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Inter-capsule fusion and capsule shell destruction
using dynamic covalent polymers†
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Herein, capsule shells containing hindered urea bonds were pre-

pared using interfacial polymerization in an oil-in-oil Pickering

emulsion stabilized by functionalized graphene oxide nanosheets.

After isolation and mild heating, the polymer shells can be fused

into monoliths or destroyed. These dynamic polymer shells

provide a route to control the morphology of composite materials

with application in energy storage, separations, additive manufac-

turing, controlled release, and so on.

Introduction

Capsules are structures composed of a shell of one material
with or without a different material inside-filled or hollow
capsules, respectively.1–3 These structures have been used
to improve handling of viscous liquids,4–6 can serve as
microreactors,5,7,8 and can enhance surface area of active
material.9 Therefore, capsules find application in energy
storage,9,10 separations,11–15 catalysis,5,6 and controlled
release,8,16,17 depending on the capsule composition. The
most common techniques for capsule preparation are micro-
fluidics, the hard template method (growth of shell on a solid
particle followed by dissolution of the core), and interfacial
reactions using an emulsion as template (i.e., soft template
method). Of these, the most widely used approach is the soft
template method. For example, Savin and coworkers success-
fully prepared hollow capsules with amphiphilic shells of
cross-linked polycaprolactone-b-poly(ethylene glycol) which
showed good hydrocarbon uptake efficiency.18 Likewise, our
group has prepared capsules with a core of ionic liquid and
composite shell of graphene oxide and polyurea for use in
energy storage,10 oil remediation,19 and CO2 uptake.

11,14

The chemical composition of capsule shells is critical to
application-oriented properties such as mechanical

strength,20–22 porosity,21–24 chemical stability and reactivity,25,26

and electrical and thermal characteristics,10,23,26,27 as well as
shape.22,28 For example, do Nascimento and colleagues pre-
pared polydimethylsiloxane shells where the elasticity was
tuned by adjusting the amount of crosslinker.20 Likewise,
Pisani et al. fabricated shells of poly(lactide-co-glycolide)
(PLGA) and poly(lactide-co-glycolide)-polyethylene glycol
(PLGA-PEG)28 where the surface morphology was controlled by
the ratio of the polymers. Alternatively, Zhang et al. used imine
condensation to prepare capsule shells of covalent organic
frameworks (COFs), then attached gold particles which had
pendant amines to the shell.29 In a similar vein, Hatai et al.
prepared polymer shells containing hydrazone units and cou-
marin dimers which released the contents of the capsule core
in response to changes in pH, light irradiation, or the presence
of metal ions.30 Thus, integration of chemical functionalities
that can undergo reactions under relatively mild conditions
can be used to tailor properties.

Dynamic covalent bonds (DCBs) are those which can rever-
sibly break and form under mild conditions or external
stimuli.31,32 Polymers containing these bonds have promising
application in self-healing,33–35 shape-memory,34,36,37 and
sensors.38 Examples of DCBs include transesterification,39

amide/imine/aldol chemistry,39 alkene- or alkyne-meta-
thesis,39–41 boronic acid condensation,42 Diels–Alder reac-
tions,39,43 and so on. Hindered urea bonds (HUBs) are DCBs
formed by the reaction of an isocyanate with a secondary
amine, the latter of which bears a bulky alkyl group, such as
isopropyl or tert-butyl. The sterically demanding nitrogen
substituent leads to non-planarity of the urea bond and
enables the reverse reaction (urea → amine + isocyanate) to
occur under mild thermal conditions; this is in contrast to
urea bonds formed from primary amines and isocyanates
which are generally considered irreversible (Fig. 1 and
Fig. S1†).44,45 Cheng and coworkers demonstrated that
polymer films bearing HUBs, those formed by reaction of
multifunctional secondary amines and multifunctional iso-
cyanates, have self-healing,44 shape retentive,37 and recycl-
able properties.46

†Electronic supplementary information (ESI) available. See DOI: 10.1039/
d1py00271f
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Herein, we report polymer capsules with shells that incor-
porate HUBs and demonstrate that the presence of these
bonds can be used to either fuse capsule shells into monoliths
by subjecting isolated, dried capsules to mild heating, or to
destroy capsule shells by exposing them to primary alkyl
amine (Scheme 1). The shells containing hindered poly(urea-

urethanes) are prepared by interfacial polymerization in an oil-
in-oil Pickering emulsion stabilized by alkylated graphene
oxide (GO) nanosheets. Optical microscopy imaging is used to
follow the changes in capsule morphology, whereas Fourier
transform infrared (FTIR) spectroscopy and thermogravimetric
analysis (TGA) are used to characterize the composition of the
shells. The tailored capsule chemistry allows for a monolith to
be prepared, in any shape and at any time, supporting liquid
transport for energy storage, molecule separation, and additive
manufacturing, whereas capsule destruction on demand may
find use in self-healing and controlled release applications.

Results and discussion

Oil-in-oil emulsions were selected as the template to prepare
capsules with composite shells containing HUBs because
these water-free emulsions enable control of the capsule com-
position; specifically, water hydrolyzes isocyanates to give
primary amines and expel CO2, then this primary amine can
react irreversibly with other isocyanate functionalities. We
leveraged alkylated graphene oxide (GO) nanosheets as particle
surfactant to stabilize DMF-in-octane emulsions. These par-
ticle surfactants were prepared as previously reported,19,47 by
the modification of GO with 1-octadecyl amine, giving C18-GO,
as verified by FTIR spectroscopy (Fig. S2†) and changes in dis-
persibility. With C18-GO as a particle surfactant dispersed in
octane, a DMF-in-octane emulsion was prepared using a hand-
held emulsifier (Fig. S3A†); even without interfacial polymeriz-
ation, these emulsions were stable for at least ten days.

Fig. 1 (A) Illustration of (i) irreversible urea bond formed by reaction of
an isocyanate and primary amine, and (ii) reversible hindered urea bond
(HUB) formed by reaction of an isocyanate and secondary amine bearing
a bulky substituent; and (B) hindered polyurea chemistry.

Scheme 1 Overview of the work reported here: formation of capsules with shells containing hindered urea bonds (HUBs) and the fusion or
destruction of the capsule shells. Capsules were prepared by interfacial polymerization in oil-in-oil Pickering emulsions stabilized by functionalized
graphene oxide nanosheets.
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To prepare capsules with shells containing HUBs, a diiso-
cyanate, triethanolamine, and tetra(ethylene glycol) were dis-
solved in DMF before emulsification, then an octane solution
of N,N-diisopropyl ethylenediamine (DIEDA) and dibutyltin
diacetate was added to the continuous phase. Triethanolamine
and tetra(ethylene glycol) were used as polymer chain exten-
ders, consistent with the work of Cheng.44 Two different diiso-
cyanates were used, the primary isocyanate 1,3-bis(isocyanato-
methyl)cyclohexane (1,3-RDI) and tertiary isocyanates 1,3-bis
(2-isocyanato-2-propyl)benzene (1,3-ArDI), as they may have
different rates of reactions with secondary amines. After emul-
sification and addition of all reagents, the emulsions were left
unagitated for 5 days, then propylamine was added to quench
any unreacted isocyanates and prevent undesired inter-capsule
fusion. Dry powders of the capsules (Fig. S4†) were isolated by
gravity filtration, dried under reduced pressure, and could be
dispersed in dodecane. Of note, during preparation and iso-
lation, the samples were kept at 5 °C for consistency across
studies.

The optical microscopy images in Fig. 2A and 3A show that
nearly-spherical, individual capsules of 1,3-RDI-DIEDA and
1,3-ArDI-DIEDA were obtained. Upon isolation, some of the
inner oil phase may be removed, and thus the wrinkled mor-
phology can be attributed to changes in the internal volume.
For 1,3-RDI-DIEDA, most of the capsules range from 25 µm to
45 µm, with some smaller capsules between 5 µm and 10 µm

also present. Most of the 1,3-ArDI-DIEDA capsules are slightly
smaller and approximately 20–30 µm with a few smaller ones
are also around 10 µm. This slight difference of capsule size
range may be attributed to the use of different diisocyanate
monomers, which can lead to different rates of crosslinking
and shell thickness (our group is investigating this phenom-
enon further). The FTIR spectra of the monomers and capsule
shells are shown in Fig. 4, demonstrating the successful for-
mation of polyurea. For both capsule shells, there is no peak
corresponding to the NvCvO of the isocyanate (∼2241 cm−1),
and the stretching and bending frequencies at 3314 cm−1 and
1534 cm−1 support presence of N–H, whereas the stretching
frequency at 1700 cm−1 supports formation of the urea carbo-
nyl. Characterization of the capsules by thermogravimetric
analysis (TGA) is shown by the weight loss profiles in Fig. 5.
For both capsules, the majority of weight loss occurred
between 210 °C and 400 °C, which can be attributed to the
polymer; the minor weight loss below 100 °C is consistent with
the bulk polymer48 and may be due to solvent evaporation or
reaction of adsorbed water with thermally liberated isocya-
nates, which would cause loss of gaseous CO2.

The ability of the DCBs in the polymer shell to either fuse
the capsule shells into monoliths or destroy the polymer com-
ponent of the shell was then evaluated. Fusion of capsule
shells requires them to be in close contact with each other,
which was achieved by compacting the capsules during the iso-

Fig. 2 1,3-RDI-DIEDA capsules: (A) optical microscopy image of cap-
sules dispersed in dodecane; (B) SEM image of monolith after capsule
fusion; (C) optical microscopy image of droplets after capsule destruc-
tion by hexylamine. Inset images are photographs of the samples.

Fig. 3 1,3-ArDI-DIEDA capsules: (A) optical microscopy image of cap-
sules dispersed in dodecane; (B) SEM image of monolith after capsule
fusion; (C) optical microscopy image of droplets after capsule destruc-
tion by hexylamine. Inset images are photographs of the samples.
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lation process. The compacted capsules were placed in a vial
that was heated at ∼50 °C overnight, resulting in formation of
a monolith for both capsule systems, as shown in Fig. 2B and
3B. This capsule shell fusion is attributed to bond exchange
between the polymers of the neighboring capsules based on
the reversible nature of the HUBs. The inset pictures of Fig. 2B
and 3B further illustrate the formation of a monolith.
Subjecting capsules that do not contain HUBs (i.e., were pre-
pared using a primary diamine) to the same conditions did
not lead to monolith formation, but the capsules remained
dispersible in dodecane (Fig. S5 and S6†).

The polymer component of the shell can alternatively be
destroyed in the presence of a primary amine at an appropriate
temperature. Reversion of the HUB gives a secondary amine
and an isocyanate, the latter of which undergoes irreversible
reaction with the primary amine. To destroy the polymer com-
ponent of the capsule shells, isolated capsules were dispersed
in octane, then hexylamine was added and the mixture heated
to 50 °C. The optical microscopy images in Fig. 2C and 3C
show that the capsule shells were destroyed, as indicated in
the change in contrast, with the system reverting to the emul-
sion. From these microscopy images, the stabilizing agent of
the emulsion is unclear, and may be attributed to small mole-
cules or oligomers produced or C18-GO nanosheets. The
majority of the newly-formed emulsion droplets are smaller
(<25 µm) than that of corresponding capsules, and are more
similar to droplets in the DMF-in-octane emulsion templates
(Fig. S3†). This supports that interfacial polymerization can
lead to differences between the size of droplets and capsules.
Additionally, some non-spherical droplets are observed in the
1,3-RDI-DIEDA sample after capsule destruction, which may
be due to the uneven distribution of various surfactants at the
fluid–fluid interface.

Summary

In this communication, we report the preparation of capsule
shells containing hindered urea bonds (HUBs) and use them
to form monoliths by inter-shell fusion, or destroy them by
addition of a primary amine. The capsules are prepared using
a water-free oil-in-oil emulsion stabilized by C18-GO. We
demonstrate that diisopropyl ethylenediamine (DIEDA) can be
used with two different diisocyanates to form these dynamic
shells. Importantly, at and below room temperature, the dyna-
micity of the bonds within the shell is slow enough such that
individual capsules remain intact, but a slight increase in
temperature to ∼50 °C enables capsule fusion or destruction,
depending on the conditions used. This work provides the
ability to form monoliths from dry capsule powder or destroy
the shell on demand, and is expected to find use across a
broad spectrum of applications. Ongoing work in our lab
focuses on further tuning the polymer chemistry of the
capsule shell to control the temperature at which fusion and
destruction occurs, as well as incorporating other core
materials.

Fig. 4 Offset FTIR spectra (% transmission) of the diisocyanates 1,3-
ArDI (black line) and 1,3-RDI (purple line); diamine DIEDA (dark blue
line); and capsules of 1,3-ArDI-DIEDA (light blue line) and capsules of
1,3-RDI-DIEDA (olive green line).

Fig. 5 TGA weight loss profiles and their first derivatives of (A) 1,3-
ArDI-DIEDA capsules and (B)1,3-RDI-DIEDA capsules.
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