite; the reduction potentials were estimated
from cyclic voltammetry (Fig. S3, ESI†, Table 1) and fall into a
similar range to other molecular materials successfully used as
ETMs in PSCs (such as C60 (�0.98 V), PCBM (�1.1 V), and
N2200 (�1.1 V)).32,34

The four NDI materials are highly soluble in common organic
solvents (chloroform, dichloromethane, toluene), suggesting that
they could be readily processed onto perovskite films for p-i-n
devices without significant damage to the active layer. They
exhibit varying resistance to N,N-dimethylformamide and
dimethyl sulfoxide (DMF and DMSO respectively, Fig. S9 and
S10, ESI†). The DMF resistance of NDI-1 is particularly promising
for the fabrication of n-i-p device architectures; the small mole-
cules are more easily removed by this solvent, although they are
expected to less soluble in concentrated solutions of perovskite
precursors and when protected by the alumina interlayer. Ther-
mogravimetric analysis (TGA) and differential scanning calorime-
try (DSC) show that the naphthalene diimides examined here
exhibit decomposition temperatures above 250 1C and no thermal
transitions below 150 1C, which is compatible with temperatures
needed for subsequent deposition and annealing of many hybrid
perovskites used in PSCs (Fig. 2B and C).

Device architecture and performance

The materials were incorporated into n-i-p devices (Fig. 3).
The NDI layers were spin-coated from chlorobenzene on
fluorinated-tin-oxide (FTO) coated glass (optimally performing
layers having thicknesses of ca. 10 nm). A thin mesoporous
layer of alumina nanoparticles was found to be very helpful in
achieving subsequent good coating of the ETM by the perovs-
kite. Although primarily used in the present case to enhance
the wettability of the perovskite solution on the NDI films, the
alumina nanoparticles may play other roles, as discussed in the
literature.35–37 For example, at least when used between oxide
transport materials and perovskites, a mesoporous alumina

Fig. 2 Absorption spectra of NDI-1 in solution and thin film (A), TGA (B) and DSC (C) plots of NDI molecules used in this work. TGA and DSC were
performed under nitrogen gas at 10 1C min�1 scan rate.

Table 1 Optical and thermal properties of NDI material used

Compound lmax
a (nm) Eg

b (eV) Tm (1C) Td
c (1C) E1/2 red

d (V)

NDI-1 381 3.1 — 384 �1.11
NDI-2 376 3.1 180 328 �1.1433

NDI-3 376 3.2 — 274 �0.8833

NDI-4 379 3.2 195 305 �0.9633

a UV-vis is measured in chlorobenzene. b Optical bandgap is deter-
mined from absorption edge. c DSC/TGA is done under nitrogen gas
at 10 1C min�1 scan rate, and Td is determined at 95% mass. d E1/2 red

vs. FeCp2
+/0 (CH2Cl2/0.1 M NBu4PF6); data for NDI-1 were acquired

using the corresponding monomer.
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layer leads to improved contact between the transport and
active layers,36 and in some cases the use of alumina leads to
improved stability for the perovskite.37 They may also help
protect the ETM from dissolution in the perovskite casting
solvent (primarily DMF). Fig. 3A schematically shows the struc-
ture of the resulting solar cell incorporating the insulating
alumina scaffold.38 Our control devices employed a SnO2 ETL
layer instead of the NDI-based material. A mixed-cation per-
ovskite Cs0.05FA0.79MA0.16PbI2.49Br0.51 (FA = formamidinium;
MA = methylammonium) was then deposited via the solvent-
quenching approach using chlorobenzene as an anti-solvent.39–42

Spiro-OMeTAD, with lithium bis(trifluoromethanesulfonyl)imide
(LiTFSI) and 4-tert-butylpyridine (tBP) as additives, was then
deposited on top as the hole transport layer, followed by evapor-
ating 80 nm layer of gold as a counter electrode.

Fig. 3B–F show that optimized devices using the polymer
were superior to all optimized devices incorporating NDI
small molecules, the power conversion efficiencies following

the trend NID-1 c NDI-2 4 NDI-4 4 NDI-3, with the small
molecules all exhibiting lower open-circuit voltage (VOC),
short-circuit current density ( JSC), and fill factor (FF) than the
polymer. The photovoltaic parameters of the champion and
average devices incorporating the small molecules (NDI-2,
NDI-3, NDI-4), the polymer (NDI-1), and SnO2 are summarized
in Table 2.

Devices with NDI-1 exhibited comparable VOC and JSC to
those using tin oxide; however, they fell short in terms of FF
and consequently the power conversion efficiency (PCE, Fig. 3).
This might be due to higher series resistance of the devices with
a polymer ETL, as the conductivity of SnO2 is likely higher
than that of the undoped polymer. Nevertheless, the devices
still exhibit a maximum power conversion efficiency of 14%.
Both devices with organic and SnO2 ETMs suffered from non-
negligible hysteresis, likely due to the Spiro-OMeTAD/additive
HTM. However, a maximum power point tracking test showed
a maximum efficiency of 13.8% after 90 s of illumination,

Fig. 3 Schematic representation of device architecture, white dots in active layer represent alumina nanoparticles (A). Reverse Scan J–V plots of
optimized devices (B). Box plots of open-circuit voltage (C), short-circuit current (D), fill factor (E), and power conversion efficiency (F) of optimized
devices.

Table 2 Photovoltaic parameters of champion and average devices of the various materials employed as electron transport layer in the n-i-p devices
studied

Material VOC (V) JSC (mA cm�2) Fill factor (%) PCE (%)

SnO2 Champion 1.03 21.0 74 15.6
Average 0.99 (�0.02) 20.9 (�0.4) 73 (�1.3) 15.0 (�0.5)

NDI-1 Champion 1.02 21.5 65 14.0
Average 0.98 (�0.02) 21.1 (�0.2) 62 (�2.1) 12.8 (�0.6)

NDI-2 Champion 0.98 18.3 56 9.8
Average 0.94 (�0.04) 15.2 (�2.6) 47 (�6) 6.7 (�1.6)

NDI-3 Champion 0.91 11.6 43 4.5
Average 0.79 (�0.06) 11.0 (�2.0) 41 (�3.7) 3.6 (�0.7)

NDI-4 Champion 0.84 14.8 46 5.5
Average 0.79 (�0.02) 12.6 (�1.8) 42 (�2.4) 4.3 (�0.9)
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representing only a 0.2% decrease from the reverse scan
efficiency (Fig. 4A). Forward scan curves are presented in
Fig. S5 (ESI†), and an example of maximum power point tracking
(MPPT) evolution over time is given in Fig. S8 (ESI†). Fig. 4B shows
external quantum efficiency and integrated current data in order
to further characterize the efficiency of the perovskite absorber in
the presence of NDI-1. Photoluminescence quenching of the
perovskite was also measured and shown in the ESI.†

Long-term stability

Both NDI-1 and SnO2 based devices were stable for multiple
months when stored in a dry box (relative humidity o 5%) in
the dark, showing no changes in performance and indicating
a high shelf life for the devices. To compare the stability
differences between devices employing NDI-1 to their tin oxide
counterparts, we encapsulated (see Experimental section) full
devices and aged them in an environmental chamber at open
circuit voltage at 60 1C, in air. The study was conducted over
290 hours where the tin oxide device efficiency degraded to
o10% of the initial value, whereas that of the devices incor-
porating the NDI-1 polymer retained ca. 35% of the original
performance, the degradation being dominated by a loss of FF.
Fig. 5 shows the evolution of PCE over aging time for champion

and median devices. Although LiTFSI/tBP-doped Spiro-OMeTAD
is the common HTM in both devices and has known instabilities
that may ultimately limit the stability of the best devices here,43,44

those devices incorporating NDI-1 are more stable over the period
of the study.

Conclusions

We demonstrate in this study a side chain NDI polymer that is
superior in performance to several NDI small molecules in n-i-p
PSCs. We achieved a champion device with 14% PCE using
a undoped films of NDI-1. These devices exhibited greater
stability than SnO2-based control devices when aged under 1
sun conditions for almost 300 hours and 60 1C. This provides
a foundation for designing other possible naphthalene dii-
mides or other moieties to be used as dopant-free solution-
processable electron-transport materials to replace metal oxide
ETMs. This low temperature processing route open new ave-
nues for polymer-based flexible solar cells and the optical
transparency for incorporation in tandem devices.

Materials and methods

Commercially available precursors as well as the solvents were
purchased form Sigma Aldrich and used without modifications.
Detailed synthetic procedures and characterization data are
presented in the ESI.†

FTO coated glass slides (1 cm2) were cleaned by sonication
in 2% Hellmanax in water, followed by deionized water, and
ethanol for 15 min each. The slides were then dried and plasma
etched for 10 min and used immediately. Organic ETM solu-
tions were prepared by making 1.5 mg mL�1 solutions in
chlorobenzene,45 which were spun at 2000 rpm for 30 s in air
yielding layers of 10 nm thickness. When tin oxide was used as
an ETM the layer was prepared by spin coating 10 mg mL�1

solution in isopropyl alcohol of SnCl2�5H2O at 2000 rpm for 20 s

Fig. 4 (A) Box plots of the power density of NDI-1 and SnO2 devices and
(B) and external quantum efficiency (EQE) and integrated short-circuit
current plots for the NDI-1 devices.

Fig. 5 Long term stability of devices employing SnO2 and NDI-1.
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followed by annealing at 180 1C for 1 h. Plasma treatment for
1 min was done before SnO2 nanoparticles were deposited by
diluting commercially available precursor in 1 : 10 DI water
then spin coating it at 2000 rpm for 20 s followed by annealing
at 180 1C for 1 h. Alumina nanoparticles (o50 nm)
were dispersed in isopropanol in 1 : 150 v/v ratio. 100 mL of
this dispersion was then dynamically spun onto the ETL at
3000 rpm for 30 s and then dried at 60 1C for 1 min. The
perovskite precursor was prepared by mixing 507.1 mg of PbI2,
73.4 mg PbBr2, 22.4 mg MABr, 172 mg FAI, with 41 mL of 1.5 M
CsI solution (in DMSO) and 850 mL of a pre-mixed 4 : 1 DMF :
DMSO. The perovskite was then spun using a two-step program
by covering the film with 50 mL of the perovskite solution, and
spinning that at 1000 rpm for 10 seconds, followed by 6000 rpm
for 20 s. When 5 s were left to the end of the program, 260 mL
of chlorobenzene was dropped to solvent quench the film.
The films were rapidly moved to a hot hotplate to be annealed
at 100 1C in the dark for 1 h where they turned black immedi-
ately. The Spiro-OMeTAD layer was prepared by preparing a
72 mg mL�1 solution of Spiro-OMeTAD in chlorobenzene
followed by the addition of a 17.5 mL LiTFSI solution (52 mg mL�1

concentration in acetonitrile) and 28.8 mL of tBP. The mixed solution
was spun dynamically at 2000 rpm for 30 s and devices were exposed
to dry air in the dark for doping to take place overnight. Gold
electrodes were evaporated using a metal sputter, using a
shadow mask to fix the area at 0.16 cm2, and evaporated at
0.1 nm s�1 for the first 10 nm and 1 nm s�1 afterwards.

Devices were measured under 1 sun illumination using a
custom-built 16-device set-up in which the devices were light
soaked for at least 90 s before measurements to ensure stabili-
zation where the aperture size was fixed at 0.16 cm2. Encapsu-
lation was achieved by dispensing UV-curable epoxy resin from
Nagase (XNR5516Z-B1) onto the edges of a cover glass with a
recess in the middle. The cover glass was then gently pressed
on to the solar cell devices and were illuminated from the cover
glass side under UV light.

UV-vis-NIR measurements were done on a Cary 5000 spectro-
photometer. PL spectra were done on a Horiba instrument.
EQE data were recorded through a Keithley 2400 Source Meter
under 300 W xenon lamp irradiation with an Oriel Corner-stone
2601

4 m monochromator. The monochromatic photon flux
was quantified through a calibrated silicon cell (Peccell
Technologies).46 DSC and TGA experiments were performed
on Mettler-Toledo TA instruments under nitrogen gas atmo-
sphere and at a scan rate of 10 1C min�1. Gel Premeation
Chromatography (GPC) for polymer samples were performed
using a Tosoh EcoSEC HLC 8320GPC system with TSKgel
SuperHZ-L columns eluting CHCl3 containing 0.25% triethyla-
mine at a flow rate of 0.45 mL min�1. All number-average
molecular weights and dispersities were calculated from refractive
index chromatograms using PStQuick Mp-M polystyrene standards.
Electrochemical measurements were carried out under nitro-
gen atmosphere with 0.1 M tetra-n-butylammonium hexafluoro-
phosphate in dry dichloromethane using a CH Instruments
CHI620D Electrochemical Workstation CHI620D, and a
conventional three-electrode cell with a glassy carbon working

electrode, platinum wire counter electrode, and an Ag wire
coated with AgCl as the pseudo-reference electrode. Potentials
were referenced to ferrocenium/ferrocene by using ferrocene as
an internal standard. Cyclic voltammograms were recorded at a
scan rate of 50 mV s�1.
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