Heterometallic coordination polymers are emerging as a class of crystalline materials for sustainable energy production via electrocatalysis, thanks to the synergistic and cooperative effects of different kinds of metal centres present in these polymers. The development of this class of materials mainly relies on screening experiments using a one-pot protocol of mixing metal ions; notably, the incorporation of different metal ions into desired positions in a single polymeric structure is quite difficult. This review article briefly summarizes the synthesis methods for heterometallic coordination polymers that show heterogeneous electrocatalytic activity. In addition, the relationships between the molecular structure and hydrogen evolution (water/proton reduction), oxygen evolution (water oxidation), CO2 reduction, oxygen reduction, and some important organic reactions are reviewed to offer new ideas for designing efficient energy conversion materials and developing new classes of heterometallic coordination polymers.

1. Introduction

Coordination polymers (CPs) are crystalline solids with infinite structures that are sustained by coordination bonds between metal ions or metal clusters and organic linker molecules, including metal–organic frameworks (MOFs) as a CP sub-
class. Since the definition of CPs in 1964, this class of compounds has continuously been a hot research topic due to not only their diverse structural aspects but also their wide range of applications, such as sensors, gas storage materials, magnets, and catalysts. One of the important characteristics of CPs is their crystallinity, which allows X-ray crystallography to be used to determine their structures at an atomic level. To date, a large variety of compositions and structures of CPs have been designed and synthesized using various organic ligands, metal ions, synthesis conditions, protocols, and in

Naoto Kuwamura received his B.S., M.S. and Ph.D. degrees from Osaka City University in 2006, 2008 and 2011, respectively. He then successively moved to the Max-Planck Institute of Bioinorganic Chemistry (currently, Max-Planck Institute for Chemical Energy Conversion) as a postdoctoral research fellow. In 2012, he moved to Osaka University where he is currently an assistant professor. His research interest is directed toward the creation and voltammetric analysis of heterometallic multinuclear complexes based on thiolate ligands that show unique redox properties in both solution and solid states.

Takumi Konno received his Ph.D. degree from the University of Tsukuba in 1985. He continued his work there before moving to the University of Cincinnati in 1986. He became an assistant professor at the University of Tsukuba in 1987 and was promoted to a lecturer in 1994. In 1997, he moved to Gunma University as an associate professor and was promoted to a full professor in 1998. He was appointed as a professor at Osaka University in 2000. His research interests are currently focused on creating a new class of functional multinuclear and metallosupramolecular coordination compounds based on metal complexes with simple thiolate ligands.
Inorganic Chemistry Frontiers

Review

2. Synthesis methods for heterometallic coordination polymers

Conventionally, CPs have been produced by simple mixing of organic ligands and metal ions in a one-pot manner. On the other hand, the synthesis situation of heterometallic CPs is different, and three synthesis techniques have been applied to incorporate two or more kinds of metal ions into polymer structures (Fig. 1): (i) a self-assembly method (or one-pot synthesis), (ii) a metalloligand approach, and (iii) post-synthesis modification.

The simplest and most popular synthesis approach is the conventional (i) self-assembly method, where several kinds of metal ions are mixed with organic and/or inorganic ligands under specific conditions, and a large number of heterometallic CPs have been produced by this method so far. While this approach does not involve the pre-treatment of starting materials, different kinds of metal ions with similar characteristics, such as ionic radius, charge, and Lewis acidity, normally need to be selected for this synthesis approach. In addition, CPs synthesized by this approach are often produced as non-crystalline solids, which prevents the determination of their structures at an atomic level by X-ray crystallography. Therefore, the limitations of employed metal ions and the difficulty in structural determination are serious problems in producing CPs by the self-assembly method.

An alternative synthesis method that has recently attracted the attention of researchers is (ii) the metalloligand approach. In this approach, metal complexes bearing donor site(s) are used as a ‘metalloligand’, which reacts with target metal ions to form heterometallic CPs. This method allows for the control of the structures and dimensionalities of CPs via the proper choice of metalloligands and target metal ions, which act as the nodes and linkers in the produced polymeric structures.

In this review article, we summarize heterometallic CPs that have been applied as heterogeneous electrocatalysts. First, the synthesis approaches for incorporating two or more kinds of metal ions into a single polymeric structure are summarized. The incorporation of several kinds of metal ions in a single CP structure has commonly been achieved by one-pot reactions in which different kinds of metal ions with different coordination properties are mixed with organic ligands. Another method to achieve this, so-called metalloligand approach, is the use of isolated metal complexes that possess donor site(s) for binding metal ions to form heterometallic multinuclear structures. Following the first section, the relevance of the structural aspects of CPs, such as their dimensionalities, combinations of metal ions, coordination environments, and porosities, to their electrocatalytic activities is described, together with representative examples. Closely related review articles that summarize MOF-based electrocatalysts have appeared previously. Very recently, heterotrimetallic MOFs that show electrocatalytic oxygen evolution have also been reviewed. This review article focuses on summarizing the synthesis methodologies of heterometallic CPs and their utility for their various ‘heterogeneous’ electrocatalytic activities from the viewpoint of coordination chemistry.

Fig. 1 General synthesis methods for heterometallic coordination polymers: (a) self-assembly method, (b) metalloligand approach, and (c) post-synthesis modification.
structures, respectively. For the synthesis of heterometallic CPs that show electrocatalytic activities, redox-active metalloligands bearing open metal site(s) are used, and the design and preparation of metalloligands are important for this synthesis approach.

To synthesize heterometallic CPs that show electrocatalytic activities, (iii) a post-synthesis modification, in which catalytically active guest species are incorporated into the framework of a pre-synthesized CP, has also been employed. In this approach, guest species are designed to interact with the framework of CPs and to migrate into the pores of CPs. The exchange of metal ions in CPs by catalytically active metal ions is also useful to produce electrocatalytic CPs. In general, this approach is applicable for CPs having inherently labile metal ions such as NiIII, ZnII, and CdII, which can be replaced by external metal ions.

For heterometallic CPs that show electrocatalytic activities, the important structural factors are a (i) redox centre (metal ion) with one or more vacant coordination site(s), (ii) mass transport space and/or channel, (iii) conductive linkage, and (iv) stable framework structure. A short distance between the metal centres is also important for electronic communication between the catalytic centres in heterometallic CPs. In some cases, additives such as metal clusters (redox centre), Nafion (ion-conductive material or binder), and activated carbon (electrically conductive material) are incorporated to endow heterometallic CPs with electrocatalytic activity. Currently, optimizing the electrode fabrication method makes it possible to investigate the redox behaviour of heterometallic CPs that are insoluble in any solvents without decomposition.

3. H₂ evolution electrocatalysis

Hydrogen gas (H₂) is a clean and renewable energy source that is an alternative to fossil fuels because H₂ produces only water when reacted with O₂. To generate this renewable energy source, water (or proton) reduction catalysts are in high demand. In the past few decades, coordination chemistry has widely contributed to the research field of electrocatalysts for water reduction based on the synthesis of new coordination compounds. Early works on the hydrogen evolution system started from Prussian white which was homometallic FeII CP. Note that it is easy to incorporate two kinds of metal ions into Prussian blue analogues by mixing hexacyanido complexes and metal ions in a self-assembly method because many types of hexacyanido complexes with different metal centres have been discovered. Abe et al. demonstrated that the integration of FeIII and RuIV in a Prussian blue analogue leads to enhanced hydrogen evolution activity with a turnover frequency (TOF) of 2.5 × 10⁴ s⁻¹ at an onset potential of −0.6 V (vs. Ag/AgCl). Other combinations using NiII, CoIII, PbII, CuII, MnII, and ZnII as the metal components of Prussian white analogues also exhibit appreciable electrocatalytic activities for hydrogen evolution. Polyoxometalates (POMs) are inorganic cluster species that generally comprise early transition metals such as W, Mo, and V. This class of compounds is the most popular heterometallic electrocatalyst for H₂ evolution because it is easy to integrate different kinds of metal ions into a POM framework. While homometallic POMs are generally unstable in non-acidic solution, several heterometallic POMs can be handled in neutral water, which allows them to be used as building blocks for the preparation of POM-based CPs. It has been reported that a ZnIV-MoV-POM-based CP exhibits hydrogen evolution activity at pH 1, showing a Tafel slope of 96 mV deg⁻¹ with an overpotential of 180 mV. Ma et al. reported a CuIV-MOF that contains WVI-POM molecules. The incorporation of WVI-POM molecules into the MOF provided high chemical stability, allowing the material to exhibit electrocatalytic activity for H₂ evolution at a low overpotential of 131 mV with a Tafel slope of 51 mV deg⁻¹. The exchange of counterions in anionic POMs by metal complexes is also an effective way to obtain heterometallic CPs consisting of POM molecules. Gomez-Mingot et al. studied the inclusion effect of complex cations on framework structures and electrocatalytic activities using anionic ZnIV–MoV–MoV-POMs as a host compound. The inclusion of cationic species strongly affected the catalytic hydrogen evolution activity, resulting in a TOF of 9.3 × 10⁻² s⁻¹ with an overpotential of 419 mV.

As part of our study on the creation of heterometallic CPs based on S-donating metalloligands with d-penicillamine (d-pen), we recently discovered in 2017 the first example of a heterotrimetallic coordination polymer that showed heterogeneous catalytic activity for hydrogen evolution under electrochemical conditions. In this study, we employed a PtII metalloligand with d-pen, which reacted stepwise with PdII and NiII ions to produce a heterotrimetallic CP containing all three group 10 metal ions. In this compound, PtII-PdII–NiII tetranuclear units were linked by NiII ions through d-pen carboxylate units in a 1D chain structure. The combination of the PtII metalloligand with PdII and NiII in the (PtII–PdII–NiII)n coordination polymer significantly enhanced heterogeneous catalytic activity for electrochemical hydrogen evolution, showing a TOF of 0.011 s⁻¹ at an onset potential of −0.98 V (vs. Ag/AgCl). More recently, we prepared 2D and 3D (PtII–PdII–NiII)n heterobimetallic CPs by using MnII instead of NiII as linker ions, the dimensionality of which was controlled by counteranions (Cl vs. Br). The 2D and 3D (PtII–PdII–MnII)n CPs showed activities much higher than the 1D (PtII–PdII–NiII)n CP, which was explained by the stronger Lewis acidity of the active centres of PdII in the PtII–PdII units and an increase in framework robustness due to their higher dimensionalities. Budnikova's group developed ferrocene-based metalloligands that coordinated to 3d metal ions to form 1D heterobimetallic CPs. Due to the presence of ferrocenyl units, the heterobimetallic CPs were redox active. This coordination contributed to a higher electrocatalytic activity for H₂ evolution, showing Tafel slopes of 120 mV deg⁻¹ and 110 mV deg⁻¹ at overpotentials of 450 mV and 340 mV for the heterobimetallic CPs with CoII and ZnII, respectively. Additionally, these 1D heterobimetallic CPs have
been extended to higher-dimensional CPs by the addition of 4,4′-bipydine ligands (Fig. 2).70 The CPs with NiIII and CoII showed Tafel slopes of 60 mV deg⁻¹ and 65 mV deg⁻¹ at overpotentials of 350 mV and 400 mV, respectively, which is the best performance for 4,4′-bipydine-incorporated CPs. A combination of high electrical conductivity and the presence of exposed catalytically active centres is important in MOFs to act as excellent heterogeneous electrocatalysts. Indeed, Zhang and Chen et al. demonstrated that NiIII–CoII and NiIII–CuII 2D MOFs containing a π-conjugated organic ligand (hexaiminohexaaza-trinaphthalene) showed high electrocatalytic activity;71 the electrocatalytic performance for H₂ evolution was evaluated by Tafel slopes of 98.2 mV deg⁻¹ and 101.5 mV deg⁻¹ with overpotentials of 207 mV and 162 mV for NiIII–CoII and NiIII–CuII MOFs, respectively. Farha and Hupp et al. reported a ZrIV-based MOF that was functionalized with MoS₂ catalytic units,72 which exhibited high electrocatalytic activity for H₂ evolution. This compound was prepared via the post-synthesis method, with a ZrIV-based MOF being reacted with Mo VI species in the presence of H₂S gas. The presence of large pores in the crystal lattice of the precursor MOF, together with the high stability of its framework towards chemical stimuli, allowed the application of the post-synthesis method. Other examples of heterometallic CPs that act as heterogeneous electrocatalysts for H₂ evolution are summarized in Table 1.

4. O₂ evolution electrocatalysis

While oxygen (O₂) evolution is an important anodic half reaction of water splitting and is paired with cathodic hydrogen (H₂) evolution, its reaction suffers from sluggish kinetics because of the requirement of four electrons and four protons for O–O bond formation.73 Thus, efficient electrocatalysts must be developed to overcome the kinetic barrier of O₂ formation.74 To date, considerable efforts have been devoted to investigating molecular electrocatalysts for O₂ evolution by using discrete metal complexes and homometallic CPs.75 An early work on O₂-evolving electrocatalysts based on heterometallic CPs used Prussian blue analogues.76 A film of a CoII–FeIII Prussian blue analogue was attached on an electrode by electrochemical deposition and water oxidation was performed to produce O₂ gas with a TOF of 0.5 s⁻¹ at an overpotential of 550 mV. The electrocatalytic activity of this compound is due to its open channel structure for mass transport and electron conductivity and the presence of catalytically active CoIII centres. The Karadas group employed Prussian blue analogues with other combinations of metal ions, such as CoII–CoIII, CoIII–CrIII, CoIII–FeII, and CoIII–FeIII, to investigate the effect of metal ions co-existing with CoIII ions in the Prussian blue framework on their electrocatalytic activities for water oxidation (Fig. 3).77 They showed that the electron density of the catalytic centre of CoIII was affected by the co-existing metal ions, which was strongly related to their electrocatalytic activities. The catalytic activities of Prussian blue analogues are not high because their catalytically active sites (related to the so-called surface concentration) are not well exposed; all the metal centres have an octahedral geometry and are coordinated by six cyanide ligands, except for the terminal metal ions of the network structure. To increase catalytic activity, the Karadas group incorporated a pyridyl-based polymer, poly(4-vinylpyridine), into Prussian blue analogues,78 which resulted in the production of amorphous solids with high surface concentrations and low overpotentials. A NiIII–FeIII bimetallic CP with phthalocyanine ligands also acts as a heterogeneous electrocatalyst for water oxidation.79 In this case, both the NiIII and FeIII ions are assumed to be catalytic centres in the 2D sheet structure. The catalytic activity of the NiIII–FeIII CP is higher than the activities of the corresponding NiII and FeIII homometallic CPs, indicating the positive synergistic effect of the two kinds of metal centres on catalysing the water oxidation reaction.

Recently, our group reported the catalytic behaviour of PtIII–CuII–ZnII heterometallic CPs with perchlorate or chloride counteranions for water oxidation; these compounds were synthesized via the metalloligand approach using a PtIII metalloligand with d-pen (Fig. 4).80 In these compounds, PtIII–CuII tetranuclear units were linked by ZnII ions through d-pen carboxylate groups in a polymeric structure. Notably, the CPs had different dimensional structures (2D vs. 3D) and different coordination geometries around CuII centres (square plane vs. octahedron) that were dependent on the counteranion (Cl⁻ vs. ClO₄⁻). These differences largely influenced the heterogeneous electrocatalytic activity for water oxidation; the perchlorate salt with square-planar CuII centres showed a catalytic activity much higher than that of the chloride salt with octahedral CuII centres. While the electronic effect due to the coexistence of heterometallic ions remains unclear, this study revealed that the introduction of CuII ions into heterometallic CPs leads to heterogeneous electrocatalytic activity for water oxidation that is tuned by the linkage mode of ZnII ions affecting the geometry of the CuII centres.
Table 1 Structural and electrocatalytic parameters for pristine H₂ evolution electrocatalysts based on their heterometallic coordination polymers

<table>
<thead>
<tr>
<th>Compound</th>
<th>Dimension</th>
<th>Metal</th>
<th>Organic ligand/metallogand</th>
<th>Onset potential</th>
<th>η (V vs. Ag/AgCl)</th>
<th>TOF</th>
<th>Tafel slope</th>
<th>Electrolyte</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron(u) ruthenocyanide</td>
<td>3D</td>
<td>Re<sup>III</sup> and Ru<sup>II</sup></td>
<td>CN⁻</td>
<td>−0.6 V</td>
<td>2.5 × 10<sup>4</sup> s<sup>−1</sup> a</td>
<td>—</td>
<td>—</td>
<td>HCl–KCl (pH 1.5)</td>
<td>54</td>
</tr>
<tr>
<td>[Zn(fcdHp)]<sub>6</sub></td>
<td>1D</td>
<td>Zn<sup>II</sup> and Re<sup>III</sup></td>
<td>1,1'-Ferrocenylenebis(H-phosphinate) (fcdHp)</td>
<td>−0.220 V (vs. RHE)</td>
<td>4.5 × 10<sup>4</sup> cm<sup>2</sup> mA<sup>−1</sup></td>
<td>110 mV dec<sup>−1</sup></td>
<td>0.5 M H<sub>2</sub>SO<sub>4</sub></td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>[Co(fcdHp)]<sub>6</sub></td>
<td>1D</td>
<td>Co<sup>III</sup> and Re<sup>III</sup></td>
<td>1,1'-Ferrocenylenebis(H-phosphinate) (fcdHp)</td>
<td>−0.300 V (vs. RHE)</td>
<td>4.5 × 10<sup>3</sup> cm<sup>2</sup> mA<sup>−1</sup></td>
<td>120 mV dec<sup>−1</sup></td>
<td>0.5 M H<sub>2</sub>SO<sub>4</sub></td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>[Ni(fcdHp)(4,4'-bpy)]<sub>6</sub></td>
<td>3D</td>
<td>Ni<sup>II</sup> and Re<sup>III</sup></td>
<td>1,1'-Ferrocenylenebis(H-phosphinate) (fcdHp) and 4,4'-bipyridine (4,4'-bpy)</td>
<td>−0.270 V (vs. RHE)</td>
<td>4.5 × 10<sup>3</sup> cm<sup>2</sup> mA<sup>−1</sup></td>
<td>60 mV dec<sup>−1</sup></td>
<td>0.5 M H<sub>2</sub>SO<sub>4</sub></td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>[Co(fcdHp)(4,4'-bpy)]<sub>6</sub></td>
<td>3D</td>
<td>Co<sup>III</sup> and Re<sup>III</sup></td>
<td>1,1'-Ferrocenylenebis(H-phosphinate) (fcdHp) and 4,4'-bipyridine (4,5'-bpy)</td>
<td>−0.320 V (vs. RHE)</td>
<td>4.5 × 10<sup>3</sup> cm<sup>2</sup> mA<sup>−1</sup></td>
<td>65 mV dec<sup>−1</sup></td>
<td>0.5 M H<sub>2</sub>SO<sub>4</sub></td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>[Ni(H<sub>2</sub>O)<sub>2</sub>Pt<sub>2</sub>(NH<sub>3</sub>)<sub>4</sub>(D-pen)<sub>4</sub>]Cl<sub>2</sub></td>
<td>1D</td>
<td>Pd<sup>II</sup>, Pt<sup>II</sup> and Ni<sup>II</sup></td>
<td>0.220 V (vs. Ag/AgCl)</td>
<td>—</td>
<td>1.1 × 10<sup>2</sup> s<sup>−1</sup> a</td>
<td>—</td>
<td>0.1 K LiClO<sub>4</sub></td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>[Mn<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>Pd<sub>2</sub>Pt<sub>2</sub>(NH<sub>3</sub>)<sub>4</sub>(D-pen)<sub>4</sub>]Cl<sub>2</sub></td>
<td>2D</td>
<td>Pd<sup>II</sup>, Pt<sup>II</sup> and Mn<sup>II</sup></td>
<td>0.220 V (vs. Ag/AgCl)</td>
<td>—</td>
<td>1.7 × 10<sup>2</sup> s<sup>−1</sup> a</td>
<td>—</td>
<td>0.1 K LiClO<sub>4</sub></td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>[Mn<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>Pd<sub>2</sub>Pt<sub>2</sub>(NH<sub>3</sub>)<sub>4</sub>(D-pen)<sub>4</sub>]Br<sub>4</sub></td>
<td>3D</td>
<td>Pd<sup>II</sup>, Pt<sup>II</sup> and Mn<sup>II</sup></td>
<td>0.220 V (vs. Ag/AgCl)</td>
<td>—</td>
<td>4.1 × 10<sup>2</sup> s<sup>−1</sup> a</td>
<td>—</td>
<td>0.1 K LiClO<sub>4</sub></td>
<td>68</td>
<td></td>
</tr>
</tbody>
</table>

MOF

| Ni₃(Co₃(HAHATN))₃ | 2D | Ni^{II} and Co^{III} | Hexaiminohexaazatriphenylamine (HAHATN) | — | 207 mV (vs. Ag/AgCl) | 98.2 mV dec^{−1} | 0.1 M KOH | 71 |

| Ni₃(Cu₃(HAHATN))₃ | 2D | Ni^{II} and Cu^{II} | Hexaiminohexaazatriphenylamine (HAHATN) | — | 162 mV (vs. Ag/AgCl) | 101.5 mV dec^{−1} | 0.1 M KOH | 71 |

POM-based compounds

| (Bu₄N)₃[PMo^VV₈Mo^{VI}V₃O₃₆(OH)₄Zn₄][BTB]₄ | 3D | Zn^{II} and Mo^{VI}V | 1,3,5-Benzene tri benzoate (BTB) | −0.180 V (vs. RHE) | — | 98 mV dec^{−1} | 0.5 M H₂SO₄ | 59 |

| (Bu₄N)₃[PMo^VV₈Mo^{VI}V₃O₃₆(OH)₄Zn₄][BPT] | 3D | Zn^{II} and Mo^{VI}V | 1,1'-Biphenyl]-3,4'-5-tricarboxylate (BPT) | −0.304 V (vs. RHE) | — | 137 mV dec^{−1} | 0.5 M H₂SO₄ | 59 |

| Co(bpy)₂[PMo^VV₈Mo^{VI}V₃O₃₆(OH)₄Zn₄] | 1D | Co^{III} and Zn^{II} | 2,2'-Bipyridine (bpy) and 1,3,5- benzenetricarboxylate (trim) | −0.41 V (vs. Ag/AgCl) | — | 9.3 × 10² s^{−1} a | 0.1 M H₂SO₄ | 62 |

| (Bu₄N)₃[PMo^VV₈Mo^{VI}V₃O₃₆(OH)₄Zn₄][BTB]₄ | 3D | Zn^{II} and Mo^{VI}V | 1,3,5-Benzene tri benzoate (BTB) | −0.45 V (vs. Ag/AgCl) | — | 9.3 × 10² s^{−1} a | 0.1 M H₂SO₄ | 62 |

| (Bu₄N)₃[Co(bpy)₂][PMo^VV₈Mo^{VI}V₃O₃₆(OH)₄Zn₄][BTB]₄ | 3D | Co^{III} and Zn^{II} | 2,2'-Bipyridine (bpy) and 1,3,5- benzenetricarboxylate (trim) | −0.31 V (vs. Ag/AgCl) | — | 9.3 × 10² s^{−1} a | 0.1 M H₂SO₄ | 62 |
In heterometallic MOF systems, dinuclear or trinuclear heterometallic units bridged by carboxylate groups are normally designed as a cluster node. This class of compounds has been synthesized by the self-assembly method or post-synthesis transformation. Li and Lan explored Fe(II)–Fe(III), Co(II)–Fe(III), Ni(II)–Fe(III), and Zn(II)–Fe(III) MOFs having a tricarboxylate ligand, all of which showed electrocatalytic activity for oxygen evol-
5. \(\text{CO}_2 \) reduction electrocatalysis

To realize a future carbon-neutral society, the electrochemical conversion of \(\text{CO}_2 \) into useful chemical species has been intensively investigated in the past decade.84 A homometallic CuII MOF was first applied for electrocatalytic \(\text{CO}_2 \) reduction in 2012,85 and then, an increasing number of MOFs have been studied for electrochemical \(\text{CO}_2 \) reduction. An early work on electrocatalytic \(\text{CO}_2 \) reduction using a heterometallic MOF was performed by Yaghi and Yang in 2015. They applied a CoII–AlIII MOF containing 4,4′,4″-tripyridylbenzoate as a linker ligand for electrocatalytic \(\text{CO}_2 \) reduction.86 In this case, a homometallic Al-MOF was directly grown on the electrode by the self-assembly method under solvothermal conditions, and then, the CoII–AlIII MOF electrocatalyst was prepared by the post-binding of CoII to the empty sites of the porphyrin units; this catalyst exhibited \textgreater 76% selective CO production with a turnover number (TON) of 1400 and a stability of 7 hours. Kubik et al. reported a ZrIV MOF with FeIII porphyrin units as a CO\textsubscript{2} reduction electrocatalyst, where the FeIII porphyrin unit acted as a catalytic site in the ZrIV MOF that was grown on the conductive electrode surface.87 This compound showed a \text{CO}_{2}/CO overpotential of \textless 650 mV, Faraday efficiency of \textless 100%, TOF of 0.13 s−1, and TON of 1520, and all of these values are superior to those of the corresponding homometallic catalysts.

While the aforementioned two reports did not show a cooperative effect due to the presence of multi- and heterometal ions, a report by Beobide et al. demonstrated that ZnII–CuII, RuII–CuII, and PdII–CuII MOFs that were prepared by post-synthesis transmetallation of HKUST-1(Cu) containing benzene-1,3,5-tricarboxylate (BTC) exhibit a heterometallic effect.88 The sample solid was dispersed in a Nafion-isopropanol solution and drop-cast on an electrode to be applied for electrocatalytic \(\text{CO}_2 \) reduction. Although the amount of transmetallated metal ions was less than 19%, the \(\text{CO}_2 \) reduction catalytic activity was strikingly increased by this heterometal doping. In particular, the selective formation of ETOH reached 100%.

In 2020, Dong and Feng et al. reported 2D sheet CuII–ZnII MOFs with phthalocyanine ligands, which showed the synergistic electroreduction of carbon dioxide (Fig. 5).89 The solid sample was prepared by the self-assembly method under solvothermal conditions and loaded on an electrode together with a mixture of carbon nanotubes and Nafion. These conjugated 2D sheet MOFs revealed excellent catalytic performance with a CO product selectivity of 88%, TOF of 0.39 s−1, and durability of >10 hours. Notably, this material showed that the molar H\textsubscript{2}/CO ratio was reduced from 4:1 to 1:7 when the metal centres and applied potentials were varied. CuII ions coordinated by phthalocyanine-N4 in a square-planar geometry and ZnII ions coordinated by two catecholato units in a square-planar geometry were assigned as the active centres for hydrogen evolution and CO production, respectively. The CuII and ZnII centres synergistically inhibited H\textsubscript{2} production and promoted CO production via electrons that passed through \(\pi \)-conjugated ligands. Examples of MOFs that show electrocatalytic \(\text{CO}_2 \) reduction have been summarized in a recent review article.90
<table>
<thead>
<tr>
<th>Compound</th>
<th>Dimension</th>
<th>Metal</th>
<th>Organic ligand/metalloligand</th>
<th>Onset potential</th>
<th>η (V)</th>
<th>TOF (s⁻¹)</th>
<th>Tafel slope (mV/dec)</th>
<th>Electrolyte</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₀.₅Ni₀.₅Pc-CP</td>
<td>2D</td>
<td>Fe II and Ni II</td>
<td>(2(3),9(10),16(17),23(24)·Tetraiodophthalocyanine and 2(3),9(10),16(17),23(24)·tetra(ethynyl)phthalocyanine)</td>
<td>V (vs. Ag/AgCl)</td>
<td>137 mV</td>
<td>43.4 s⁻¹ (η = 317 mV)</td>
<td>116 mV dec⁻¹</td>
<td>1.0 M KOH</td>
<td>79</td>
</tr>
<tr>
<td>[ZnCl(H₂O)Cu₂Pt₂(NH₃)₄(ν-pen)₃]Cl</td>
<td>1D</td>
<td>Cu II, Pt II and Zn II</td>
<td>ν-Penicillamine (ν-pen)</td>
<td>+0.75 V (vs. Ag/AgCl)</td>
<td>133 mV</td>
<td>18 h⁻¹</td>
<td>—</td>
<td>0.1 K KPF₆</td>
<td>80</td>
</tr>
<tr>
<td>[ZnCu₂Pt₃(NH₃)₄(ν-pen)₃][ClO₄]₂</td>
<td>3D</td>
<td>Cu II, Pt II and Zn II</td>
<td>ν-Penicillamine (ν-pen)</td>
<td>+0.75 V (vs. Ag/AgCl)</td>
<td>133 mV</td>
<td>27 h⁻¹</td>
<td>—</td>
<td>0.1 K KPF₆</td>
<td>80</td>
</tr>
<tr>
<td>MOF</td>
<td>Fe/Ni₁₋ₓ(MIIₓ)x-MIL-53 (x = 1.6, 2.0, 2.4)</td>
<td>2D</td>
<td>Fe II and Ni II</td>
<td>1,4-Bezenedicarboxylate (1,4-BDC)</td>
<td>—</td>
<td>258, 258 and 244 mV (η = 10 mA cm⁻²)</td>
<td>—</td>
<td>37.8, 45.5 and 48.7 mV dec⁻¹</td>
<td>1.0 M KOH</td>
</tr>
<tr>
<td>Fe/Ni₁₋ₓ(Mₓ)₂-MIL-53 (M = Co, Mn; x = 0.2, 0.4)</td>
<td>2D</td>
<td>Fe II, Ni II and M II</td>
<td>1,4-Bezenedicarboxylate (1,5-BDC)</td>
<td>—</td>
<td>219 mV (η = 10 mA cm⁻²)</td>
<td>—</td>
<td>53.5 mV dec⁻¹</td>
<td>1.0 M KOH</td>
<td>82</td>
</tr>
<tr>
<td>Ni₀.₈Fe₀.₂(C₁₂H₆O₄)(H₂O)₄</td>
<td>3D</td>
<td>Fe II and Ni II</td>
<td>2,6-Naphthalenedicarboxylic acid</td>
<td>—</td>
<td>240 mV (η = 10 mA cm⁻²)</td>
<td>3.8 s⁻¹ (η = 400 mV)</td>
<td>34 mV dec⁻¹</td>
<td>0.1 M KOH</td>
<td>83</td>
</tr>
</tbody>
</table>
MOF system showed improved stability and repeatability. They suggested that the 3D MOF structure prevented the aggregation of the active units of the FeIII porphyrin, contrasting the case of conventional discrete molecular systems. The Morris group also studied the catalytic behaviour of the same ZrIV–FeIII MOF. They directly grew a MOF film on a FTO electrode by a solvothermal method without using graphene. The thin film of the heterometallic ZrIV–FeIII MOF had enough conductivity to perform catalytic oxygen reduction without any conductive additives. Electrochemical characterization revealed high selectivity for H$_2$O (4e$^-$ reduction product) over H$_2$O$_2$ (2e$^-$ reduction product) with this material.

Jiang and Yao et al. reported an ethyl-linked FeIII/CoII polymer conjugated with phthalocyanine that acted as a heterogeneous oxygen reduction catalyst. The conjugated polymers were synthesized by a Sonogashira coupling reaction between FeIII and CoII phthalocyanine monomers in Fe:Co ratios of 100:0, 50:50, and 0:100. The homo- and heterometallic polymers were loaded on glassy carbon electrodes with 50% carbon black (Vulcan XC-72), and their catalytic activities for oxygen reduction were evaluated by CV, LSV, and rotating ring-disk electrode (RRDE) measurements. The heterometallic conjugated polymer revealed a catalytic activity superior to that of the corresponding homometallic polymers, indicating a synergistic effect between the FeIII and CoII centres that were located in close proximity to each other in the heterometallic polymer.

Zhang et al. employed a MnII coordination polymer containing FeIII ions as an oxygen reduction catalyst (Fig. 6). They expected that the FeIII ions dispersed into the coordination polymer would show catalytic activity, although FeIII ions tend to form an aggregate that is catalytically inactive. The FeIII ions were introduced by immersing freshly prepared crystals of the porous MnII coordination polymer with tert-butyolphosphonate and 4,4'-trimethylenedipyridine in an aqueous solution of FeCl$_3$. The obtained microcrystals were characterized by RRDE and LSV measurements using a glassy carbon electrode loaded with a sample-Nafion mixture. While the MnII coordination polymer itself exhibited a catalytic current during oxygen reduction, as observed by LSV, the doped FeIII ions led to an improved onset potential and a smaller Tafel slope (130 mV dec$^{-1}$), indicative of a synergistic effect due to the FeIII and MnII centres. Furthermore, this heterometallic coordination polymer was highly tolerant towards methanol, which is a typical fuel crossover.

In general, catalytic oxygen reduction reactions require a low overpotential, high kinetics (Tafel slope, TOF and TON), high selectivity (H$_2$O vs. H$_2$O$_2$ vs. H$_2$) and high stability. Thus, heterometallic CPs are promising materials for these catalytic reactions due to their robust framework and the synergistic and cooperative effects of their heterometal ions. While their low conductivities may be a weak point, this issue has now been overcome by the use of redox-active frameworks or the inclusion of conductive species in the framework. Further development of heterometallic CPs as oxygen reduction electrocatalysts will have a significant impact on this research field.

7. Organic reaction electrocatalysis

Heterometallic CPs have also been studied for the catalytic activation of small organic molecules such as alcohols, organic
acids, and organic halides. The Kolotolov group reported the electrocatalytic dehalogenation of organic halides using a Fe(III)–Co(II)–Ni(II) heterotrimetallic CP (Fig. 7). They prepared a mononuclear nickel(ni) complex with a Schiff base ligand that was derived from the hydrazine of 4-pyridinecarboxylic acid and 2-pyridinecarboxaldehyde to act as a N-donating metalloid ligand. By mixing this nickel(ni) metalloid ligand with the trigonal trinuclear cluster, [Fe₂CoO(piv)₆], which consists of Co(II) and Fe(III) ions bridged by pivalate (piv) ligands, the Fe(III)–Co(II)–Ni(II) heterotrimetallic CP was isolated as a crystalline solid. The nickel(ni) metalloid ligand is a ligand-based redox-active species that shows two reduction processes in homogeneous cyclic voltammograms. The first reduction current increased with the addition of CHCl₃, indicating that the nickel(ni) metalloid ligand itself had electrocatalytic activity for the dehalogenation of organic halides. Thus, this group showed that the Fe(III)–Co(III)–Ni(II) heterotrimetallic CP functioned as a heterogeneous electrocatalyst for the dehalogenation of organic halides due to the presence of the nickel(ni) metalloid ligand.

Since electrocatalytic current is commonly much higher than the current of a standard redox process, it is often used as the signal for molecular sensors working in solution. Furthermore, the electrocatalytic response is specific for substrates, which is also an advantage for the design of selective and sensitive molecular sensors. Ma and Pang et al. reported a 3d–4f heterometallic MOF compound that consisted of Mn(II)–W(VI) Dawson-type POM units linked by Ce(III) species with N-oxide bipyridine ligands. The Mn(II)–W(VI)–Ce(III) MOF was prepared by a reaction of Mn(II)–W(VI) POM with Ce(III) species.

Cyclic voltammetry using a sample-modified carbon paste electrode showed that the oxidation peak currents for the Mn(II) and Ce(III) centres substantially increased with the addition of either ascorbic acid or dopamine. This result indicated that the oxidations of ascorbic acid and dopamine were catalysed by the Mn(II)–W(IV)–Ce(III) MOF. On the other hand, this current increase was not observed for the Mn(II)–W(VI) POM. The Ma group established another detection system using a heterometallic CP. They prepared a film of a cyano-bridged heterometallic CP containing poly(l-citrulline)/lanthanide on a glassy carbon electrode, and it was applied for the electrochemical detection of 3-nitropropionic acid. A linear relationship between the peak currents due to reduction of 3-nitropropionic acid and the 3-nitropropionic acid concentration was obtained for the range of 40.0–4.00 × 10⁻³ µM. Wang et al. conducted the electrocatalytic oxidation of ethanol using a Nd–Fe–Mo cyano-bridged CP. The fabrication of this coordination polymer on a platinum electrode was performed by electrochemical deposition. While platinum atoms on the electrode surface were assigned to catalytic reaction centres, the heterometallic CP provided a cooperative effect reconstructing the environment around the platinum surface, improving the ethanol oxidation kinetics.

In the past decade, an increasing number of studies have been devoted to heterometallic CPs as promising heterogeneous catalysts for a variety of organic reactions, such as the cyanosilylation of aldehydes, oxidation of cyclohexene, olefin epoxidation, the Knoevenagel condensation, cyanation of aldehydes, sulfoxidation, imine formation from alcohols and amines, regioselective halogenation of phenol, hydrogenation, desulfurization, the Henry reaction, C–S cross-coupling reactions, organophosphate hydrolysis, oxidative hydroxylation of phenylboronic acid, nitroalcohol reactions, acetalization of benzaldehyde, and reduction of nitrophenol. The above catalytic reactions often involve redox reactions using chemical reagents (i.e., H₂O₂, O₂, and NaBH₄), and their corresponding electrocatalytic reactions have not been reported to date. This observation is most likely due to the difficulty in the fabrication/loading of CPs on electrodes, which requires tight and close contact between the electrode and sample. Furthermore, the complexity of analysing electrochemical responses due to organic species using voltammograms prevents the development and expansion of this research field. Further trials are needed to elucidate the mechanisms of heterogeneous, electrocatalytic organic transformations, in which synergistic effects are expected due to the different kinds of metal centres existing in heterometallic CPs.

8. Summary and perspectives
While CPs have been applied to obtain inorganic composite materials by their pyrolysis in materials science, recently, an increasing number of studies have been conducted on their direct employment as heterogeneous electrocatalysts because they are (i) crystalline compounds whose molecular and
packing structures can be determined at an atomic-level resolution by X-ray crystallography, (ii) solid materials that can offer high stability in the solid state, and (iii) hybrid compounds that contain metal ions available for catalytically active sites. The tunability of the active sites in the structure, such as the oxidation states and the coordination geometries of metal ions and the distances between metal centres, is also the reason for the recent interest from researchers. In particular, heterogeneous electrocatalytic reactions using heterometallic CPs containing more than two kinds of metal ions, which can be prepared by the self-assembly of metal ions and ligands in a one-pot reaction, the metallopigand approach using metal complexes with several donor sites, or the post-synthesis modification of CPs by metal exchange reactions, are a recent hot topic in this research area, because their metal centres cause synergistic and cooperative effects in electrocatalytic reactions. Therefore, these CPs can lead to enhanced electrocatalytic performances, which are highly expected for this class of compounds. To date, hydrogen evolution (water/proton reduction), oxygen evolution (water oxidation), oxygen reduction, carbon dioxide reduction, and organic transformation have been studied as heterogeneous electrocatalytic reactions using CPs, all of which depend on the differences in the geometries and oxidation states of metal ions incorporated in the CPs.

Porous coordination polymers (PCPs) with MOFs are a major class of heterometallic CPs, and they have been a target of study for their effects on heterogeneous electrocatalytic activity. This is because porous structures allow the insertion and accommodation of catalytically active and electrically conductive species, electrolytes, substrates, and solvents, which can overcome the weakness of CPs in various applications. While the best performance of heterogeneous electrocatalytic activity has been achieved by conductive MOFs, some nonporous CPs have also shown electrocatalytic activities due to the addition of external species, such as Nafion and carbon materials, which serve as binders and electrical conductors, respectively. As part of studies on heterogeneous electrocatalysis, methods for sample loading on electrodes, such as crystal growth, electrodeposition, and transcription, have also been developed by applied chemists.67

The electronic communication between the catalytically active centres of metal ions can enhance not only the electrical conductivity but also the synergistic effects, leading to a higher performance during electrocatalytic reactions. In coordination chemistry, it is quite important to determine the best combinations of metal ions that lead to the enhancement in electrocatalytic activity and to elucidate enhancement mechanisms. As described in this review article, the favourable combinations of metal ions in CPs appear to be dependent on the type of electrocatalytic reaction, and the design of metal combinations that cause high activities relies on the large number of screening experiments based on reported heterometallic systems. The insufficient number of reports on the heterogeneous electrocatalytic activities of heterometallic CPs and the lack of theoretical studies make it difficult to predict their synergistic effects on electrocatalytic activities. Thus, fundamental studies focused on investigating the relationships between structures and catalytic activities and the synthesis of new heterometallic CPs with unique molecular and crystal structures are highly desired, although arguments exist regarding whether the original polymeric structures are fully retained in the course of electrocatalytic reactions.

Most reports on heterogeneous electrocatalysis using heterometallic CPs have appeared only in recent decades. In this research field, the discovery of new heterometallic CPs that show excellent electrocatalytic activities should be promising via cooperative studies on coordination chemistry, catalytic chemistry, and electrochemistry.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by JSPS KAKENHI (grant numbers 18H05344 and 19K05667).

Notes and references

32 B. A. Friese and D. G. Kurth, From coordination complex to coordination polymers through self-assembly, Curr. Opin. Colloid Interface Sci., 2009, 14, 81–93.

38 T. Matsumoto, H.-C. Chang, A. Kobayashi, K. Uosaki and M. Kato, Metal-Dependent and Redox-Selective Coordination Behaviors of Metalloigand [MoV(1,2-benzenedithiолato)] with CuI/AgI Ions, Inorg. Chem., 2011, 50, 2859–2869.

Inorganic Chemistry Frontiers

