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Enabling autonomous scanning probe microscopy
imaging of single molecules with deep learning†

Javier Sotres, *a,b Hannah Boyda,b and Juan F. Gonzalez-Martineza,b

Scanning probe microscopies allow investigating surfaces at the nanoscale, in real space and with unpar-

alleled signal-to-noise ratio. However, these microscopies are not used as much as it would be expected

considering their potential. The main limitations preventing a broader use are the need of experienced

users, the difficulty in data analysis and the time-consuming nature of experiments that require continu-

ous user supervision. In this work, we addressed the latter and developed an algorithm that controlled the

operation of an Atomic Force Microscope (AFM) that, without the need of user intervention, allowed

acquiring multiple high-resolution images of different molecules. We used DNA on mica as a model

sample to test our control algorithm, which made use of two deep learning techniques that so far have

not been used for real time SPM automation. One was an object detector, YOLOv3, which provided the

location of molecules in the captured images. The second was a Siamese network that could identify the

same molecule in different images. This allowed both performing a series of images on selected mole-

cules while incrementing the resolution, as well as keeping track of molecules already imaged at high

resolution, avoiding loops where the same molecule would be imaged an unlimited number of times.

Overall, our implementation of deep learning techniques brings SPM a step closer to full autonomous

operation.

Introduction

The development of Scanning Probe Microscopies (SPM),
especially Scanning Tunneling Microscopy (STM)1 and Atomic
Force Microscopy (AFM),2 constituted a revolution on our
understanding of the nanoworld. Since then, these techniques
have not only been used to visualize a wide variety of samples
from the µm-scale down to the single molecule and atom
resolution,3–5 they have also been used for sample manipu-
lation and for performing a variety of spectroscopies providing
information on e.g., chemical identity, mechanical, electrical,
electrochemical and magnetic properties.6–9 However, despite
the possibilities that they offer, several bottlenecks are prevent-
ing broader use of SPMs. One of the major barriers to SPM use
is the need for highly trained users to perform time-consum-
ing experiments and to analyze and correctly interpret results
that are often susceptible to artifacts.

Recently, Machine Learning (ML) techniques have started
to be applied to solve these challenges. So far, most of the

works combining SPM and ML have focused on data analysis.
For instance, algorithms like Random Forests and Gradient
Boosting Trees were used to detect bladder cancer from
images of cells collected from urine.10 A feed-forward neural
network was used to discover electronic correlations in voltage-
dependent STM data of doped copper oxide samples.11 Several
works have also used SPM images to determine the quality of
the probe, mostly by using Convolutional Neural Networks
(CNN).12–14 CNNs were also used to identify different patterns
in AFM images of adsorbed nanoparticles15 and to identify
and even resolve the configuration of adsorbed organic mole-
cules.16 The classification of AFM force curves has also been
addressed by using algorithms such as Independent
Component Analysis (ICA) and Supported Vector Machines
(SVM),17 feed-forward neural networks18 and Extra Trees
Regressors.19 Advanced CNNs architectures have also proved
useful. Examples are the use of the Very Deep Super
Resolution (VDSR) network to enhance the resolution of AFM
images20 and the use of object detection networks like YOLO
to locate nanowires in AFM images.21 In the latter, the authors
also used bidirectional long short-term memory (LSTM) net-
works to determine the posture of the located nanowires.

ML methods have also been applied to the automation of
SPM operation, although to a lower extent than to data ana-
lysis. Supported Vector Machines (SVMs) were used to detect,
in real operation time, domain walls of ferroelectric materials,
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allowing zooming on them for performing switching spec-
troscopy piezo-response force microscopy (SS-PFM).22 In
another work,14 an automatic routine was developed for tip
conditioning based on indentation where the feedback on the
success of the conditioning event relied on a CNN analysis of
the image that provided the tip quality. Automatic control of
the scanning speed and feedback controls by means of
Gaussian Process Models has also been reported.23 Long term
autonomous operation was reported for low-temperature STM
imaging of adsorbed magnesium phthalocyanine (MgPc) mole-
cules.24 The acquisition algorithm implemented ML methods
at two steps. In one, acquired images were evaluated with a
CNN classifier for determining the quality of the tip. In case
the quality of the tip was classified as bad, the algorithm made
use of Reinforcement Learning (RL) to choose between a list of
actions commonly used for probe conditioning. After each
conditioning step, the scanned area was imaged again, sub-
sequently analyzed by the CNN and the RL agent rewarded
accordingly. Leinen and co-workers25 also showed that it was
possible to use RL to find optimal SPM tip trajectories for
effectively lifting single molecules from perylenetetracarboxylic
dianhydride (PTCDA) layers.

From the above discussion, it is clear that in recent years
the application of ML methods are boosting SPM research, a
trend shared by many other microscopies.26–30 In this work,
we continued this research direction with the specific aim of
advancing towards autonomous SPM operation. Specifically,
we report on the use of state-of-the-art object detection and
one-shot-learning deep learning models for the fully auto-
nomous AFM imaging of single molecules, using DNA mole-
cules on mica surfaces as a model sample. At present, high
resolution SPM imaging on single molecules is a tedious
process where the SPM operator starts by scanning large areas,
identifies possible suitable molecules and performs a series of
zoom steps (in order to avoid losing the molecule due to
lateral drift) until the molecule is imaged with enough resolu-
tion. Then, the user zooms out and repeats the process mul-
tiple times ensuring that zooming is not performed on mole-
cules visualized previously. Here, we demonstrate a deep learn-
ing-based algorithm that automates this process.

Results and discussion
Detection of single DNA molecules in AFM images

When an AFM user aims to obtain high-resolution images of
single nm-sized structures, the first step is typically to scan
large areas, identify suitable candidates and subsequently
perform incremental zooms on a chosen structure. While
straightforward for humans, object detection i.e., the location
in an image of instances of predefined categories, has been
one of the most challenging problems in computer vision.
Extensive reviews on this topic are available.31,32 Here, we
briefly discuss the main developments that motivated our use
of the YOLOv3 network for detecting DNA molecules. The pipe-
line of traditional approaches to object detection i.e., those

used before the deep learning area, was divided into three
stages: region selection, feature extraction and classification.
Scanning a whole image with a multi-scale sliding window was
a common but computationally expensive approach for region
selection. For extracting features from the scanned windows,
SIFT,33 HOG34 and Haar-like35 algorithms were common
choices. The main drawback of these algorithms was their
limitations for describing different object categories. For clas-
sifying the category of the detected object, algorithms like
Supported Vector Machines (SVM),36 Adaboost37 and
Deformable Part-based Model (DPM)38 could then be used.
However, the vast increase in computing power at gradually
lower costs that has occurred recently, changed this field com-
pletely. Especially, the possibility to efficiently use
Convolutional Neural Networks (CNNs).39,40 While the first
works on CNNs focused on their use for object/image classifi-
cation, shortly after they were also applied to object detection.
Already in 2014, the R-CNN detector was published.41 It was
characterized by the use of a CNN to extract features within
the pipeline detailed above, that could then be classified e.g.,
with SVMs. In a latter development, Fast R-CNN,42 the output
of the CNN for extracting features was fed into a pooling layer
that down-samples feature maps with different sizes into a
fixed-size vector. This vector bifurcates into two outputs
characterized by fully connected layers with different acti-
vations for classification and location. While faster than
R-CNN, Fast R-CNN still required proposing a set of candidate
regions along with each input image. This model was further
improved by the Faster R-CNN architecture,43 where a CNN is
used for the region proposal step. However, Faster R-CNN is
still characterized by a two-stage object detection architecture.
While very precise, two-stage detection models are still time-
consuming and limited for use in embedded systems where
real-time computing constraints are an issue e.g., real-time
AFM imaging. With the goal of achieving higher speed and
simplicity, one-stage object detectors were developed. These
are end-to-end single (deep) neural networks that provide the
category along with the coordinates that bound detected
objects directly from an input image. While several approaches
exist,44,45 YOLO (You Only Look Once)46 and its later
implementations47,48 have become widely used for appli-
cations where inference speed is critical. Briefly, YOLO net-
works split the input image into a grid of cells, where each cell
is responsible for predicting a bounding box for an object, if
the center of the bounding box falls within it. Each grid cell
predicts the coordinates for a number of bounding boxes, the
confidence that each box bounds an object as well as the pre-
diction for the object class. In this work we used the YOLOv3
network,48 for which a detailed description is provided in the
Experimental section. YOLOv3 improved YOLO in several
aspects. Of specific relevance for our choice was its ability to
detect objects from similar categories at different scales, while
still offering an excellent trade-off between detection accuracy
and computational speed.

The performance of object detection models is typically
characterized in terms of their precision–recall curve and by
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the area under this curve i.e., the average precision (AP).
Precision is defined as the number of true positives divided by
the total number of objects detected by the model (sum of true
and false positives). Recall is defined as the number of true
positives divided by the total number of ground-truths (sum of
true positives and false negatives). For calculating precision–
recall scores we used a similar metric as the PASCAL VOC chal-
lenge.49 Specifically, we calculated precision and recall values
while varying the confidence score and fixing a threshold of
0.5 for the Intersection over Union (IoU, the area of the inter-
section divided by the area of the union of a predicted bound-
ing box and a ground-truth box). A detected bounding box was
considered a true positive if its confidence score was higher
than the confidence threshold and the IoU with a ground-
truth box was higher than the IoU threshold (0.5). If either of
these two conditions was not satisfied, the detected bounding
box was considered a false positive. In case multiple predic-
tions corresponded to the same ground-truth, only the one
with the highest confidence score counted as a true positive,
while others were considered false positives. It is not needed
to explicitly calculate the number of false negatives for estimat-
ing the recall, as the total number of ground truths is enough.
The precision–recall curve calculated by applying our
YOLOv3 model to the test dataset of AFM images of DNA mole-
cules is shown in Fig. 1a.

The area under the precision–recall curve (precision–recall
AUC) for our YOLOv3 model was 0.91, which is a reasonable
value considering that a perfect detector would be character-
ized by a precision–recall AUC of 1. The precision–recall curve
also allows estimation of the confidence threshold required for
a balanced tradeoff between both quantities. A common
approach is to use the threshold that maximizes the weighted
harmonic mean of precision and recall, Fβ-score,

50

Fβ ¼ ð1þ β2Þ � precision � recall
ðβ2 � precisionÞ þ recall

: ð1Þ

The weight β determines the relative importance of recall
with respect to precision. For this work, we were especially
interested in minimizing the number of false positives but still
detecting most of the imaged molecules. Therefore, we chose β

= 0.5 and determined from the precision–recall curve the confi-

dence threshold that maximized F0.5. This point, highlighted
in Fig. 1a, was obtained for a threshold of 0.38 and corre-
sponded to a precision of 0.97 and a recall of 0.91. The per-
formance of the detector is exemplified in Fig. 1b–d. These are
images from our test dataset where the DNA bounding boxes
predicted by our detector are over-imposed. It can be seen that
the model successfully detects DNA molecules at different
scales. Fig. 1c also shows how the model can discriminate
between DNA molecules and contamination. Finally, Fig. 1d
exemplifies the ability of the model to differentiate between
close molecules.

Siamese networks for identifying DNA molecules

Obtaining consistent and reliable information of single nm-
sized structures from AFM images typically requires collecting
a large quantity of high-resolution images. In a common
experiment, the AFM user starts by scanning a large area,
identifies a suitable structure and zooms on it. Typically,
zooming needs to be performed gradually, as a drastic zoom
might result in losing the identified structure because of e.g.,
lateral drift. After each zoom, the user recognizes the structure
of interest in the new image and zooms again. Once an image
with high-enough resolution of the identified structure is
acquired, the user zooms out, identifies a structure not visual-
ized before and starts again the procedure. Thus, identifying
the same structure in two or more scans is a typical aspect of
AFM workflow (and almost of any other microscopy). In this
work, we automated this aspect without the need of human
interaction/supervision.

Similarly to object detection, identification is a problem
that has received significant attention from the computer
vision community. Traditional similarity-based evaluation
metrics like Structural Similarity Index (SSIM)51 are highly sen-
sitive to geometric and scale distortions and, therefore, not an
optimal choice for AFM images. Here, we used instead a deep
learning approach. In the context of deep learning, identifi-
cation typically falls within the problem of one-shot-learning
i.e., categorizing new classes (for which the algorithm was not
trained for) given only one example of each new class. This is
exactly the problem we faced i.e., the need to identify a struc-
ture/molecule for which we only had one previous image (or

Fig. 1 (a) Precision–recall curve calculated by applying our YOLOv3 model to the test dataset of DNA AFM images. The point for maximum F0.5
value is highlighted. (b–d) Representative AFM images from the test dataset where the DNA bounding boxes predicted by our YOLOv3 model are
over-imposed.
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very few at the best). In this regard, impressive results52,53 were
achieved with Siamese Networks where deep CNN architec-
tures and metric learning were combined. Siamese Networks
consist of two symmetrical neural (embedding) networks, both
sharing the same weights and architecture. Each of the embed-
ding networks encode one of the inputs/images to be com-
pared, xi, in a nth-dimensional embedding, f (xi) (often normal-
ized for training stability). The two embedding networks are
then joined and compared using a similarity metric. The goal
is that similar input images e.g., those depicting the same
DNA molecule, result in close embeddings whereas dissimilar
images e.g., those depicting different DNA molecules, result in
far apart embeddings.

Several loss functions can be used for training Siamese net-
works. One option is to treat the problem as a binary classifi-
cation problem.52,54 In this approach, a sigmoid activation
function is used to map a distance metric calculated from the
encodings of two input images onto the interval [0 (same
class), 1 (different class)] and then use a cross entropy loss
function to train the network. Another option is to use the con-
trastive loss.55 If xi and xj are two input images, f (xi) and f (xj)
are their corresponding embeddings, Dij is the distance metric
between them and yij is the binary label for the input images
(1 if the images correspond to a genuine pair and 0 otherwise),
the contrastive loss is defined as:

lcði; jÞ ¼ yijDij
2 þ ð1� yijÞmaxð0; α� DijÞ2 ð2Þ

where α is a margin, tunable during training. By using a
margin, the contrastive loss forces pairs of positive (similar
class) examples to be closer in the embedded space than pairs
of negative (different class) examples. One of the limitations of
the contrastive loss is that it tries to push embeddings of
inputs from different classes in opposite directions, which is
not optimal if one of the embeddings is already at the center
of its cluster. This can be improved by using the triplet loss.53

In this approach, three images are compared during each
training step: an anchor image, a (positive) image corres-
ponding to the same class, p, and a (negative) image, n, corres-
ponding to a different class. The triplet loss is then defined as:

ltði; jÞ ¼ maxð0;Dap
2 � Dan

2 þ αÞ ð3Þ

where Dap is the distance between the embeddings of the
anchor and positive images, Dan the distance between the
anchor and negative images and α the margin tunable during
training. The triplet loss forces the embedding of the anchor
input closer to that of the positive input, p, belonging to the
same class than the embedding of the negative input, n,
belonging to a different class by at least the margin value, α. In
this work, we investigated Siamese networks trained with both
binary cross-entropy and triplet losses for identifying the same
DNA molecules in different images.

Sampling images from the training dataset is a challenge
when training with the triplet loss. One issue is that as the
dataset gets larger, the possible number of triplets grows cubi-
cally. Thus, working with the entire possible number of triplets

is impractical. Another issue is that networks trained with the
triplet loss quickly learn to correctly map most trivial triplets,
resulting in hard triplets i.e., positive pairs with far apart
embeddings or negative pairs with close embeddings, barely

Fig. 2 (a) ROC curves for the best performing investigated Siamese net-
works trained with both binary cross-entropy (blue) and triplet (green)
losses. The point corresponding to the chosen squared L2 norm
threshold is highlighted for the model trained with the triplet loss. (b)
Representative examples, from our test dataset, of identical molecules
from different images. The squared L2 norm between their respective
embeddings is provided. (c) Pairs of molecules, each containing one of
the molecules in (b) and a different molecule from the test dataset,
along with the squared L2 norm between their respective embeddings.
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contributing to the training. On the other hand, sampling only
the hardest triplets leads to bad local minima early on when
training.53 Thus, for a Siamese network to learn using a triplet
loss is important to sample semi-hard triplets i.e., triplets that
are hard, but not too hard to learn. Many different approaches
have been proposed for this goal.53,56 In this work, we used

online-mining of semi-hard triplets.53 For each batch, we ran-
domly selected B anchors, each corresponding to different
molecules, and we computed the same number, B, of triplets.
For many of the input classes/molecules, the training dataset
only contained two instances (even though in some cases this
number could go up to five). Thus, images for completing the

Fig. 3 Flowchart for the algorithm for the autonomous AFM imaging of single molecules.
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positive pairs were chosen randomly. For completing the nega-
tive pairs, we calculated the embeddings of the B inputs as
well as those from a (higher) number of randomly selected
images using the embedding network with updated weights.
Then, we selected B/2 random negatives, and B/2 hard-nega-
tives corresponding to those with the smallest Dij distance with
the anchor. In order to prevent overfitting, during training the
triplets were augmented before feeding them to the network
(ESI S1†).

For identifying DNA molecules from AFM images, we
experimented with diverse architectures for the embedding
networks and trained them both with binary cross-entropy and
triplet losses. The ROC curve and, more specifically, the area
under this curve (AUC), for our test dataset was used as the
metric for evaluating model performance. We obtained our
best results using a modified VGG-16 architecture57 for the
embedding network (details are provided in the Experimental
section). As a similarity metric, we used the squared L2 norm
between the outputs of the embedding networks. The ROC
curves obtained on the test dataset with this architecture
trained using both loss functions are shown in Fig. 2a. It can
be seen that the model trained with the triplet loss (AUC =
0.994) clearly outperformed that trained with the binary cross-
entropy loss (AUC = 0.952) and, therefore, was the one
implemented in our autonomous AFM operation algorithm.
The ROC curve also allows estimation of an optimal threshold
for the metric used for verifying the identity of the molecules
i.e., the squared L2 norm. An optimal classifier would be
characterized by a false positive rate of 0 and a true positive
rate of 1 i.e., all positives correctly classified and no negatives
incorrectly classified. Thus, we chose to work with the
threshold originating at the point in the ROC curve closest to
the (0, 1) point. This squared L2 norm value was 0.255, which
corresponded to a true positive rate of 0.935 and a false posi-
tive rate of 0.015.

Autonomous AFM imaging of single molecules

We implemented the described deep learning models i.e.,
YOLOv3 and Siamese network trained with a triplet loss,
within an algorithm for the autonomous imaging of single
DNA molecules. Before running an experiment with this algor-
ithm, the user needs to provide scanning parameters, mainly
the scan rate, set point and feedback parameters. The user

also needs to provide additional information: the maximum
and minimum areas to be scanned and the number of regions
of the sample to be explored. Once these parameters are pro-
vided, the user only needs to run the algorithm that autono-
mously controls the AFM. The complete algorithm flowchart is
shown in Fig. 3.

Briefly, the algorithm starts by engaging the sample until
the user-defined set point (vertical deflection, amplitude, etc.
depending on the AFM operation mode) is reached. Then, it
continues by scanning an area of the sample equal to the user-
defined maximum scan area (5 µm in the presented experi-
ments). When finished, the resulting topography image is ana-
lyzed with our YOLOv3 model, which provides the bounding
boxes for the detected DNA molecules. At this stage, the algor-
ithm selects the molecule closest to the image center (Fig. 4a)
and crops a squared-area centered on the molecule and with a
size 1.2 times that of the larger side of the molecule bounding
box. This cropped image is stored and used later on for identi-
fying the molecule in future images. Subsequently, the AFM
zooms on the selected molecule, setting the new scan area to
half its previous value. When the new scan finishes, YOLOv3 is
used again for detecting DNA molecules on it. The squared-
area centered on the detected molecules are again cropped
from the new topography image. The molecule where zooming
was performed is identified by comparing the previous image
with the new cropped images using our Siamese network
model (Fig. 4b). This allows zooming again on the same mole-
cule (Fig. 4c). This process continues until the scan area is
smaller than the user-defined minimum area (in this work, 1.5
times the larger side of the identified molecule bounding box,
Fig. 4d). At this stage, the scan area is set back to its maximum
value (Fig. 4e). A similar workflow is then continuously
repeated with, however, a difference. Each new molecule
identified as a suitable candidate is always compared with
molecules previously imaged at high resolution using our
Siamese network model. This prevents zooming on the same
molecule several times. If after a maximum-area scan, no suit-
able molecules are detected (no molecules present, or all of
them already imaged at high resolution), the algorithm moves
the AFM cantilever to a new sample location and the whole
process starts again.

The whole imaging process described above continues until
a user-defined condition is reached e.g., all molecules within a

Fig. 4 (a–e) Consecutively acquired AFM images representative of the workflow of the autonomous imaging algorithm. Bounding boxes for the
detected DNA molecules are over-imposed; the one corresponding to the molecule on which the new scan will zoom on is drawn with blue trans-
parency whereas the rest are drawn with red transparency.
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user-defined number of locations across the sample being
imaged at high resolution. When testing the algorithm to
image DNA molecules, we were able to autonomously run the
AFM for several days (no user intervention other than setting
scanning parameters in the beginning of the experiment),
obtaining a number of high-resolution images of single DNA
molecules (Fig. 5) limited only by the number of molecules
present in the sample.

Conclusions

We developed an algorithm for the autonomous operation of
SPMs that allows, without the need of human intervention, the
acquisition of high-resolution images of single molecules. The
major novelty of our contribution relies on the use by the oper-
ation algorithm of state-of-the-art deep learning techniques:
object detectors and Siamese networks. The object detector,
YOLOv3, allowed locating molecules in the acquired images. In
turn, Siamese networks allowed identifying particular mole-
cules in different images. The latter allowed acquiring series of
images of the same molecule while incrementing the lateral
resolution. At the same time, it also allowed keeping track of
already imaged molecules and, therefore, avoiding loops
where the same molecule would be imaged an unlimited
number of times. We used DNA on mica as a model sample to
test our SPM control algorithm. The algorithm could autono-
mously run the SPM for several days, providing multiple high-
resolution DNA molecules, the number only being limited by
the number of molecules available within the SPM scanner
range.

Overall, this work brings SPM a step closer to full auto-
nomous operation. Specifically, the proposed implementation
would be highly useful in time-consuming studies where a

statistically large number of single molecule images need to be
acquired. Examples would include SPM imaging of single
nucleic acids to determine their intrinsic curvature,59 and how
this is affected e.g., by their sequence60 and environmental
parameters.61 Within nucleic acids research, our approach
would also facilitate studies e.g., on radiation-induced
damage62 and on the mapping of protein-binding sites.63 Our
algorithm could also be trained with other type of molecules
e.g., with viruses for facilitating visualization of their different
adsorption configurations.64

One of the main limitations for implementing supervised
learning algorithms, like those used in this work, is the need
for big amounts of data to train models. Traditionally, the
SPM community has not shared with other computer vision
related disciplines the tendency to open source data. This is a
significant handicap for the development of supervised learn-
ing models for SPM, as researchers working on model develop-
ment need to collect data as well. Moreover, the shortage of
data also implies a lack of reference datasets to compare
models. Nevertheless, the community already acknowledges
this problem, and initiatives like SPMImages (https://spmpor-
tal.quasarsr.com/spmportal/index) that offers storage, curation
and access to SPM images, and the JARVIS-STM website
(https://jarvis.nist.gov/jarvisstm,65), where a database of STM
images obtained using density functional theory is available,
will definitely help in this challenge. Following this trend, we
made all data used to train and test our models available at
the repository of this work: https://git.io/JtP98. Another critical
step towards intelligent SPMs will be a broader implemen-
tation of unsupervised learning approaches. An example where
these would be of use is the visualization of samples for which
prior knowledge of their topography is not available. In this
regard, unsupervised object detection models for location of
foreground objects66 are promising approaches. Another

Fig. 5 Examples of high-resolution AFM images of single DNA molecules obtained during a single experiment by the autonomous AFM imaging
algorithm without user intervention. Color height scale 1 nm. Images were rendered with the WSxM software.58
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aspect that limits SPM use by a broader community is the
need, in many cases, of experienced users for setting appropri-
ate operational parameters (e.g., set point, feedback, gains,
angles, etc.). This aspect could greatly benefit from e.g.,
reinforcement learning (RL) algorithms, which perform
actions based on a current state and a reward. Recent studies
have already shown the potential of RL in SPM
automation.24,25 The availability of error signals in SPM e.g.,
the deviation of the signal on which feedback is performed
with respect to the operation set point, should further facilitate
their implementation. For instance, following an approach
where the actions would be the variation of the scanning para-
meters and the reward the minimization of the error signal.

Experimental
Sample preparation

Plasmid DNA from E. coli RRI (D3404, Sigma-Aldrich, St Louis,
MO) was purchased and used without further purification. Freshly
cleaved mica sheets (71850-01, Electron Microscopy Sciences,
Hatfield, PA) were used as substrates. For DNA sample preparation,
mica sheets were coated with poly-lysine (PL) (P4832-50ML, Sigma-
Aldrich, St Louis, MO) by pipetting 10 mL of the stock PL solution.
After incubation for ∼30 s, the surface was rinsed with UHQ water
(processed in an Elgastat UHQ II apparatus, Elga Ltd, High
Wycombe, Bucks, England) and dried in a nitrogen stream, to
ensure that only strongly adsorbed PL molecules remained on the
surface. Afterwards, the surface was incubated in a DNAwater solu-
tion for 1 min at a concentration of 1 mg mL−1, subsequently
rinsed with water and finally dried with N2.

Atomic force microscopy (AFM)

A commercial Atomic Force Microscope (AFM) setup
(MultiMode 8 SPM with a NanoScope V control unit, Bruker
AXS, Santa Barbara CA) was employed for imaging DNA mole-
cules. Images were acquired by operating the AFM both in the
Tapping mode and in the PeakForce Tapping mode. For
imaging in the Tapping mode, cantilevers with a nominal reso-
nance frequency between 320 and 364 kHz were used (RTESP7,
Veeco Probes, Camarillo, CA). For imaging in the PeakForce
Tapping mode, we used instead rectangular silicon nitride can-
tilevers with a nominal normal spring constant of 0.1 N m−1

(OMLC-RC800PSA, Olympus, Japan).

Object detection model: YOLOv3

We used the YOLOv3 network48 to detect the positions of
single DNA molecules in AFM topography images. YOLO net-
works are object detectors that use a single pass to detect the
potential regions (bounding boxes) in the image where certain
objects are present and to classify those regions into object
classes. Specific details on the YOLOv3 network are provided
in the original publication.48 Briefly, YOLOv3 structure
includes a backbone network and a detection network. The
backbone or feature extractor is the Darknet 53 network,67

which includes 52 convolutional layers and Resnet short cut

connections to avoid the disappearance of gradients. The
feature maps at three different scales are output to three
different branches of the detection network. The detection
network is characterized by a feature pyramid network (FPN),68

where the feature maps in a lower branch are concatenated with
the ones in its next branch by up sampling. This FPN topology
is critical for the ability of YOLOv3 to detect objects from the
same class at different sizes. Finally, the outputs of the FPN are
connected to a regression section to carry out predictions.
Specifically, YOLOv3 makes different predictions for each
detected object. These are the bounding box coordinates (x and
y), its width (w) and height (h), the objectness score (p(o), which
gives the confidence that the box contains one of the target
objects using logistic regression) and the class scores for all Ci

object categories (p(Ci|o), obtained using independent logistic
classifiers i.e., YOLOv3 allows multi-label classification). The
total confidence score for each class is thus the product of the
objectness and the class score. The output of the network then
goes through Non-Max Suppression (NMS) and a confidence
threshold to give the final predictions. This last stage avoids
multiple bounding boxes for the detected objects.

In order to train YOLOv3, we used an initial set of 247 AFM
images of adsorbed DNA molecules obtained by operating
both in the Tapping and PeakForce Tapping modes. Lateral
sizes ranged from 5 µm to 250 nm. Resolutions ranged from
1024 × 1024 points to 256 × 256 points. The training set was
further augmented by random cropping of large size images,
resulting in a total of 1348 images for training. For testing, we
used a set of 90 images with similar lateral sizes and resol-
utions as those in the training set. No augmentation was
applied to images in the test set. Bounding boxes for the DNA
molecules in both the training and test sets were annotated
using the labelImg software (https://git.io/JLXFr). Overall, the
training and test sets contained 4250 and 652 molecules/
bounding boxes respectively. Before feeding AFM images to
YOLOv3, we applied a 3rd order flatten filter to the images that
were subsequently stretched normalized with cutoffs of 2
times the standard deviation of their height histogram. The
original structure of YOLOv3 requires 3-channel images and
the pixel size should be an integer multiple of 32. Thus, the
flattened and normalized 1-channel AFM height images were
converted to 3-channels by replicating the height value in all 3
channels and subsequently re-scaling them to a 416 × 416 × 3
size. The same pre-processing steps were used for inference.
For training, we fine-tuned a pre-trained model, darknet53.
conv.74, available in ref. 67 on our training set of labelled
images. For this, we used a batch size of 64, subdivisions of
16, maximum number of batches of 10 000, momentum of 0.9
and a weight decay of 0.0005. We adopted a multistep learning
rate policy with a base learning rate of 0.001, a step value of
[400 000, 450 000] and learning rate scales of [0.1, 0.1].

Identification models: Siamese networks

The dataset for training and testing Siamese Networks was
created from AFM topography images where the same sample
location was scanned between 2 and 6 times. Lateral size and
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pixel resolution values for these images were similar to those
of the images used for training our YOLOv3 model. Our
YOLOv3 model was then used to automatically crop individual
molecules from these images. This process resulted in a total
of 1827 images of 692 different molecules. This was divided
into a training set, with 1536 images of 598 different mole-
cules, and a test set with 291 images of 94 different molecules.
For the embedding network we used a modified VGG-16
network.57 In our case, the input size of the VGG network was
modified to 96 × 96 × 3 and only contained one fully connected
layer of size 4096 after the convolutional/max pool layers.
Weights were randomly initiated. Siamese networks models
were trained both with binary cross-entropy and triplet losses.
For the reported models, we used the Adam optimization with
an initial learning rate of 6 × 10−5, a 1st momentum of 0.9 and
a 2nd momentum of 0.999. For the reported models, we also
used a learning rate decay of 2.5 × 10−4. For Siamese networks
trained with a binary cross-entropy loss, the architecture calcu-
lated the L1 distance between the feature vectors resulting
from each of the embedding networks and used sigmoid acti-
vation to map this distance onto the interval [0, 1]. In this
case, online-mined random pairs of images were used to train
the network. For Siamese networks trained with a triplet loss,
the final fully connected layers of each of the embedding net-
works were L2-normalized before estimating the distance
between their outputs. In this case, online mining of semi-
hard triplets was used to train the networks53 using a margin
value of 0.2. In all cases, ROC curves for the test dataset were
used to evaluate model performance.

Communication between the AFM and the autonomous
imaging algorithm

The AFM was controlled by the proprietary software
Nanoscope (Bruker AXS, Santa Barbara CA). This software pro-
vides Open Architecture control through the Component
Object Model (COM) from Microsoft. After being registered as
a server, a set of instructions are available for custom appli-
cations. We used the Nanoscript feature (Bruker AXS, Santa
Barbara CA) that allows sending instructions to this COM
server through a customer programmed COM client. This was
done by means of a custom Python routine, which could also
analyze acquired images with the developed deep learning
models and use the results from this analysis to send appropri-
ate instructions to the Nanoscope COM server.

Computer architectures

Deep learning models (detection and identification) were
trained and validated on a system with the following character-
istics: Intel® Core™ I9 7980XE (18 cores, 36 threads) CPU, 64
GB of DDR4 RAM and a GPU NVIDIA 2080 RTX Ti 11 GB
GDDR6 (4352 computation cores). Models were always trained
using the GPU. However, for inference i.e., for evaluating
images with the models in real time during AFM operation,
the AFM control computer itself was used. This computer was
equipped with an Intel® Core™ I7 4790S (4 cores, 8 threads)
CPU and 32 GB of DDR4 RAM both to control the AFM (by

communicating with the Nanoscope COM server) and to evalu-
ate the images with the deep learning models.

Data and code availability

The code, models, and images to train and validate these
models, used in the manuscript are available at https://git.io/
JtP98.
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