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Deep learning-based denoising for improved dose
efficiency in EDX tomography of nanoparticles†
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The combination of energy-dispersive X-ray spectroscopy (EDX) and electron tomography is a powerful

approach to retrieve the 3D elemental distribution in nanomaterials, providing an unprecedented level of

information for complex, multi-component systems, such as semiconductor devices, as well as catalytic

and plasmonic nanoparticles. Unfortunately, the applicability of EDX tomography is severely limited

because of extremely long acquisition times and high electron irradiation doses required to obtain 3D

EDX reconstructions with an adequate signal-to-noise ratio. One possibility to address this limitation is

intelligent denoising of experimental data using prior expectations about the objects of interest. Herein,

this approach is followed using the deep learning methodology, which currently demonstrates state-of-

the-art performance for an increasing number of data processing problems. Design choices for the

denoising approach and training data are discussed with a focus on nanoparticle-like objects and extre-

mely noisy signals typical for EDX experiments. Quantitative analysis of the proposed method demon-

strates its significantly enhanced performance in comparison to classical denoising approaches. This

allows for improving the tradeoff between the reconstruction quality, acquisition time and radiation dose

for EDX tomography. The proposed method is therefore especially beneficial for the 3D EDX investigation

of electron beam-sensitive materials and studies of nanoparticle transformations.

Introduction

Energy-dispersive X-ray (EDX) spectroscopy is one of the very
few methods that can directly retrieve the elemental distri-
bution in nanoscale objects. This technique is based on scan-
ning transmission electron microscopy (STEM), where a highly
focused electron beam is scanned across a specimen and the
generated signal is registered at each point using one or
several detectors. Interaction of swift electrons with atoms
comprising the specimen produces characteristic X-rays with a
spectrum unique for each chemical element and intensity pro-
portional to the concentration of the corresponding species in
the interaction area.1 This phenomenon allows for generating
elemental maps of objects under investigation with a very high
– up to atomic2,3 – resolution and quantifying the chemical
composition of nanomaterials.4

EDX can be combined with the concept of computed tom-
ography by acquiring elemental maps of an object at multiple
tilt angles for the subsequent 3D reconstruction. EDX tomogra-
phy provides invaluable information on the structure of
complex nano-objects, where 2D projections are insufficient
for understanding the distribution of individual chemical
elements.5–7 Unfortunately, in most cases the application of
EDX tomography is severely limited by the typically very low
signal-to-noise ratio (SNR) in the 2D elemental maps that are
used as input for the 3D reconstruction algorithm. The poor
SNR is caused by the combination of the fundamentally low
probability of characteristic X-rays generation and low
efficiency of their detection due to the size constraints on the
EDX detector inside a TEM.1 Together with the requirement
for recording elemental maps along multiple directions for 3D
reconstruction, a typical EDX tomography experiment takes
more than 2 h of acquisition time even when using high elec-
tron beam currents (in the range of 0.25–1.5 nA).8–11 This
results in very high electron illumination doses (up to 109 e
Å−2),8 making EDX tomography applicable only to materials
that are extremely stable against electron irradiation.

One way to improve the SNR for EDX tomography lies in
smart post-processing of experimental data. Given prior expec-
tations about the studied object and the measurement process
itself, it is possible to obtain an estimate of a true signal from
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the measurements corrupted by noise. So far, the research on
this approach has followed three main directions: multivariate
analysis of the spectral data,12–14 denoising of 2D elemental
maps via filtering15 and promotion of certain qualities of the
resulting 3D reconstruction (e.g. smoothness) by variational
analysis.16,17 All these methods are model-based, meaning
that an algorithm employs a set of fixed criteria for separating
true signal and noise: for example smoothness and homogen-
eity of the expected signal or covariance of intensities for the
energy channels corresponding to the same chemical element.
This approach has the disadvantage of having to manually
construct the image quality model and an algorithm for opti-
mizing it. Moreover, such techniques require tuning the
model parameters for achieving the optimal result (often in a
manual way), and there is always a concern of how completely
the designed model captures the expected signal features.
These limitations can be overcome by using data-driven
approaches, where the model for separating signal from noise
is learned algorithmically from a sufficiently large set of train-
ing data.18 Especially with the rapid development of artificial
neural networks and deep learning methodology,19 such tech-
niques have been shown to provide superior results for a wide
set of data analysis tasks, including the denoising problem.20

Specifically, in the field of tomography there has been signifi-
cant progress in developing deep learning-based approaches
for improving the quality of 3D reconstructions in biomedical
imaging techniques, such as magnetic resonance imaging
(MRI)21 and computed tomography (CT).22 For materials
science applications, the corresponding benefits have been
achieved for microscale CT23 and electron tomography.24

Recently, a deep learning-based methodology has been pro-
posed for EDX tomography of nanocrystals.25 The authors
demonstrated a sophisticated approach that allowed for
improving the quality of 3D EDX reconstruction for experi-
mental data based on a gold nanorod and Zn/S/Se quantum
dots in comparison to conventional approaches for 3D recon-
struction and denoising. However, the proposed method was
only tested on a very limited number of datasets, and a quanti-
tative evaluation of the performance was not possible due to
absence of ground-truth data. In addition, the proposed
method requires the acquisition of long-exposure EDX
measurements to obtain accurate elemental maps for training,
which may be impossible or infeasible in practice.

In this work, we develop and analyze a deep learning-based
method to improve the SNR in EDX tomography based on an
extensive dataset of simulated nanoparticle structures with an
appropriate representation of possible geometries and experi-
mental noise, removing the need for acquiring long-exposure
EDX maps for training. The proposed method is based on
denoising individual images in a tomographic series, which
makes it easy to integrate into existing EDX tomography recon-
struction methodologies and enables a direct comparison to
conventional denoising approaches. Using simulated and
experimental data, we demonstrate that the proposed denois-
ing method may allow for a drastic reduction in acquisition
time and electron dose requirements for EDX tomography

without compromising the qualitative analysis of the 3D
elemental distribution in nanoparticles.

Results and discussion

The first crucial step in designing the proposed deep learning-
based method consists in establishing a sufficiently large set
of data adequately representing the objects of interest and
noise features of experimental EDX maps. Such a dataset is
required for training the algorithm and carrying out a quanti-
tative analysis of its performance. The training can be based
on either pairs of noisy and ground truth data points in a
supervised learning approach, or solely on noisy data using
self-supervised learning.19 In this paper, we focus on the
supervised approach because of its generally higher perform-
ance demonstrated for denoising tasks in various
applications26,27 and a more established training methodology.
Unfortunately, providing ground truth data for EDX mapping
of nanoparticles experimentally is typically an infeasible task
because of the electron beam damage resulting from the very
long acquisition times required for achieving the desirable
SNR for each map. Therefore, we decided to base the training
solely on synthetic data, which was previously proposed in
other fields.28 For this purpose, a dataset of simulated EDX
data with an adequate representation of typical nanoparticle
structures and experimentally observed signal and noise fea-
tures was established. Fig. 1a illustrates the workflow used for
generating entries in this dataset. Each data point contains a
solid or a core–shell nanoparticle shape (for example, bipyra-
mid, rod, sphere in cube, etc.) with randomized geometric
parameters (Fig. 1b), its voxel grid representation and a set of
projection images of the structure (Fig. 1c) paired with their
noisy counterparts (Fig. 1d), which are used for training the
denoising method (see also Methods section). Because of the
large number of base shapes and complete randomization of
geometric parameters via scripting, our database provides
high variability in training data. Moreover, the availability of
ground truth 3D structures and 2D projection images of the
simulated nanoparticles allows for a robust, statistically repre-
sentative assessment of the performance of various data pro-
cessing methods, including denoising, reconstruction and seg-
mentation algorithms. In the future, this database can be
expanded to include other relevant nanoparticle mor-
phologies, such as less regularly shaped and porous 3D struc-
tures. Therefore, we believe that the proposed dataset, which
we make available together with this work,29 will facilitate the
development of improved data-driven methods for (EDX) tom-
ography of nanoparticles.

In this paper, we focus on extremely noisy EDX data
expected for low electron illumination doses and short acqui-
sition times to probe the potential benefit of smart, deep
learning-based post-processing in terms of dose/time
reduction for EDX tomography. Accordingly, projection images
in the simulated dataset were corrupted with heavy Poisson
noise corresponding to 103 total counts for each simulated
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elemental map on average (see Fig. 1d). The residual EDX back-
ground noise typically present in experimental elemental maps
was modelled by a Poisson distribution with a spatially uniform
expected value resulting in additional 100 counts on average
(see the Methods section). The adequacy of only taking into
account the Poisson distribution of the signal for modelling the
noisy EDX data was confirmed using experimental tests (see
Fig. S3 in the ESI†). Equalizing the total number of counts per
map allows for fixing the SNR of the simulated map with
respect to the absolute size and composition of the object as
well as microscope parameters, such as electron beam current,
detector efficiency and acceleration voltage. The expected acqui-
sition time for such an elemental map therefore depends on
these parameters and can be estimated for specific settings
using measured EDX generation cross-sections. For example, a
103 counts EDX map of a gold sphere with a diameter of 20 nm
can be acquired in about 10 s using 150 pA electron beam
current at our Thermo Fisher Titan TEM with a four-quadrant
Super-X spectrometer,11 which is comparable to the electron
dose and acquisition time used in typical conventional STEM
imaging. We emphasize that the average number of counts in
the elemental maps studied in this work is intentionally fixed
to 103 to consistently represent the extremely short acquisition
time and low electron dose case for EDX acquisition. On the
other hand, the proposed simulated dataset can potentially be
used to easily extend the deep learning-based denoising to the
more typical, less noisy data by changing the corresponding
level of Poisson noise in the simulated training database.

The strengths of the deep learning methodology can be
used for denoising EDX tomography via several possible
approaches, such as (a) deep learning-assisted multivariate
analysis for extracting elemental maps from hyperspectral EDX
data;30 (b) denoising of 2D elemental maps before using a clas-
sical 3D reconstruction algorithm;31 (c) denoising of 3D data
after the classical reconstruction32 and (d) in an end-to-end
approach, where the deep neural network implements the
actual transformation of the tomographic tilt series into 3D
reconstruction.33 Approach (a) offers limited benefit for most
EDX hyperspectral images, where spectra of individual

elements typically do not overlap and elemental maps can be
reliably obtained via maximum likelihood fitting; approach (c)
was shown to underperform compared to 2D based denoising
because of severe artifacts introduced by 3D reconstruction
algorithms when the input data is highly noisy (see Fig. S4 in
the ESI†), and approach (d) is generally much more computa-
tionally demanding and difficult to apply for practical cases.
On the other hand, approach (b) has been extensively studied
in other fields, which can be used as a foundation for develop-
ing the methodology for EDX tomography.18,20 Furthermore,
2D denoising can be directly compared to conventional EDX
denoising methods, such as Gaussian filtering10 or total vari-
ation (TV) denoising,34 and can be easily combined with exist-
ing advanced 3D reconstruction algorithms. Based on these
considerations, we chose to pursue approach (b) in this work.
At the same time, we envision that one or a combination of
the other above-mentioned approaches can be developed into
a potentially more powerful method in the future.

To perform the denoising task, we chose to use the well-
established U-net deep neural network architecture,35 which
was successfully applied in other fields for a wide variety of
tasks involving image-to-image transformations.21,32,36 The
U-net architecture corresponds to an encoder-decoder type,
which allows the network to reconstruct an input image based
on spatial features learned from the training dataset, whereas
the presence of “residual” connections aids with preserving
the image fidelity (see the Fig. S5 in the ESI†). For training and
evaluating the network, a dataset of 1000 randomized 3D
nanoparticle structures was selected from the database
described above. The data were divided into training, vali-
dation and test subsets of 700, 150, and 150 structures,
respectively. For each structure, one pair of a ground truth pro-
jection image and the corresponding simulated noisy elemen-
tal map was obtained. In this manner, the network was trained
on 700 noisy maps and 150 maps were used for adjusting the
training parameters. The quantitative comparison between the
different denoising methods was performed on an indepen-
dent set of 150 maps that were not exposed to the network
during the training.

Fig. 1 Simulated dataset for EDX tomography of nanoparticles. (a) Flowchart of operations performed for generating each data point. Examples of
simulated (b) nanoparticle shapes, (c) projection images, and (d) noisy EDX maps for three typical entries in the generated dataset. To improve visi-
bility, a 3 × 3 uniform filter was applied to the simulated noisy EDX maps (the original maps can be found in Fig. S1 in the ESI†).
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To evaluate the quality of deep learning-based denoising
with respect to conventional methods, we compared it to the
commonly used Gaussian filtering and TV minimization-based
image denoising. Normally, both of these classical approaches
have to be adjusted manually via the respective denoising
strength parameters (Gaussian filter width and TV relative
weight). However, for testing on simulated data we used the
best-case scenario results for these methods by numerically
optimizing the parameter values until the smallest absolute
error with respect to the ground truth image was observed. We
emphasize that for experimental data this approach is not
applicable, which generally makes the optimization of denois-
ing parameters a subjective and often tedious trial-and-error
procedure, which typically results in a sub-optimal perform-
ance. In contrast to this, the deep learning-based method auto-
matically adjusts to the noisy input data, which represents a
significant advantage for the practical applications of the pro-
posed approach. A qualitative comparison between the studied
methods is demonstrated in Fig. 2a. It can be seen that the
U-net output consists of realistic image features learned from
the training dataset, such as sharp particle boundaries and
smooth intensity variations within. On the other hand,
Gaussian and TV denoising performs a non-discriminative fil-
tering, producing blurry and patchy image appearance. To
compare the approaches in a quantitative manner, we calcu-
lated normalized mean absolute errors (nMAE) between
denoised and ground truth simulated images in the test
dataset of 150 entries which had not been exposed to the
network during the training (see the Methods section). Fig. 2b
shows that in addition to the more sensible image appearance,
the U-net based method produces significantly more accurate
results compared to Gaussian and TV denoising.

To compare the effect of different denoising methods on
the quality of 3D reconstructions, tilt series of noisy elemental
maps were generated for each simulated structure in the test
dataset using a tilt range of ±75° and a 10° tilt step to mimic
typical experimental conditions for EDX tomography. Each

elemental map in the tilt series was denoised using the
respective methods and a 3D reconstruction was obtained by
the expectation–maximization algorithm (see Methods
section). From the orthoslices through the reconstructions of
test objects displayed in Fig. 3a, it can be seen that the tom-
ography based on the U-net denoised data produces objects
with sharp outer edges and smooth intensity distributions
within, whereas Gaussian and TV denoising leads to unrealis-
tic blurring and a speckled appearance. The quantitative
improvement in the denoising performance was assessed by
calculating the normalized mean absolute error for the recon-
structions based on the denoised tilt series in comparison to
the ground truth 3D structures. From Fig. 3b it can be seen
that the performance improvement for the U-net based
method is even more evident for the tomography results com-
pared to the 2D case due to accumulation of denoising errors
in the 3D reconstruction procedure, which significantly affects
the results of classical denoising methods. Specifically, the
average error for the 3D reconstruction denoised using U-net is
reduced two-fold compared to the Gaussian and TV denoising.

To test the performance of the proposed denoising method
on experimental data, we used EDX tilt series for three
different core–shell Au/Ag nanoparticles: a nanorod, a rice-
corn-shaped particle and a hollow nanoshell (see Fig. 4a). The
data were collected in a conventional manner, using long
acquisition times and high electron doses (see Table 1) to
obtain reference 3D reconstructions. Afterwards, each elemen-
tal map was downsampled to 103 counts on average while pre-
serving the Poisson distribution of the signal (see Methods
section) to create a highly noisy input for testing the different
denoising approaches. From Table 1, it can be seen that the
noisy input corresponds to 20–40 times smaller electron dose
and acquisition time per EDX map, bringing these values in
the range of typical STEM tomography experiments. Fig. 4b
depicts orthoslices through tomographic reconstructions
based on noisy EDX maps denoised using classical methods
and the proposed deep learning-based approach in compari-

Fig. 2 Qualitative and quantitative comparison of denoising performance on simulated 2D maps for optimal Gaussian filtering, TV denoising and pro-
posed deep learning-based (U-net) methods. (a) Examples of simulated noisy, denoised and ground truth maps. To improve visibility, a 3×3 uniform filter
was applied to the simulated noisy EDX maps (the original maps can be found in Fig. S2 in the ESI†). (b) Normalized mean absolute errors with respect to
the ground truth data for the tested methods. Error bars correspond to the standard deviation of performance between 150 tested simulated maps.

Nanoscale Paper

This journal is © The Royal Society of Chemistry 2021 Nanoscale, 2021, 13, 12242–12249 | 12245

Pu
bl

is
he

d 
on

 0
8 

Ju
ly

 2
02

1.
 D

ow
nl

oa
de

d 
on

 1
/1

2/
20

26
 1

1:
16

:5
3 

PM
. 

View Article Online

https://doi.org/10.1039/d1nr03232a


son to the reference reconstruction obtained from the high
signal-to-noise ratio data. It can be observed that U-net based
denoising results in correct reconstruction of the core–shell
structure of the particles while giving an adequate representa-
tion of the particles shape and elemental distribution inside.
On the other hand, Gaussian and TV denoising result in frac-
turing and blurring of reconstructions, which impedes visual-
ization and analysis of the reconstructed 3D elemental distri-
butions. This comparison illustrates that the proposed deep
learning-based denoising method offers a leverage in drasti-
cally reducing the acquisition time and electron dose required
for EDX tomography, while preserving the quality adequate for
analyzing elemental distribution in nanoparticles in 3D.

Our results demonstrate that application of deep learning
methodology for EDX tomography holds great promise in
terms of retrieving the 3D structure of an object from extre-
mely noisy elemental maps. This is especially interesting for
such applications as investigation of electron beam-sensitive
materials, in high-throughput EDX analysis – for example, in
industrial settings, and for in situ studies of nanoparticle
transformations, where both acquisition time reduction and
lowering beam damage effects are essential for answering rele-
vant materials science questions. The approach proposed in

Fig. 3 Qualitative and quantitative comparison of 3D reconstructions based on simulated tilt series denoised using optimal Gaussian filtering, TV
minimization and proposed deep learning-based (U-net) methods. (a) Examples of orthoslices through the reconstructions based on the denoised
tilt series and through the ground truth 3D data. Different colors in the same structure correspond to the different simulated elements. (b)
Normalized mean absolute errors with respect to the ground truth data for the tested methods. Error bars correspond to the standard deviation of
performance between 150 tested simulated 3D structures.

Fig. 4 Comparison of 3D tomography based on experimental data
denoised using Gaussian filtering, TV minimization and deep learning-
based (U-net) methods. (a) Visualization of the 3D structure of the used
nanoparticles including the orientation of the depicted orthoslices. (b)
Orthoslices through 3D reconstructions based on the noisy EDX data
after applying the corresponding denoising methods and the reference,
high signal-to-noise data reconstruction. Scale bars represent 30 nm.

Table 1 Acquisition parameters for the experimental EDX tomography series used for testing the proposed deep learning-based denoising
approach. “Conventional” refers to the original long acquisition time series and “noisy” – to the downsampled data that served as input for the
denoising methods

Particle shape

Time per EDX map [s] Electron dose per EDX map [e Å−2] Average counts per EDX map

Conventional Noisy Conventional Noisy Conventional Noisy

Nanorod 330 14 2.0 × 105 8.3 × 103 2.0 × 104 103

Ricecorn 420 9 3.8 × 105 8.0 × 103 4.2 × 104 103

Nanoshell 220 5 0.7 × 105 0.2 × 103 3.6 × 104 103
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this paper can be further improved by specializing the training
to a narrower set of shapes based on the particular material
under investigation. Additionally, a promising direction con-
sists in incorporating deep learning in the calculation of
elemental maps and in the 3D reconstruction step of EDX tom-
ography as well as in utilizing the additional information
coming from e.g. high-angle annular dark-field STEM
(HAADF-STEM) signal in a multimodal approach. We believe
that such developments can bring a drastic improvement in
balancing acquisition time and electron beam induced
damage against reconstruction quality in EDX tomography.

Conclusions

In this work, we have addressed the problem of very high
acquisition time and electron dose requirements for EDX tom-
ography of nanoparticles by developing a deep learning-based
method for denoising elemental maps. We established an
extensive database of realistic nanoparticle structures and
simulated noisy and clean EDX maps, which can be used for
training and quantitative evaluation of various data-driven
image processing, analysis, and reconstruction methods for
nanoparticles. Based on these data, we trained a deep neural
network with U-net architecture for denoising elemental maps
and analyzed its performance on simulated and experimental
data. A quantitative and qualitative comparison of the pro-
posed method to classical denoising approaches demonstrated
its superior performance. Furthermore, the improved perform-
ance of the proposed approach was even more pronounced for
the 3D reconstructions based on the denoised elemental
maps. Tests using noisy experimental data showed that deep
learning-based denoising can allow for more than an order of
magnitude reduction in electron dose and acquisition time for
EDX tomography without compromising the analysis of
elemental distribution in nanoparticles. The proposed meth-
odology therefore offers a pathway to enable EDX tomography
for more electron beam-sensitive materials, and higher
throughput studies, such as in situ analysis of elemental redis-
tribution in nanoparticles by TEM.

Methods
Training database generation

Meshes corresponding to various typical nanoparticle shapes
were generated using Python scripting of the Blender 3D mod-
elling software.37 In this work we used regular shapes, namely
spheres, cubes, spherically capped rods, (truncated) octahedra
and icosahedra, (truncated) triangular, hexagonal and square
platelets as well as oblate and prolate pentagonal bipyramids.
Afterwards, geometric parameters of the shapes, such as
aspect ratio and truncation degree (where pertinent), smooth-
ing degree of the sharp edges, size, rotation and position in
the simulation box were randomized while taking care that the
object occupied between 50 and 90% of the final image. Next,

the shape was converted to voxel grid representation using the
VTK library.38 For simulating core–shell and void-containing
particles, two randomized shapes were superimposed and
their voxel masks were subtracted from each other. For the
core–shell particles, a Gaussian blurring with a randomized
strength was applied to the interface between the core and the
shell to simulate partially alloyed particles. Projection images
of the generated particles were calculated using the Astra
Toolbox software.39 EDX maps were simulated by applying
Poisson noise with a mean of 103 counts per projection image.
Noise from uncompensated EDX background was modelled by
Poisson distribution with spatially uniform expected value
resulting in additional 100 counts on average. The adequacy of
only taking into account the Poisson distribution of signal for
modelling the noisy EDX data was confirmed using experi-
mental tests (see Fig. S3 in the ESI†). The generated database
was published in open access on Zenodo repository.29

Denoising methods implementation

For Gaussian denoising we used the implementation from the
SciPy library40 and for TV minimization denoising the
Bregman algorithm41 from the scikit-image library42 was used.
For the deep neural network we implemented the U-net archi-
tecture35 using the Pytorch library.43 The only difference with
the original architecture was adding 1 pixel padding to all con-
volutions for preserving the size of the denoised image. The
exact network structure can be found in the ESI (Fig. S5†). The
network was trained on a set of 700 pairs of noisy and clean
projection images randomly selected from the generated data-
base for 100 epochs using Adam optimizer with 0.001 learning
rate. The training took approximately 30 minutes on a worksta-
tion equipped with an Nvidia Tesla T4 GPU with 16 GB of
memory. After the training, application of the network on the
user computer took 25.4 ± 0.5 ms per 256 × 256 noisy image
when using an Nvidia GeForce RTX 2060 GPU or 300 ± 20 ms
per image using an Intel Core i7-10700 CPU.

Assessment of denoising performance

For testing the denoising methods, 150 simulated 3D struc-
tures previously not exposed to the trained neural network
were randomly selected from the generated database. For each
structure, one pair of a clean projection image and a simulated
noisy elemental map was obtained. As the error metric, we
used normalized mean absolute error (nMAE) between the
denoised and the corresponding ground truth data:

nMAE ¼

1
N

XN

i¼1

x̂i � xij j

1
N

XN

i¼1

xi

� 100%

where x̂i and xi are intensities of a pixel in the denoised and
reference image, respectively, and N is the total number of
pixels.

Tunable parameters of Gaussian and TV denoising were
adjusted to the optimal values via numerical minimization of
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the absolute error with respect to the ground truth data using
Brent’s algorithm44 implemented in the SciPy library. The
neural network was used without any adjustment to particular
images.

To test the effect of denoising on the quality of 3D recon-
structions, a tilt series of simulated noisy elemental maps was
obtained for each 3D structure in the test dataset using an
angular range of ±75° and a tilt step of 10° to simulate the
typical parameters of EDX tomography. The resulting tilt series
were denoised using the respective methods and the 3D object
was reconstructed using 15 iterations of the expectation–maxi-
mization (EM) algorithm implemented in the Astra Toolbox.
For assessing the denoising performance, the normalized
mean absolute errors with respect to the corresponding refer-
ence 3D structures were calculated.

Experimental data acquisition

Experimental EDX tilt series were acquired in an angular range
of ±75° with a 10° tilt step using a Thermo Fisher Scientific
Tecnai Osiris TEM equipped with a Super-X four-quadrant
EDX spectrometer. The microscope was operated at 200 kV
accelerating voltage. Approximately 150 pA electron beam
current was used and the acquisition time per map was set by
the microscope operator to result in subjectively high-quality
maps – the resulting average times and electron doses per map
are given in Table 1. Elemental maps for Au and Ag were
retrieved using Bruker Esprit software using model spectrum
fitting based on L line families. For testing the denoising
methods, the number of counts in each elemental map was
reduced to 103 on average by drawing a new image from a
Poisson distribution with the expected value for each pixel
equal to: λi ¼ xi � 103=

P
xi, where xi is the number of counts

in the pixel and
P

xi is the total number of counts for the
whole original map. The obtained data were denoised using
the tested methods and 3D reconstructions were obtained
based on the denoised data using 15 iterations of the EM
algorithm. For reconstructing the original high signal-to-noise
EDX tilt series, the same algorithm and number of iterations
were used. The tilt series were aligned using cross-correlation
between HAADF-STEM images acquired in parallel with the
EDX signal at each tilt angle.
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