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Organophosphorus (OP) chemical warfare agents (CWAs) represent an ongoing threat but the understand-

able widespread prohibition of their use places limitations on the development of technologies to counter

the effects of any OP CWA release. Herein, we describe new, accessible methods for the identification of

appropriate molecular simulants to mimic the hydrogen bond accepting capacity of the PvO moiety,

common to every member of this class of CWAs. Using the predictive methodologies developed herein, we

have identified OP CWA hydrogen bond acceptor simulants for soman and sarin. It is hoped that the

effective use of these physical property specific simulants will aid future countermeasure developments.

Introduction

Organophosphorus (OP) compounds have been used on a
global scale as pesticides and chemical warfare agents (CWAs)
for almost a century.1 The uncontrolled release of these highly
toxic compounds presents a continuing global risk as evi-
denced by recent small-scale events within Germany (2020),2

the UK (2018)3 and Malaysia (2017),4 combined with larger-
scale events in Syria (2013)5 and Japan (1995).6 The develop-
ment of novel detection technologies is therefore of high
global importance.

Recently, supramolecular systems have been effectively tar-
geted to fulfil this need.7 This has included the development
of fluorescent8 and luminescent sensors,9–11 and a body of
work from Gale and co-workers in which hydrogen bond
donating compounds have been shown to: selectively form OP
CWA hydrogen bonded complexes;12,13 act as OP CWA hydro-
lysis organocatalysts;14 produce supramolecular organogels
that act both as OP CWA sensory and decontamination

materials.15–17 Additionally, Cragg and co-workers have devel-
oped a crown-(thio)urea based receptor capable of sensing the
presence of sarin and soman hydrolysis breakdown products.18

Here the resultant fluoride ion binds to the thio(urea) moiety,
while the phosphate group coordinates to the crown ether,
resulting in a colourless to orange colorimetric change.
Finally, a body of work by Ward and co-workers has shown
that self-assembled cages can bind CWA simulants inducing a
fluorescence response,19 and act as catalysts for the hydrolysis
of phospho-ester species.20

OP simulants are typically the only available option for devel-
oping novel approaches to combat OP CWA release due to the
highly toxic nature of, and legal restrictions placed upon, the
live agents themselves. However, no single simulant can simul-
taneously mimic all the chemical properties of an OP CWA
without also inheriting undesirable molecular traits. It is there-
fore vital to consider the appropriate properties of any simulant
chosen to aid in the development of novel OP CWA detection,
decontamination, or remediation methodologies.21–24 Recently,
work undertaken by Snurr and Mendonca, has shown that
density functional theory (DFT) can be used to study the mecha-
nism of OP hydrolysis, which has resulted in the development
of a quantitative structure activity relationship (QSAR) model
that enables the identification of appropriate OP CWA simulants
for decontamination purposes.25

However, when considering supramolecular technologies,
the moiety target is often selective coordination of the polar
PvO functionality. This chemical group, common to all OP
CWAs, plays a significant role in both molecular surface
coordination properties and reactivity. Herein, we extend our
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prior work, which showed that simple, low level computational
modelling may be used to predict hydrogen bond mediated
aggregation events26,27 and antimicrobial activity,28 to identify
appropriate OP CWA simulants for the development of supra-
molecular detection technologies, complementing the recent
advances made in this area for hydrolysis siumulants.25

Here, we hypothesised that neutral hydrogen bond donating
receptors 1–4 (Fig. 1) would form hydrogen bonded complexes
with potential OP CWA simulants (5–26) and, due to the struc-
tural simplicity of 1–4, the strength of the complex formed
would depend on the properties associated with the principal
hydrogen bond acceptor (HBA) group. The association constants
(Kass) relating to these hydrogen bonded complexation processes
should therefore provide information relating to the simulants’
principal HBA site, which corresponds to the moiety mimicking
the PvO group of a specific OP CWA. These experimental data
are then correlated with parameters derived from accessible
computational modelling methods, to enable the identification
of an appropriate simulant. Compounds 11–15 are commer-
cially available species commonly used to simulate OP CWAs.
The structures of simulants 5–10 and 16–26 were designed to
fulfil the following criteria: charge neutrality; not readily
ionised under experimental conditions; containing a single elec-
trophilic site (S or P); and containing a single HBA centre
(either a PvO (5–15), or OvSvO (16–26)).

Synthesis

The syntheses of 1–4, 7–9, 17–21, and 23–26 have previously
been reported.29–40 Compounds 5, 6 and 10 were obtained as
colourless oils in 65%, 90%, and 85% yields respectively, from
the reaction of diethyl chlorophosphate with the respective
alcohol in chloroform. Compound 16 was obtained as a white
solid in a 59% yield from the reaction of 4-(trifluoromethyl)
phenol with p-toluene sulfonylchloride in chloroform.
Compound 22 was obtained as a pale-yellow solid in a 91%
yield from the reaction of 4-(trifluoromethyl)phenol with
methylsulfonyl chloride in chloroform.

Results and discussion
Association constant determination

Experimental association constants for receptor : simulant
complexes were determined in CD3CN using 1H NMR titration
techniques, following the downfield change in chemical shift
of the thiourea/pyrrole NH resonances upon increasing con-
centration of the simulant with respect to the appropriate
receptor (1–4). In all cases the experimental data were fitted to
1 : 1, 2 : 1, and 1 : 2 host : guest binding isotherms using
Bindfit v0.5.41 The errors produced from fitting these data
were compared and found to support the formation of 1 : 1
receptor : simulant complexes. Job plot experiments were also
performed but did not give conclusive results.42

A series of initial association studies were conducted to
identify a lead receptor; the results are summarised in Table 1.

Here, only the most acidic receptor (1) was found to produce
association constants that span the ≥two orders of magnitude
necessary to validate our hypothesis. Therefore, further data
analysis utilises results obtained with 1 only. These initial
results were then expanded to include all simulants (5–26);
this final data set is given in Table 2.

A single crystal X-ray structure,‡ obtained for a 1 : 1 complex
of 1 and DMSO (Fig. 2), shows the formation of one hydrogen

Fig. 1 Chemical structure of 1–26, sarin and soman.

‡A suitable crystal of 1 with DMSO was selected and mounted on a Rigaku
Oxford Diffraction Supernova diffractometer. Data were collected using Cu Kα
radiation at 100 K. Structures were solved with ShelXT55 structure solution pro-
grammes via direct methods and refined with ShelXL56 on least squares mini-
misation. Olex257 was used as an interface to all ShelX programmes.
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bond from each of the thiourea NH groups to the SvO HBA
group of the DMSO solvent molecule. It is therefore reasonable
to hypothesise that the analogous hydrogen bonded complexes
may be formed between 1 and simulants 5–15, which contain
a single oxygen atom acting as the principal HBA (Fig. 3c).
However, when considering simulants 16–26, the possibility
exists that, because of the two HBA oxygen atoms within

the sulfonate group, the formation of hydrogen bonds may
be permitted to one (Fig. 3a, O1′) or both of these atoms
(Fig. 3b, O2′).

In-silico modelling

As it is feasible that 16–26 could adopt one of two 1 : 1 binding
modes with 1 (Fig. 3b and c), the potential for one of these
binding modes prevailing within the solution state was further
explored computationally (M06-2X/6-311 g(d,p)), (PCM = aceto-
nitrile, Gaussian16).43–45

The geometries of 6, 9, 10, 11, 16–20, 25, 26, sarin and
soman with receptor 1, were optimised individually and as
interacting pairs in both O1′ and O2′ configurations.† These
calculations confirmed the viability of both O1′ and O2′
binding modes for the sulfonyl species. However, as
expected no stable O2′ binding modes were found for the
phosphonyl species (Fig. 3d). The energies of binding are
significant (−41.2 to −84.6 kJ mol−1) for both sulfonyl and
phosphonyl species, with no clear preference for O1′ over
O2′ found for the sulfonyls, although significant substituent
dependence was observed. This is attributed to the variable
changes in steric profile on moving the simulant between
O1′ and O2′ bonding and the resultant effect on secondary
interactions.

Having confirmed the binding modes, we then sought to
develop an accessible predictive model for association
strength. DFT (M06-2X/6-311 g(d,p)) is a good computational
model for systems such as these as it accounts for non-
covalent interactions but is computationally expensive.46 We
have previously shown that low-level calculations can supply
useful guest-only parameters for predicting trends in associ-
ation constant without significant computational overhead.
Reducing the size of the calculations requires far less compu-
tational time; additionally, Spartan ‘16 runs on a convention-
al desktop making this approach accessible to a wider chemi-
cal audience. The range of parameters output by default for

Table 1 Kass (M−1) calculated for 1–4 with potential simulants 5, 6, 8,
10, 16, 18 and 20 in a CD3CN solution at 298 K, obtained through the
fitting of 1H NMR titration data to a 1 : 1 host : guest binding isotherm
using Bindfit v0.541

No. 1 2 3 4

5 36 (±6%) <10 19 (±11%) <10
6 17 (±1%) 20 (±5%) 27 (±9%) b

8 <10 23 (±4%) <10 b

10 <10 32 (±7%) <10 a

16 25 (±7%) a a a

18 <10 19 (±6%) a a

20 106 (±8%) a a a

aData could not be fitted to either a 1 : 1, 2 : 1 or 1 : 2 binding iso-
therm. b Peak overlap prevented binding constant determination.

Table 2 Kass (M−1) calculated for 1 with 5–26 in a CD3CN solution at
298 K, obtained through the fitting of 1H NMR titration data to a 1 :
1 host : guest binding isotherm using Bindfit v0.541

Simulant Kass Simulant Kass

5 36 (±6%) 16 25 (±7%)
6 17 (±1%) 17 <10
7 <10 18 <10
8 <10 19 48 (±11%)
9 <10 20 106 (±8%)
10 <10 21 41 (±8%)
11 11 (±1%) 22 64 (±5%)
12 52 (±6%) 23 46 (±9%)
13 <10 24 76 (±6%)
14 <10 25 <10
15 12 (±2%) 26 <10

Fig. 2 Single crystal X-ray structure showing 1 binding a single DMSO
solvent molecule through the formation of two hydrogen bonds.
Disorder associated with the DMSO molecule and CF3 moieties have
been omitted for clarity. Grey = carbon; white = hydrogen; green =
fluorine; blue = nitrogen; yellow = sulphur. Red dashed line indicates
hydrogen bonding.

Fig. 3 Possible binding modes for the formation of 1 : 1 complexes of 1
with (a) 16–26, (b) 16–26, (c) 5–15 and (d) 5–15. Hydrogen bonding
angles are shown in red.
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PM6 calculations is sparse, and so to expand the scope of
searchable parameter space, DFT (B3LYP/6-3G1*) calculations
were also performed using Spartan ‘16.47–49 The analogous
parameters obtained were consistent with those values pro-
duced from PM6 and M06-2X/6-311 g(d,p) calculations.†
In total, a list of 19 computationally derived parameters (P),
summarised in Table 3, were produced for each potential
simulant/OP CWA alone or when in a 1 : 1 complex with 1.
This list of parameters are easily accessible, unfiltered by
assumption of their relevance to avoid prejudicing the
parametric search. These parameters were then used along-
side the experimentally derived association constant data
(Table 2) to produce initial predictive association constant
models.

Single parameter predictive models

Initial comparison identified correlations between the experi-
mentally derived association constants and host : guest
hydrogen bond angle (obtained from B3LYP-6-31G* calcu-
lations), Fig. 4. For ease of interpretation, the hydrogen bond
angles involved in complex formation are represented as the
sum of the difference from the optimal 180° hydrogen
bonding angle for those hydrogen bonds formed during the
potential simulant : receptor complexation processes,50,51

such as those exemplified in Fig. 3. Here, we identify three
trends, one for the phosphoryl species and two for the sulfo-
nyl species. The two trends identified for the sulfonyl

species correspond to the two different classes of sulfonate
molecules present within the library of simulants studied,
those substituted with a toluene group (16–20) and those
substituted with a methyl group (21–26). As the limitation of
the experimental association constant determination meth-
odology is ≈10 M−1, we suggest that any values incorporating
≤10 M−1 may be considered inappropriate when included
into a model such as this and should be treated with
caution. We hypothesise that for a complex formed utilising
a single HBA atom, increasing hydrogen bonding strength
will result in an overall decrease in hydrogen bonding angle
away from 180°, as the host and guest move closer together,
resulting in a positive correlation as observed for the phos-
phoryl species (blue and black trends, Fig. 4). However, for
complexes formed using two HBA oxygen atoms, the hydro-
gen bonding angles will move towards 180°, resulting in a
negative correlation as observed for both sulfonate species
(blue and black trends, Fig. 4). The two different trends
observed for the methyl and toluene substituted sulphonyl
groups we believe are due to additional R-group specific
interactions.

The OP CWA association constants were then predicted for
sarin and soman (Fig. 4, green), using the trend shown for the
phosphoryl species (Fig. 4, red), resulting in predicted associ-
ation constant values of 22 M−1 and 13 M−1 for sarin and
soman respectively. Using the three trends shown in Fig. 4,
compounds 6 and 16 were identified as the most appropriate
simulants for sarin, while 10 and 11 were identified as the
most appropriate simulants for soman.

Exhaustive parameter search

The energetics of association do not depend solely on a single
molecular property, and we have previously shown that the use
of an exhaustive, high throughput parameter search allows the
rapid identification of predictive models.28 To enable the eluci-
dation of further association constant predictive models using

Table 3 List of parameters (P) used to produce association constant
predictive models and computational method used to derive each para-
meter. A definition for each of these parameters can be found within the
ESI (Table S46†)

P P description SI unit

Derivation
method

PM6
B3LYP/
6-31G*

P1 Emin kJ mol−1 ×
P2 Emax kJ mol−1 ×
P3 Molecular volume Å3 ×
P4 Molecular area Å2 ×
P5 Solvent accessible area Å2 ×
P6 Polar surface area Å2 ×
P7 % Polar surface area % ×
P8 Polarizability C m−2 ×
P9 Steric weighting factor (SWF) Å2 ×
P10 Steric accessibility factor (SAF) Å2 ×
P11 HOMO eV ×
P12 LUMO eV ×
P13 Total energy kJ ×
P14 Electrostatic charge C ×
P15 Additive N⋯O bond length Å ×
P16 log P N/A ×
P17 Dipole moment D ×
P18 Additive NH⋯O bond length Å ×
P19 H-Bond angle difference from

optimal 180°
° ×

N/A = non-applicable. ‘×’ identifies the computational modeling
method used to generate the values for a particular parameter (P).

Fig. 4 One parameter association constant (Kass) prediction. Red =
phosphoryl species; blue = toluene substituted sulfonyl species; black =
methyl substituted sulfonyl species; green = predicted OP CWAs; purple
shaded section = Kass ≤ 10 M−1.
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more than one computational parameter (Table 3), R data ana-
lysis software52 was used to complete an exhaustive search of
all potential parameter combinations for direct and inverse
correlations of up to three parameters (eqn (1) and (2)). These
searches included all relevant association constant data
(Table 2) where Kass > 10, to identify a single linear correlation.

Kass ¼ Pa
x � Pb

y

aj j þ bj j ¼ 2
ð1Þ

Kass ¼ Pa
x � Pb

y � Pc
z

aj j þ bj j þ cj j ¼ 3
ð2Þ

The form of these equations is suggested by the manner in
which factors contribute to the free energy of binding and
thus association constant.† The top 10 fits of these data to
each of these two equations as identified through R2 analysis
are detailed within the supplementary materials. Although this
approach did not result in the identification of any viable pre-
dictive models in this instance, it does offer an insight into
which factors contribute to binding. Examination of the top 10
fits identified through either two parameter or three parameter
searches shows that only some parameters exhibit any ener-
getic significance, these results are summarised in Table 3.
From this analysis, P10 (steric accessibility factor) and P14 (HBA
electrostatic charge) are the two parameters that appear most
commonly, with a total of 17 and 9 occurrences respectively;
P11 (HOMO energy) is the third most common parameter, with
8 occurrences. The prevalence of P14 is not surprising as the
electrostatic charge at the acceptor atoms would be expected to
contribute to the electrostatic component of hydrogen
bonding. Likewise, the HOMO energies, as associated with
lone pairs at oxygen, will be involved in the potential for
covalent contribution to the hydrogen bonding. More perplex-
ing is the dominance of P10, which describes the exposed elec-
trophilic site of the simulant and not the HBA oxygen at all.
However, the trends identified show an inverse correlation
with P10 – the larger the exposed electrophilic site, the smaller
the binding constant. This therefore corresponds to the steric
bulk about the P or S atom and the extent to which the substi-
tuents are folded away from the electrophilic site and towards
the HBA oxygens. We can therefore regard P10 as a proxy for
steric bulk about the HBA centres. Taken together, these indi-
cate that simple electrostatic models of hydrogen bonding are
not sufficient to describe these systems, and that consideration
of secondary bonding (and repulsive) interactions will be key
in properly mimicking OP CWAs in future work (Table 4).

Potential simulant toxicity

It is imperative that any simulants do not duplicate the toxicity
of OP CWAs. The toxicity of these potential simulants against
the commonly used model species Schizosaccharomyces pombe
(S. pombe) was ascertained to gain some insight as to the
potential toxicity of 5–12 and 16–26 towards eukaryotic cells in

a biological environment.53,54 The growth of this model yeast
system was monitored by optical density measurements at
600 nm (OD600) in the presence and absence of 5–12 and
16–26, which were supplied in a 1 : 19 EtOH : H2O solution to
aid simulant solubility. The results of these studies are sum-
marised in Fig. 5.

These preliminary results show that, at 3.3 mM, the simu-
lants 5, 8, 10, 16–20, 22, 25 and 26 have no significant impact

Table 4 Number of times a single parameter appears within the top
10 models, as identified through comparative R2 analysis, obtained from
an exhaustive search of P1–P19 with eqn (1) and (2)

P eqn (1) eqn (2) Total

P1 1 2 3
P2 0 0 0
P3 0 0 0
P4 0 0 0
P5 0 0 0
P6 0 1 1
P7 0 0 0
P8 0 0 0
P9 0 0 0
P10 8 9 17
P11 4 4 8
P12 0 0 0
P13 0 0 0
P14 4 5 9
P15 2 2 4
P16 0 0 0
P17 0 3 3
P18 1 4 5
P19 0 0 0

Fig. 5 S. pombe toxicity screening % cellular growth (recorded as
maximum OD600) reached at stationary phase in the presence of 5–12,
16–26 (3.3 mM) relative to controls after 45 hours, supplied to the
microbial broth solution in a 5% ethanol solution. Data shown represents
an average of three experiments. Green – cell growth impeded by <16%
over the course of 45 hours; Amber – cell growth impeded by 16–50%
over the course of 45 hours; Red – cell growth impeded by >50% over
the course of 45 hours. Control = 5% aqueous ethanol solution. Error =
standard error of the mean.
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on cell growth therefore demonstrating little/no toxic effects,
while simulants 6, 7, 9, 11, 12, 21, 23 and 24 show a degree of
toxicity that warrants further investigation. The lead simulants
identified to mimic complex formation for soman and sarin
were shown to reduce the growth of S. pombe by 22.1%, 17.8%,
7.6%, 9.3%, 22.3% and 6.5% for 6, 8–11, and 16 respectively
over a period of 45 h relative to control samples. This
indicates simulants 8, 10 and 16 pose no significant toxicity
risk to eukaryotic organisms, while simulants 6, 9 and 11
would require further investigation. It is also important
to note that 17, 19 and 22 showed greater than 100% cell
growth and further investigations into this are underway.
Nevertheless, full pharmacodynamic and pharmacokinetic
studies should be undertaken before these simulants are con-
sidered safe to handle without the use of personal protective
equipment.

Conclusions

We have produced a first-generation predictive model to aid in
OP CWA simulant selection for the development of defensive
technologies relating to OP CWA sensing through complexa-
tion, combining low level computational modelling and
exhaustive parameter searches. The lead simulants currently
identified using this model are 6 and 16 (for sarin), and 10
and 11 (for soman). Additionally, we hypothesise that the
single parameter relationships identified here maybe devel-
oped towards the identification of solution state binding
mode.

Finally, these results show that when choosing a simulant
for the development of novel OP CWA detection and remedia-
tion methodologies, the specific physicochemical properties of
interest should be considered. It is hoped that the uncovering
of structure activity relationships achieved using similar para-
metric searching methodologies to those detailed herein will
enable the evermore effective identification of appropriate
simulants to aid in the development of novel technologies for
the effective detection of OP CWAs. Our work in this area is
ongoing as we seek to apply this highly accessible method-
ology to enable the identification of suitable simulants not
only for CWAs but also for pesticides, a common agricultural
pollutant.
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