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Plants and their associatedmicrobial communities are known to producemillions of metabolites, a majority

of which are still not characterized and are speculated to possess novel bioactive properties. In addition to

their role in plant physiology, these metabolites are also relevant as existing and next-generation medicine

candidates. Elucidation of the plant metabolite diversity is thus valuable for the successful exploitation of

natural resources for humankind. Herein, we present a comprehensive review on recent metabolomics

approaches to illuminate molecular networks in plants, including chemical isolation and enzymatic

production as well as the modern metabolomics approaches such as stable isotope labeling, ultrahigh-

resolution mass spectrometry, metabolome imaging (spatial metabolomics), single-cell analysis,

cheminformatics, and computational mass spectrometry. Mass spectrometry-based strategies to

characterize plant metabolomes through metabolite identification and annotation are described in detail.

We also highlight the use of phytochemical genomics to mine genes associated with specialized

metabolites' biosynthesis. Understanding the metabolic diversity through biotechnological advances is

fundamental to elucidate the functions of the plant-derived specialized metabolome.
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1. Introduction

Plants are predominantly photosynthetic eukaryotes with over
391 000 known species across the planet.1 One of the fasci-
nating characteristics of plants is their uniquemetabolic system
(metabolism), which produces highly complex and bioactive
molecules that modulate the cellular activity, microbiome, and
phenotype in human health and diseases.2,3 Each plant species
produces secondary (specialized) metabolites. According to
Afendi et al., the plant metabolite diversity exceeds 1 million,
with each plant producing nearly 4.7 structurally unique
molecules;4 of these, only �300 000 structures have been cata-
loged in the Dictionary of Natural Products (DNP). Moreover,
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this diversity may be further expanded when human microbial
metabolism is considered, where the structure of natural
products is modied in the microbiome.5 In fact, the modied
molecule oen has higher bioactivity than that of the original
form. For instance, 40,7-dihydroxyisoavan (equol), catalyzed in
the microbiome from the plant metabolite 40,7-dihydroxyiso-
avone (daidzein), acts as a superior ligand for estrogen
receptors.6

As many metabolites in plants (phytochemicals) possess
biologically active sites for mammalian proteins, nearly half of
the commercially available drugs released during 1940–2014
were of plant origin.7 According to the MarketsandMarkets
analysis,8 plant extracts as a commercial commodity in indus-
tries, including foods, avors, cosmetic products, and drugs,
were estimated to be worth over USD 23.7 billion in 2019 and
have been projected to reach USD 59.4 billion by 2025. Plant
specialized metabolites play vital roles in disease resistance,
interspecic competition, and stress response (e.g., drought,
high light, and abnormal metabolism under nutrient de-
ciency).9 More importantly, these metabolites serve pivotal
physiological and biological functions to maintain plant
homeostasis, suggesting the widely-held view on the difference
between primary and specialized metabolites to be obsolete.10

Therefore, illuminating the structural diversity of plant
metabolites is signicant for industrial and scientic progress.

Metabolomics, or metabolome analysis, has become popular
to explore the biosynthetic pathways of interest and high-
throughput screening of natural products.11,12 Moreover,
metabolomics is an essential tool to elucidate the synergistic
metabolic pathways of plants and their microbiomes, such as
the symbiosis between Fabaceae plants and Rhizobium.13

Although next-generation sequencing (NGS) is efficient for
obtaining metagenomic information (i.e., the presence of
bacterial genes), such static genome information is not always
linked to plant phenotypes. In this context, metabolomics
provides dynamic information of functional molecules synthe-
sized through the harmonized multi-biomolecule system of
metabolites, proteins, RNAs, and epigenomic modications.
Systems biology using multi-omics or transomics data is an
active research eld to further our understanding of metab-
olomes.14,15 Therefore, metabolites and their chemical diversity
must be comprehensively studied to elucidate the physiological
roles of these metabolites and their underlying molecular
mechanisms.

Mass spectrometry (MS)-based untargetedmetabolomics has
the potential to explore the diversity of plant natural products to
study plant metabolism and to perform the high-throughput
screening of metabolites. Currently, liquid chromatography
coupled with high-resolution tandem MS (LC-MS/MS) is
a popular technique owing to the (1) scalability of electrospray
ionization (ESI), covering a wide array of chemical properties for
metabolite ionization;16 (2) high mass accuracy (<100 ppb, 1.79
mDa at m/z 757.52 in 21T FT-ICR) for reliably predicting the
molecular formulae of unknown natural products based on the
accurate m/z values of the precursors;17 (3) information-rich
mass fragmentation (recorded as MS/MS spectrum) that
provides information on the substructures of the metabolites;18
This journal is © The Royal Society of Chemistry 2021
and (4) availability of comprehensive metabolite MS/MS spec-
tral libraries (>850 000 unique molecular standards).19 More-
over, the methodologies of obtaining the retention index using
a series of fatty acid-derived chemicals, as used in gas chro-
matography (GC)-MS, facilitate systematic annotation in
reverse-phase and hydrophilic interaction chromatography.20,21

Furthermore, recent advances in ion mobility (IM) and related
informatics tools provide robust and reliable annotation criteria
based on the collision cross-section (CCS) values of �12 million
compounds,22 thus increasing the coverage of metabolic
proling by separating isobars in a dri tube.23,24 However,
despite the remarkable advances in MS techniques, databases,
and informatics tools, the current metabolomics infrastructure
in natural product research is inadequate to unveil the global
plant metabolome because of the complexity and diversity of
the chemical structures, in addition to the lack of MS/MS
spectra for most specialized metabolites, particularly alkaloids.

In this review, we focused on the current strategies to explore
highly complex and diverse plant metabolomes. First, we
provided an overview of the grand challenges of metabolomics
in natural product research. The importance of bottom-up
approaches such as isolation and/or enzymatic production of
plant metabolites is also discussed to clarify the importance of
the MS-based metabolomics approach. Second, we reviewed the
current MS-based state-of-the-art top-down approaches.
Notably, the computational MS (CompMS) techniques aimed at
metabolite annotation from the analysis of raw MS datasets
were detailed. Third, functional genomics is considered as
a complementary module for metabolome analysis, assisting in
the discovery of new metabolites and the elucidation of novel
metabolic pathways. Finally, we discussed the prospects of
plant metabolomics in the coming decade, emphasizing upon
a way forward to meet the limitations in the current approaches.
Overall, we highlight the importance of integrating MS infor-
matics (CompMS), bioinformatics, and cheminformatics to
accelerate plant natural product research.25
2. Grand challenges in metabolomics:
general approaches to natural product
chemistry

Many reviews have focused on the challenges in the compre-
hensive annotation of natural products using advanced
analytical and computational techniques (the top-down
approach).26–28 Most of these techniques aim to increase the
rate of “putatively annotated metabolites”; in other words, they
identify metabolites based on indirect evidence but do not
validate the results using standard compounds. Meanwhile,
identifying novel natural products with explicit validation can
unveil biological mechanisms hitherto unknown. This can
provide novel opportunities for the contribution of plant
natural products biochemistry in the eld of human medicine.
Moreover, such discoveries have been well supported by general
biochemical approaches (bottom-up approach), including the
isolation of metabolites and production of target compounds
using recombinant enzymes or in vivo gene transfection.
Nat. Prod. Rep., 2021, 38, 1729–1759 | 1731

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1np00014d


Natural Product Reports Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
A

ug
us

t 2
02

1.
 D

ow
nl

oa
de

d 
on

 1
/2

9/
20

26
 1

0:
27

:3
1 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
Herein, we review both the top-down and the bottom-up
approaches in metabolomics and the integration of these
approaches.
2.1. Annotation in untargeted metabolomics

One of the major challenges in metabolomics is the annotation
of diverse molecules.26 Because small molecules (<2000 Da)
show a massive physicochemical diversity, metabolites should
be identied based on the match of multiple MS properties,
including the retention time, CCS, and MS/MS spectra with
those of authentic standards.18 As a guideline for annotation,
Metabolomics Standards Initiative (MSI) has recommended
four condence levels29 (Fig. 1, Table 1): level 1, identied
metabolites using authentic standard compounds; level 2,
putatively annotated metabolites using public/commercial
spectral libraries; level 3, putatively characterized metabolites
based on diagnostic ion and/or partial spectral similarities to
known compounds of a chemical class; and level 4, unknown
metabolites, although they can still be differentiated and
quantied based on the MS proles. In 2014, Schymanski et al.
proposed more reasonable criteria for using high-resolution LC-
MS/MS-based metabolomics and exposomics as follows: level 1,
same as the MSI level 1 denition; level 2a, putatively annotated
metabolites matching literature or library spectra, with unam-
biguous spectrum structure match; level 2b, putatively anno-
tated metabolites matching diagnostic MS2 fragments and/or
ionization behavior, when no other structure ts the experi-
mental information; level 3, tentative candidate metabolites
with evidence for possible structures but insufficient informa-
tion on the exact structure; level 4, metabolites for which an
unequivocal molecular formula can be unambiguously
assigned using the spectral information; and level 5,
Fig. 1 Roadmap to investigate the diversity of phytochemicals. Essentia
annotation recommended by Schymanski et al. (2014).30

1732 | Nat. Prod. Rep., 2021, 38, 1729–1759
metabolites whose exact mass (m/z) can be measured in a bio-
logical sample and that are of specic interest for investigation
but lack information to assign even a formula.30 Notably, the
MSI guidelines are expected to be further revised in the near
future to make suitable guidelines in metabolite annotation
considered for the latest MS advances including ion mobility.31

While the importance of annotation strategies tackling levels 2,
3, and 4 of Schymanski et al.'s criteria has been reported by
several reviews and research articles on metabolomics, level 1
chemical assignment is equally important. Therefore, we rstly
summarize the importance of level 1 chemical assignment
using a general yet effective approach in natural product
chemistry, which facilitates not only the discovery of a novel
metabolite structure but also the elucidation of metabolites,
which contain the same substructure moieties.
2.2. Motivation to analyze authentic standards in untargeted
metabolomics

In both denitions, level 1 annotation requires conrmation
against authentic standards; however, preparing all chemicals
of interest are impractical because of the lack of commercially
available compounds, the difficulty of complete organic
synthesis, and the high cost of commercial natural products.
However, analyzing authentic standards has important impli-
cations for the chemical assignment in metabolomics. Once
a metabolite is identied, its MS/MS spectrum is deposited in
libraries or databases for annotation in public databases, such
as MassBank,32 GNPS,33 and MoNA (https://
mona.ehnlab.ucdavis.edu/). Notably, many MS characteris-
tics of metabolites, such as isotopic patterns, m/z values, signal
intensities of precursor and product ions, and the fragmenta-
tion behavior of the metabolite structure, can be obtained
l technologies are described along with the definitions of metabolite

This journal is © The Royal Society of Chemistry 2021
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Table 1 Definitions of metabolite annotation proposed by the metabolomics standards initiative and Schymanski et al. (2014)30

Levels Metabolomics standards initiative Levels Schymanski E. L. et al. (2014)

Level 1 Condent 2D structure conrmed by the authentic
standard conrming the consistency of retention
time and MS/MS spectrum

Level 1 Conrmed structure conrmed via appropriate
measurement of a reference standard with MS, MS/MS
and retention time matching. If possible, an
orthogonal method should also be used

Level 2 Putatively annotated structures matched to
literature data, mass spectral databases, or other
diagnostic evidences in MS/MS spectrum

Level 2a Library this involves matching literature or library
spectrum data where the spectrum-structure match is
unambiguous

Level 2b Diagnostic represents the case where no other
structure ts the experimental information. Evidence
can include diagnostic MS/MS fragments and/or
ionization behaviour, parent compound information
and the experimental context

Level 3 Putatively characterized compound class
(unreached to structure level annotation) requiring
at least one piece of metabolite information

Level 3 Tentative candidate(s) describes a “grey zone”, where
evidence exists for possible structure(s), but
insufficient information for one exact structure only
(e.g., positional isomers)

Level 4 Unequivocal molecular formula is possible when
a formula can be unambiguously assigned using the
spectral information

Level 4 Unknown compounds of interest present in
biological samples

Level 5 Exact mass (m/z) can be measured in a sample and be
of specic interest for the investigation.
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through these resources. Such characteristics are useful to
identify the metabolites, even unknown ones, classied in
a similar or the same metabolic class based on a unique isotope
pattern and/or diagnostic fragment ion matching with a unique
substructure. For instance, plants produce multiple isomers of
acylsugars, alkaloids, avonoids (anthocyanins, avonols, iso-
avones, and C-avones), halogen-containing metabolites, iri-
doids, lignans, phenolamides, phenylpropanoids, saponins,
sulfur-containing metabolites (S-metabolites), and terpenoids,
and these can be identied using “feature-centric” approaches.
The feature-centric approach employs various systematic
protocols and soware programs to utilize the MS features,
including a unique isotopic pattern, fragment ion, neutral loss,
and their combination for metabolite annotation: the example
is to trace m/z 285.055 in ESI(+)-MS/MS to grasp metabolites
containing kaempferol aglycone.34–36 Feature-centric character-
ization is also useful for the dereplication of natural products by
removing identied, annotated, and characterized metabolites,
resulting in the discovery of truly novel metabolite candidates.37

2.3. Compound isolation from plants to identify novel
metabolites

To date, orphan receptor elucidation can accelerate medical
research and drug discovery once a ligand is identied.38 Like-
wise, identifying a novel metabolite structure may lead to the
discovery of many metabolites classied in the same metabolite
class (or ontology). Therefore, the isolation of truly (der-
eplicated) unknown compounds from plants of interest is an
important step.39–41

There are two considerations for unknown metabolite
isolation: (1) understanding the physicochemical properties
and (2) determining the amount of the starting materials. As
described above, MS analysis provides rich information on the
This journal is © The Royal Society of Chemistry 2021
physicochemical properties of a metabolite. For instance, when
the target ion is highly abundant in either positive or negative
ion mode, the chemical property can be considered basic or
acidic, respectively. If the ion is equally abundant in both the
ion modes, the metabolite is neutral. Notably, at least 100 mg of
a compound with high purity must be isolated because struc-
tural elucidation oen requires nuclear magnetic resonance
(NMR) spectroscopy for one- and two-dimensional analyses (up
to m/z 1500). If the target metabolite is likely an isomer of an
authentic standard compound, it can be quantied using
a standard curve, and the amount of the required plant material
can be calculated. However, for truly unknown metabolites,
a small-scale experiment must be rst performed to predict the
concentration of metabolites in the plant and then scaled up as
needed. Moreover, the discovery of the plant organ that accu-
mulates a high amount of that metabolite is helpful for effec-
tively isolating the molecule of interest.

Recently, combination approaches using both LC-MS/MS
and NMR have been developed to maximize the abilities of
metabolite detection of LC-MS and structure elucidation of
NMR for MSI level 1 identication.25,42–44 The use of LC-MS/MS
coupled with solid-phase extraction (SPE)-NMR offers an auto-
mated system, starting from sample extraction to high-
throughput metabolite annotation. Using this approach, over
100 plant-specic metabolites including previously unknown
structures have been characterized from Medicago truncatula.44

Importantly, the required compound amount can be reduced to
the order of micrograms for the structure elucidation of
metabolite analogues.43 The advantages and limitations of
hyphenated MS-NMR systems have been reviewed in detail by
several groups.25,42

Subsequently, a fractionation strategy was designed based
on the knowledge of predicted physicochemical properties of
Nat. Prod. Rep., 2021, 38, 1729–1759 | 1733
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unknown metabolites. In addition to MS, ultraviolet (UV)
detection is the most frequently used modality to conrm the
fractionation results. Since many metabolites show polarity that
corresponds to the carbon backbone structure and functional
moieties, the rst step is to use liquid–liquid partition to obtain
the fraction containing a high amount of the target metabolite;
as such, for a highly polar metabolite, a high-polarity solvent
(e.g., n-butanol and water) is recommended. Moreover, in
liquid–liquid partition, solubility in organic solvents with a low
polarity (e.g., hexane, ethyl acetate, or chloroform) is employed.
Next, the combination of cation and anion exchange chroma-
tography is used to separate the metabolites into three groups:
acidic, neutral, and basic. Finally, gel ltration chromatography
with resins and a single organic solvent or mixed solvents (e.g.,
methanol and water) are used to separate metabolites according
to their molecular weight. In addition, for further purication,
size-based fractions of the metabolites can be separated by
reverse-phase chromatography. An efficient way to isolate the
target metabolites is to use preparative LC-MS, which can trace
the metabolites and isolate it simultaneously by separating
a large number of samples injected into the system. Thus, based
on the physicochemical characteristics of the target metabolite,
a higher rate of isolation can be achieved.

2.4. Enzymatic approaches to obtain natural compounds of
interest

The high sensitivity of the MS approach also provides informa-
tion on the metabolite at trace concentrations in plants. Flavonol
glycosides specic to owers were detected by avonol proling
using LC-MS but not validated against authentic standards.45

Flavonols were enzymatically synthesized using UGT78D3 iden-
tied by reverse genetics and transcriptomic analysis. A T-DNA
insertion mutant for three possible avonol glycosides was
screened, and two of these, namely, kaempferol and quercetin 3-
O-arabinoside-7-O-rhamnoside, were isolated by chromatography
using in vitro reaction products with the glycosyltransferase
UGT78D3. Genome sequencing provides precise information on
gene functions but this method is feasible when precursors are
commercially available for enzymatic reactions.

2.5. Purposes of metabolite annotation in MSI level 2, 3, and
4 condences

We summarized the advantages of level 1 identication by
a general yet critical plant biochemical approaches in the
previous sections. Improving the annotation rates of MSI levels 2
and 3 are an emerging need in metabolomics for the (1) der-
eplication of natural products, (2) discovery of novel metabolite
structures, and (3) elucidation of metabolism in living organisms.
The dereplication process can be accelerated by advanced
analytical and CompMS46 techniques that efficiently classify MS
ion features to known and expectable (known–unknown)
metabolites of MSI levels 1, 2, and 3 and unknownmetabolites of
MSI level 4. The discovery of new metabolites with the informa-
tion of a known molecular backbone (aglycone) is also facilitated
by untangling themass spectra, which contain the information of
the substructures. In addition, the use of metabolic proles of
1734 | Nat. Prod. Rep., 2021, 38, 1729–1759
level 1 condence alone is inadequate to understand plant
metabolism because <10% of the MS raw data can be annotated
by authentic standard-centric annotation.47,48 Although the
isotope- and fragment feature-centric metabolite annotation,
which is a knowledge propagation technique,49 is possible for
level 2b and 3 of Schymanski et al.'s criteria, such metabolite
abbreviated information [e.g., avonol (C15H10O6) O-hex] cannot
be utilized directly in either metabolic pathway analysis or inte-
grated genomic, transcriptomic, and proteomic analysis. There-
fore, developing bioinformatic tools that can use such structure
descriptions, such as plant metabolite-set enrichment analysis,50

is also an emerging need in plant biology. Such methods have
recently been proposed in lipidomics (e.g., lipid ontology
enrichment analysis).51 Recently, a related methodology, where
the metabolites are categorized by metabolic pathways and
shared tandem MS patterns, has been developed for the inter-
pretation of plant metabolomics data.52 We believe that the
current cheminformatics and CompMS platforms do not meet
the requirements of bioinformatics researchers in plant biology
compared with the available lipidomics, proteomics, and tran-
scriptomics platforms. Cutting-edge technologies for unknown
metabolite annotations have been developed thus far, and the
signicance of such top-down approaches can be maximized by
harmonized integration with general bottom-up approaches.
3. Cutting-edge technologies to
identify unknown metabolites

This section focuses on the annotation in metabolomics for
natural product chemistry. Here, we describe the current
methodologies to enable the annotation of levels 2 and 3 of the
MSI guidelines and levels 2a, 2b, 3, and 4 of Schymanski et al.'s
criteria.
3.1. Technological advances in biology, chemistry, and
instrumentation

In this section, technological advances, including stable isotope
labeling (SIL), ultrahigh-resolution mass spectrometry
(UHRMS), imaging mass spectrometry (IMS), and single-cell
metabolomics, are highlighted to show how technology can
be used to elucidate unknown metabolites in plants.

3.1.1. SIL-based metabolomics. LC-high resolution (HR)-
MS/MS is a popular technique for acquiring metabolomics
data. Indeed, the generated accurate masses and informative
MS/MS spectra enabled the recognition and characterization of
many substructures in unknown metabolites. However, the
elemental formula assignment of plant natural products and
their substructures remains challenging; in this step, the SIL-
metabolomics facilitates the metabolite annotation process by
identifying the number of molecular elements (i.e., CHNOS) in
unknown precursor and product ions.53 In the SIL metab-
olomics approach, the elements of metabolites such as carbon,
nitrogen, oxygen, and sulfur are labeled with their stable
isotopes (e.g., 13C, 15N, 18O, and 34S). For 13C labeling, 13CO2,
[U-13C6] glucose, and [U-13C12] sucrose are commonly used. 15N
or 34S labeling is performed with a liquid fertilizer containing
This journal is © The Royal Society of Chemistry 2021
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15N- or 34S-labeled chemicals. The SIL plants produce nearly the
same physicochemical properties when compared to the native
plants. The labeled and non-labeled compounds are detected
based on different m/z values (observed as mass shis)
according to the number of elements within the same retention
time region. Nakabayashi et al.54 showed the landscape of the
molecular element changes using principal component analysis
(PCA). For the global proling of plant metabolites in SIL-based
metabolomics, the “pair” of labeled and non-labeled metabo-
lites in the LC-MS data can be identied by several CompMS
programs, such as MS-DIAL,55–57 X13CMS,58 and MetExtract II.59

The determination of elements helps to predict the molecular
formula, substructure, ontology, and even structure accurately,
as well as to understand the fragmentation patterns of the
complex plant specialized metabolites that are not yet fully
deconvoluted.56 Moreover, SIL-based metabolomics research
can be further accelerated using UHRMS data.60

3.1.2. UHRMS-based metabolomics. In general, it is diffi-
cult to label perennial plants using stable isotopes. For the
chemical assignment of unknown plant metabolites, Fourier
transform ion cyclotron resonance/magnetic resonance-mass
spectrometry (FTICR/MR-MS) is a powerful platform, which
provides ultrahigh accuracy and resolution for the metabolite
ion (<100 ppb, 1.79 mDa at m/z 757.52 in 21T FT-ICR) detec-
tion.17 It allows the determination of elements in the precursor
and product ions even without using SIL-based metabolomics
approaches. In addition, isotopic ne structure analysis,61

a quantitative and qualitative approach to analyze isotopic ions
obtained in UHRMS, can determine the detailed molecular
formulas of specialized plant metabolites. The unique m/z
values and signal intensities derived from 15N and 34S isotope
elements can be detected in the UHRMS data, and this infor-
mation is applied to explore nitrogen and sulfur-containing
metabolites, which his called N-omics62 and S-omics,63 respec-
tively. This methodology can also be applied to oxygen or
halogen-containing metabolites. Isotope ne structure analysis
is also utilized inMS/MS analysis to detect the substructure ions
with the samemolecular elements for exploring the target atom-
containing metabolites, including the structural isomers.54

Nakabayashi et al. showed the successful integration of the
modern top-down metabolomics approach and the general
bottom-up biochemical approach.64 Asparagus, one of the
staple vegetables, is a perennial plant, and it biosynthesizes S-
containing metabolites, including asparagusic acid in addi-
tion to many unknowns. Sulfur has the stable isotope 34S, which
is abundant in nature (4.29%), suggesting that exploration
using the differences in the m/z values between 32S and 34S
(1.9958 Da) can easily reveal unknown S-metabolites. In this
study, the metabolome data using LC-FTICR-MS were acquired,
and 34S-specic isotope features were obtained for all the
detected ions. The ion atm/z 307.08931 ([M + H]+, calculated for
C10H19N4O3S2, 307.08930) was detected in these data. The
search in the databases returned no results for C10H18N4O3S2,
suggesting that the ion is a new metabolite. Because the
metabolite was not detected by UV chromatography, no chro-
mophore in its structure was expected. Moreover, the metabo-
lite was well detected in both positive and negative ionization
This journal is © The Royal Society of Chemistry 2021
modes with a high signal intensity, leading to the hypothesis
that the metabolite forms a zwitterion. Raw asparagus tissues
(970.7 g) were prepared for the isolation of this metabolite as
a small-scale experiment. Liquid–liquid partition, excluding
low-polarity metabolites and reverse-phase chromatography,
successfully obtained a rich fraction including the targeted
metabolite. Aer purifying 61 mg of the compound by prepar-
ative LC-MS, a new asparagus metabolite, named asparaptine,
was identied by NMR spectroscopy and acid hydrolysis.

3.1.3. IMS metabolomics. IMS is used to characterize the
localization of metabolites in cross or longitudinal sections.
Generally, both ESI and matrix-assisted laser desorption/
ionization (MALDI) can be used in IMS analysis. The advan-
tage of ESI-IMS, as performed in desorption electrospray ioni-
zation (DESI),65 is that the ion features are compatible with LC-
ESI-MS/MS, and the annotated metabolites can be directly
mapped to the ESI-IMS data, and vice versa. MALDI can detect
a wide range of metabolites, basically as singly charged mole-
cules, and some ionized molecules are compatible with ESI-
MS.62 A matrix reagent must be sprayed onto the section to
extract metabolites from the surface and crystallize both the
extracted metabolites and reagents. The reagent assists the
ionization of the extracted metabolites in laser irradiation.

Recent IMS analyses have revealed the tissue specicity of
plant metabolites.66 Segmentation analysis,67 an unsupervised
spatial pattern analysis of the detected metabolites, provides
a unique localization pattern for a group of metabolites, which
are highly accumulated in certain tissues or organs of plants.
This indicates that the tissue accumulating the target metabo-
lite of interest can mainly be used for isolation. In fact, the
spatial multi-omics approach integrating spatial tran-
scriptomics,68–70 proteomics,71 and metabolomics accelerates
the understanding of tissue-specic molecular mechanisms,
metabolic pathways across tissues, and physiological roles in
a plant phenotype.

SIL-assisted spatial metabolomics also facilitates the eluci-
dation of unknownmetabolites. Theoretically, both labeled and
non-labeled metabolites are localized in the same tissue or
organ of the labeled and non-labeled plants, respectively. The
m/z values of the non-labeled metabolites should not be detec-
ted in the labeled plant and vice versa. The accumulation
pattern of the labeled and non-labeled metabolites can be
utilized to decrease the false positive annotations and facilitate
molecular formula predictions by identifying the number of
elements in the IMS data.

3.1.4. Single cell metabolomics. The organ and tissue
specicity of the metabolites provide insights into their cell
specicity. In the development process of plants, the metabolite
levels remain in a dynamic state and play various roles in cells.
Single-cell metabolomics is an approach to analyze metabolites
at the single-cell level. Live single-cell mass spectrometry (Live-
MS) can characterize the cell specicity among the pith,
cortical, mesophyll, and epidermal cells in a section.72 Internal
electrode capillary-pressure probe electrospray ionization-MS
(IEC-PPESI-MS) revealed the presence of avonoids and acyl-
sugars in the stalk and glandular cells of the trichomes in
Solanum lycopersicum (tomato).73 A combination of IMS and
Nat. Prod. Rep., 2021, 38, 1729–1759 | 1735
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single-cell analysis revealed the movement of alkaloids among
the cells in Catharanthus roseus.74,75 Single-cell analysis works
well for the outer cells, which are easy to inject with a needle.
General metabolomics can be applied as single-cell analysis if
the organelles and vacuoles are large. The single-cell approach
requires the injection of a needle to draw the cellular compo-
nents. However, there are concerns regarding the needle
destroying the cell walls and membranes of the target and
neighboring cells. The contamination of metabolites from the
destroyed cells is another concern. Nowadays, cell sorting
systems have been developed for single-cell transcriptomics.76

Metabolites specically accumulate in certain tissues and cells,
suggesting that they play specic roles in these compartments.
Combining single-cell technologies can help elucidate the
specic roles of metabolites, which remain largely unknown.
3.2. Cheminformatics and CompMS

Computational science is essential to accelerate research in
biology. The term “bioinformatics” is popular and widely used
when researchers (particularly biologists) state the importance
of informatics in biology. However, metabolomics is an inter-
disciplinary area integrating biology, physics (MS), and chem-
istry. Therefore, the use of bioinformatics alone is not sufficient
to properly represent each computational science in metab-
olomics. In this context, three terminologies, namely, MS
informatics (CompMS), cheminformatics (computational
chemistry), and bioinformatics (computational biology) should
be used when considering the informatics of metabolomics
(Fig. 2). In this section, we focus on the advances in CompMS
and cheminformatics.

3.2.1. Generalist, well maintained, and widely used so-
ware programs in metabolomics.Many soware programs have
been developed for metabolomics data processing and anal-
ysis.77 Except for the detailed annotation, analyses such as peak
picking, general spectral annotation, alignment (data integra-
tion), visualization, and data statistics have currently become
simple, thanks to the popular soware programs in metab-
olomics and lipidomics. Although commercial sowares such
as MetaboScape, Compound Discoverer, MassHunter,
XCMSPlus, and Progenesis QI are superior to the academic ones
in terms of stability, well-designed graphical user interface
(GUI), and customer support, academic soware development
is indispensable to rapidly handle the needs of the scientic
community, to expand the scientic eld to many disciplines,
Fig. 2 Links among various informatics areas and the related compu
advances are warranted.

1736 | Nat. Prod. Rep., 2021, 38, 1729–1759
and to reect the unique ideas of researchers, which can be
implemented in commercial sowares in the future. However,
even in academia, soware programs must be well maintained,
tutorialized, and distributed by the developers;78 otherwise, this
development is only helpful for doctoral students and post-
doctoral researchers to enhance their academic achievements.
Regarding MS coupled with chromatography, MS-DIAL,55–57,79

XCMS,80 XCMS-online,81 MZmine 2,82 OpenMS,83 GNPS,33 and
MetaboAnalyst84 are undoubtedly the most used soware
programs because of their stability, GUI design, maintenance,
and user support (Table 2). These programs have unique
features and functions, and third-party programs can comple-
ment their shortcomings. MS-FINDER85 is the buddy program
of MS-DIAL to elucidate unknown mass spectra without any
reference spectral information while the MS-DIAL program
annotates metabolites by existing spectral libraries. MS-
CleanR86 and MS-FLO87 were designed to curate the metab-
olome data from MS-DIAL to annotate and group adduct-,
isotope-, and in-source fragment ions and to lter the aligned
peaks out by several thresholds. The metabolite annotation
programs of MetDNA,88 MetFamily,89 and GNPS support the
output of the MS-DIAL soware program. The automated data
analysis pipeline (ADAP)90 for spectral deconvolution is imple-
mented in MZmine 2. GNPS supports the outputs from various
soware programs such as MS-DIAL, XCMS, MZmine 2, and
OpenMS. Furthermore, the GNPS environment contains various
attractive programs such as MASST91 (searching the spectrum
across public spectra), ReDU-MS2 (ref. 92) (reanalysis of
metabolome data for discoveries), and MS2LDA-MotifDB93

(nding MS/MS motifs for structure elucidation). As such, the
preferred program should be used for the pipeline of metab-
olomics workow considering its advantages and disadvan-
tages. However, further development is warranted for the
annotation of unknown metabolites.

3.2.2. Mass spectral databases for annotation. The best
practice for annotating natural products is to use an MS/MS
spectral library. In this review, we investigated the current
coverage of MS/MS spectral databases across the chemical
cosmos of currently known natural products. As MS/MS data-
bases, we used PlaSMA,56 MassBank,32 GNPS,33 ReSpect,94 KI-
GIAR,95 CASMI2016,96 MassBankEU (https://massbank.eu/
MassBank/), MetaboBASE,97 NIST20 (https://www.sisweb.com/
soware/ms/nist.htm), BMDMS-NP,98 RIKEN OxPL Library,99

and FiehnHILIC, PathogenBox, Vaniya/Fiehn Natural Products
tational programs in metabolomics. Not all tools are described, and

This journal is © The Royal Society of Chemistry 2021
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Table 2 Summary of the most widely used generalist tools in metabolomics

Soware Platform Description as of 2020

GNPS Web Supporting annotation of unknown EI-MS and MS/MS spectra by
many molecular networking techniques. Sharing natural product
mass spectra is accelerated. The result of data processing programs
from e.g. MS-DIAL and MZmine 2 can directly be analyzed in GNPS
environment

MetaboAnalyst Web/local server Supporting statistics, visualization, and multi-omics analyses for
metabolomics data. The metabolome data table for MetaboAnalyst is
oen prepared by other data processing soware tools while it can
also be performed in the web application

MS-DIAL OS free based on C#.net standard
environment

The most recently developed of the programs presented. Supporting
many data processing pipelines for GC-MS, LC-MS, ion mobility, and
data independent acquisition in addition to the intuitive GUI
environment and statistics analyses. Functions for curating the
results of annotation and alignment are substantial, and many third-
party programs including GNPS andMetFamily support the MS-DIAL
output

MZmine 2 OS free based on Java
Environment

Supporting many data processing functions for GC-MS and LC-MS
data in addition to data visualization and basic statistics analyses.
The parameter optimization can easily be performed in each of
processing module, and the direct links to other soware programs
like GNPS and Sirius have also been supported by many developers

OpenMS OS free based on C++ and python
environment

Providing an infrastructure of metabolomics and proteomics data
analysis workow by a wide range of customizable tools and
functions. With KNIME and Galaxy environments, exible and
scalable workow can be built. In addition, many data visualization
and statistics approaches are supported

XCMS OS free based on R environment The rst platform of metabolomics data processing. Many
informatics researchers contribute to the function developments.
Because it is an R package program, the biggest advantage of XCMS is
that the result can easily be incorporated to well-maintained
bioinformatics tools in the R environment

XCMS-online Web Providing an easy-to-use environment for metabolomics data
processing. Many default parameter settings are available as a starter
for each vendor’s machine data. With Metlin, statistics, and pathway
platforms maintained in Scripps, it provides the state-of-the-art
systems biology platform using metabolomics data
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Library of MoNA (https://mona.ehnlab.ucdavis.edu/): these MS/
MS spectra have been experimentally obtained (not as in silico).
These databases contain 1 304 633 ESI(+)-MS/MS and 367 612
ESI(�)-MS/MS spectra of 36 876 unique structures by the rst
layer of InChIKey.100 In the metabolite structure databases, we
used information in MS-FINDER,85 which includes 354 438
unique structures, also curated by the rst layer of InChIKey,
from HMDB,101 SMPDB,102 LipidMAPS,103 YMDB,104 ECMDB,105

BMDB,106 DrugBank,107 FooDB (https://foodb.ca/), PlantCyc,108

ChEBI,109 T3DB,110 STOFF-IDENT (https://www.lfu.bayern.de/
stoffident/#!home), Blood Exposome DB,111 Natural Products
Atlas,112 KNApSAcK,4 NANPDB,113 UNPD,114 and biomolecule
subspace of PubChem115 (of note, at the time of writing this
review, structures of the COCONUT116 database were imported to
MS-FINDER, and the total number of structures increased to
555 975 in the latest version). The chemical ontology of these
structures was dened by the superclass and direct parent terms
of ClassyFire.117 The statistics are shown in Fig. 3a. Importantly,
the curated databases for metabolomics do not cover all of the
metabolites reported in the literature. Moreover, the metabolite
This journal is © The Royal Society of Chemistry 2021
database of MS-FINDER does not cover all the metabolites that
have been reported in scientic papers. To perfectly perform
statistics of database coverages in the future, the community-
based approach,112 in addition to the database collection
approach,118 are needed, while the important statement of this
review is evidenced by the statistics of Fig. 3a.

The results showed the heterogeneity of the chemical
cosmos, with only six chemical classes covering 95% of the
known metabolites. This may be because (1) the top six groups
are the major components of animal and plant cells, (2) the
minor chemical classes (<5% of the entire chemical space) are
chemically complex and difficult to elucidate, and (3) the de-
nition of chemical classes used is the chemical ontology
superclass, which is oen broadly dened. For (2), the statistics
of the product ion peak abundances were examined (Fig. 3b).
Although the inconsistency of the spectral record numbers
should be considered, the average product ion peak count per
compound was mostly equal among the chemical classes. The
only exception is alkaloids (42.6 peaks per compound), lignans
(46.4 peaks per compound), organic polymers (96.0 peaks per
Nat. Prod. Rep., 2021, 38, 1729–1759 | 1737

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1np00014d


Fig. 3 Statistics of metabolite structure and tandem mass spectral
database. (a) The record statistics of the metabolite structure andmass
spectra were examined. The metabolite structures implemented in
MS-FINDER were used for the statistics, and the detail of spectral
records was described in the main text. The chemical ontology was
defined by the superclass term of ClassyFire. The number above each
bar chart shows the count of unique structures defined by the first
layer of InChIkey. The red, yellow, and blue colors indicate structures
only contained in the MS/MS databases, structures contained in both
spectral and metabolite databases, and structures only contained in
the metabolite structure databases, respectively. (b) Statistics of the
MS/MS peak count and the relative abundance per compound were
examined. Statistics was performed using all the spectral records
described in (a). The chemical ontology was defined by the superclass
term of ClassyFire.
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compound), and hydrocarbon derivatives (61.3 peaks per
compound). Our investigation showed that in these four
chemical classes, the characteristic ion features to dene the
aglycone and/or unique substructure moiety were not observed,
and the mass fragmentation patterns were difficult to interpret,
resulting in the difficulty of comprehensive structure elucida-
tion. Moreover, the statistics of relative intensities, assuming
that a high intensity can help us efficiently elucidate and curate
structures, also showed no major difference among the chem-
ical classes. This result would indicate that the number of
spectral records for minor chemical classes is not sufficient to
elucidate the entire chemical space of each chemical class by (1)
mass spectrometry specialist-centric manual assignment; (2)
characteristic ion-centric knowledge propagation technique, as
used in GNPS33 and MS-DIAL55 environments; (3) machine
learning techniques, as used in SIRIUS,119 CANOPUS,120 and
CFM-ID;121,122 and (4) other combinatorial techniques, such as
MS-FINDER85 and MetFrag.123,124 Importantly, even though
authentic standards for a certain chemical class are not avail-
able, the spectra would become more informative if the records
of available standards are acquired under several conditions,
resulting in the better performance of existing tools even for
minor chemical classes.

3.2.3. Fragment ion curations to accelerate the substruc-
ture annotations. We believe that the most important step, by
either manual or computation analysis, is to effectively discover
the (sub)structure-specic product ion and/or neutral loss for
annotating natural products of level 2b according to Schy-
manski et al.'s criteria.30 In this review, we assigned substruc-
ture ions to each product ion (Fig. 4), wherein multiple records
for one compound were merged before assignment according to
a previously reported method.56 In the ESI(+)-MS/MS records of
22 868 compounds, benzenylium (m/z 77.0386; C6H5

+) ions were
observed in 5648 compounds. Because there are 13 587
compounds containing the benzene moiety in the spectral
database, this result indicates that 41.6% benzene-containing
molecules generate benzenylium ions in the positive ion
mode. As a nitrogen-containing substructure, anilinium (m/z
93.0573; C6H7N

+) ion was observed in 1052 compounds and the
frequency was calculated to be 20.2% (1052 in 5197
compounds). The most frequently observed neutral loss in the
positive ion mode was water loss (18.01 Da; H2O), indicating the
neutral loss of water in 54.2% molecules (7496 in 13 830) con-
taining hydroxyl moiety denoted as “–[OH]” in the simplied
molecular-input line-entry system (SMILES) arbitrary target
specication (SMART) format. Interestingly, neutral loss of
a lysine moiety (146.1055 Da; C6H14N4O2) was observed in 83%
compounds with a lysine moiety. Moreover, phenolate (m/z
93.034; C6H5O

�) and phosphate (m/z 78.959; PO3
�) ions were

observed in the substructures of 74.4% and 47.4% molecules,
respectively.

These statistics are particularly useful to elucidate unknown
mass spectraI addition, the specicity of the fragment ion-
based substructure elucidation can be increased by the co-
existence of related fragment ions, suggesting the existence of
a targeted substructure; for instance, the observation of bothm/
z 96.969 (HPO4

�) and m/z 78.959 (PO3
�) strongly suggests the
1738 | Nat. Prod. Rep., 2021, 38, 1729–1759
existence of a phosphate substructure, although the product ion
of m/z 96.96 is also detected in compounds containing a sulfate
moiety (m/z 96.960; HSO4

�). The importance of the co-existence
This journal is © The Royal Society of Chemistry 2021
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Fig. 4 Statistics of fragment ions and neutral losses. The molecular formula and substructure were assigned using MS-FINDER. Before
assignment, multiple records for the same metabolite were merged as a single query.
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of fragment ions during metabolite annotation has also been
demonstrated and discussed previously by the implementation
of topic modelling for metabolomics data with MS2LDA.36

Furthermore, the relevance of the substructure (even the entire
structure) and fragment ions (both product ion and neutral
loss) can be investigated by machine learning techniques, such
as deep learning and support vector machine (SVM), to increase
the specicity, as used in SIRIUS 4119 and CFM-ID.121,122

Machine learning to elucidate unknown spectra is currently an
active research eld as the training set of the substructure-
fragment pairs can be easily obtained using combinatorial
tools such as MetFrag,123,124 MAGMa,125 and MS-FINDER.85

Meanwhile, the accuracy of structure elucidation tools may be
saturated in the near future unless the spectral databases are
expanded. Moreover, we emphasize the importance of
improving the accuracy of fragment annotation tools rather
than structure elucidation tools to increase the quality of the
training dataset; in other words, the reliability of the
substructure-fragment ion pairs should be improved to increase
the accuracy of structure elucidation tools.

3.2.4. Fragment feature-centric metabolite annotations.
The well-elucidated relationship between the MS fragment and
the substructure of the metabolites is fundamental to the
characterization of plant metabolites within a chemical class
(Fig. 5). For instance, avonoid O-glycosides, such as avanone,
avonol, and (iso)avone, generate a unique aglycone fragment
This journal is © The Royal Society of Chemistry 2021
ion in conventional collision-induced dissociation (CID)-based
mass fragmentation.56,126 Since the relative intensity of such
fragment ions oen exceeds 80% of the base peak, the aglycone
ions of avonoid O-glycosides can be used to elucidate the
chemical diversity of glycosides, including glycosyl, galactosyl,
rhamnosyl, acetylglycosyl, and malonylglycosyl sugar moieties.
In a recent study, we summarized such characteristic product
ions and/or neutral losses and used these features to elucidate
unknown MS/MS spectra in plant metabolomics data.56 In fact,
the MS fragment-centric chemical assignment enables reliable
annotation when the (1) peak intensity of the aglycone-related
fragment ions is high in the MS/MS spectrum, (2) mass frag-
mentation patterns can be easily and intuitively interpreted,
and (3) fragmentation patterns are similar within a chemical
category; we found that avonoid C-glycosides, prenylated
avonoids, benzoxazinoids, triterpene saponins, glyco-
alkaloids, steroidal saponins, phenylpropanoids, and iridoids
meet these criteria (Fig. 5).

3.2.5. Integrated CompMS and cheminformatics approach
to metabolomics. When the MS/MS spectra of metabolites
cannot be elucidated by manual investigation or other combi-
natorial tools, molecular spectrum networking is useful to
obtain unbiased information of tandem mass spectra,
assuming that similar structures generate similar MS/MS
spectra or share the same fragment ions or neutral losses.
Nat. Prod. Rep., 2021, 38, 1729–1759 | 1739
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In this review, we performed molecular networking for
alkaloids, a chemical class that is difficult to elucidate
because of the highly complex mass fragmentation behaviors
(Fig. 6): the source data is available as ESI Data.†We used the
tandem mass spectra of the PlaSMA database to derive the
molecular networks, the methodology of which together with
the database details have been described in the previous
report.56 A total of 135 alkaloids were mapped in a network,
where metabolites were linked by the similarity of structures
(red color edge) and the MS/MS spectra (blue color edge). All
the MS/MS spectra analyzed for Fig. 6 were acquired under the
same analytical condition. The MS/MS similarity was calcu-
lated in the MS-DIAL program using the modied Bonanza
score.127 The source code and the MS/MS database are freely
available at the RIKEN PRIMe website (http://
prime.psc.riken.jp/). The structure similarity (blue edge) was
Fig. 5 Characteristic fragment ions to elucidate the metabolites within a
previous study.56

1740 | Nat. Prod. Rep., 2021, 38, 1729–1759
calculated by the Tanimoto (Jaccard) index to the ngerprints
of MACCS,128 PubChem (https://p.ncbi.nlm.nih.gov/
pubchem/specications/pubchem_ngerprints.txt), CDK,129

and Klekota-Roth.130 Interestingly, many unique MS/MS
patterns were identied in each alkaloid subclass. For
instance, tropane alkaloids, ornithine metabolites bio-
synthesized in Solanaceae and Erythroxylaceae, generate
a product ion at m/z 124.1121 (C8H14N

+), which matches the
tropane backbone. Indolizidine alkaloids generated the
product ion at m/z 160.0757 (C10H10NO

+), and yohimbine and
corynanthean alkaloids generated product ions at m/z
174.0913 (C11H12NO

+). Moreover, many monoterpene indole
alkaloids (MIAs) generated product ions at m/z 144.0808
(C10H10N

+) matched to the indole moiety, and the fragment
ion was detected in the MS/MS spectra of >50% of MIAs,
denoted by circles in Fig. 6. Furthermore, the molecular
chemical class. This figure was prepared based on ESI Table 5† of the

This journal is © The Royal Society of Chemistry 2021
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network suggested that the ion mobility-centric diagnostic
criteria described by the CCS value of the structure would
increase the condence of metabolite annotations. In Fig. 6,
the CCS value is reected by the size of the node. Many
metabolites with similar MS/MS spectra have distinct CCS
values. The CCS values were obtained from the AllCCS22 and
PNNL CCS databases.131 For structures lacking CCS informa-
tion, the value was predicted using AllCCS (http://
allccs.zhulab.cn/). However, this network also revealed that
many alkaloids do not show similar MS/MS spectra and
distinct CCS values, even though they are part of the same
biosynthetic pathway (e.g., strictosidine, strictosamide, and
camptothecin). Further integrative approaches and database
accumulation are warranted to elucidate the yet unknown
total alkaloid chemical cosmos.
4. Phytochemical genomics in
a supporting role to explore the
metabolite cosmos

The advances in the form of next-generation sequencing tech-
nologies, emerging approaches for assembly scaffolding, and
innovative computational tools to achieve chromosome-scale
genome assemblies for even a highly repetitive genome
content have begun the genomic era for non-model plant
species rich in metabolite diversity. Genomics-metabolomics
together complement each other to prioritize genes and
Fig. 6 Molecular networking of 135 alkaloids in the PlaSMA database. T
The MS/MS similarity (red edge) was calculated in the MS-DIAL program
index based on the structure fingerprints. The metabolite classification fo
node color means the same direct parent term of ClassyFire.

This journal is © The Royal Society of Chemistry 2021
metabolites for functional and chemical annotations, respec-
tively. In this section, we briey describe the impact and
potential of genomics to complement the advances in new
metabolite discovery.
4.1. Importance of genome mining for plant natural product
discovery

The emergence and expansion of plant functional genomics are
oen attributed to multi-omics analyses, which have enabled
the prioritization and functional characterization of thousands
of genes to date.132–134 Genes associated with the biosynthetic
pathways of specialized metabolites are oen coexpressed and
strongly correlated with metabolite accumulation, forming
a basis for this analytical approach.135 Nevertheless, the number
of genes identied through this strategy is in hundreds, if not in
thousands. Therefore, additional criteria to narrow down the
candidate genes for functional characterization are essential to
predict possible intermediates of specialized metabolite
biosynthetic pathways. Genome mining is vital for expanding
the microbial natural product discoveries.28 In addition to the
added advantage of a smaller genome size with hundreds of
thousands of published microbial genomes as a resource for
comparative genome analyses, gene clusters have been estab-
lished as the key feature of microbial natural product biosyn-
thesis. Thus, an identied gene cluster not only associates
genes with biosynthesis but also provides clues into metabolite
intermediates based on the enzymatic properties of the genes in
he MS/MS spectra were obtained under the same analytical condition.
. The structure similarity (blue edge) was calculated by the Tanimoto
llows the definitions of the direct parent terms in ClassyFire. The same

Nat. Prod. Rep., 2021, 38, 1729–1759 | 1741
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that cluster. However, compared with the microbial systems,
plant genome-based natural product discoveries remain limited
because of the near negligible genomic resources available
owing to the sheer vastness and diversity of the plant kingdom,
their enormous genome sizes, prevalence of repeat-rich
genomes, and polyploidy.132,134

In recent years, tremendous progress has been achieved in
the handling some of the challenges mentioned above owing to
a signicant reduction in the per-base sequencing cost,
advances in long-read sequencing technologies, increased
sequencing throughput, and a rapidly expanding toolbox. RNA-
Seq-based de novo transcriptome assembly has allowed for the
generation of genome resources for thousands of plant species
in the last few years.133,134 Consortium-based efforts, such as the
1KP Project, have reported genome resources for 1124 plant
species, covering several diverse plant species from distant
lineages.136 The established high-quality genome assemblies
further complements these efforts.135 In addition to individual
genome projects targeting specic plants of interest, consor-
tium efforts, such as Earth Biogenome Project137 and Darwin
Tree of Life project (https://www.darwintreeoife.org/), are
aimed at establishing whole-genome assemblies for thousands
of diverse plant species in the next decade. These high-quality
genome assemblies are particularly valuable for under-
standing the roles of gene clusters and structural variants,
which would be benecial for modern functional genomics and
deep learning tools to predict the functions of unknown
Fig. 7 Genomemining to discover and annotate newmetabolites. Multi-
species could be used to identify new metabolites and putatively assoc
phytochemical genomics, gene cluster analysis, and using the prior kno
metabolites taking into consideration the observed mass-shift and the id
glycosyltransferases; AT: acyltransferase; MT: methyltransferases; P450:

1742 | Nat. Prod. Rep., 2021, 38, 1729–1759
components. Here, we briey elaborate on the current genome-
mining approaches and integrative omics approaches to explore
natural product biosynthesis (Fig. 7).
4.2. Near-isogenic lines (NILs), recombinant inbred lines
(RILs), and chromosome segment substitution lines (CSSLs)
for metabolome-assisted functional genomics

NILs, RILs, and CSSLs are valuable genetic resources for iden-
tifying genes associated with a given trait. Typically, these lines
serve as powerful tools for genetic analysis and characterization
of donor varieties or quantitative traits of the species against the
genetic background of a recurrent parent138–146 as well as for the
identication of minor-effect quantitative trait loci (QTLs),
resulting in the acquisition of novel properties/traits of the
donor genotype and identifying the genomic segments and
potential genes responsible for a specic trait.140,141,143,147–149

Moreover, NILs, RILs, and CSSLs are vital genetic resources for
identifying the genes associated with novel agronomical prop-
erties and specialized metabolism.144–146,149,150 QTLs associated
with metabolites have been identied to detect polygenic
regions and genes associated with biosynthetic path-
ways.148,150–155 Using 210 RILs, Kang et al. identied 4681 puta-
tive metabolites associated with QTLs and used in silico analysis
to characterize 35 candidate genes associated with the biosyn-
thesis of 30 structurally identied metabolites, including genes
responsible for the variation in the feruloyl serotonin and L-
omics analysis using isogeneic lines and natural variants of a given plant
iated genes involved in its biosynthesis. Using comparative genomics,
wn biochemical reactions will allow to improve the annotation of new
entified enzyme families across species with similar chemotypes. GT:
cytochrome P450.

This journal is © The Royal Society of Chemistry 2021
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asparagine content across populations.156 Using a large cross-
population of maize and its wild ancestor, teosinte, Xu et al.
identied genetic factors controlling the metabolic divergence
responsible for maize domestication.157 The authors used inte-
grative omics approaches to identify the candidate genes
contributing to metabolite divergence and veried the roles of
avanone 3-hydroxylase1, purple aleurone1, and maize terpene
synthase1 in the divergence of their related biosynthetic path-
ways. Using RILs created by crossing Arabidopsis Col-0 and C24,
Knoch et al. identied 786 metabolic QTLs on the short arm of
chromosome 4 responsible for a major proportion of metabolic
variation, including potential genes involved in the biosynthetic
pathways.158

Inbred-line genomics has been particularly successful in the
discovery of new metabolites and associated biosynthetic genes
in tomatoes. Metabolic QTL analysis across 76 introgression
lines of tomato identied 679 genomic regions associated with
the specialized metabolism in the fruit pericarp;150 multi-omics
analysis identied the candidate genes associated with the key
QTLs. Subsequently, Solyc06g062290 and Solyc10g085230,
which are involved in glycoalkaloid biosynthesis, were func-
tionally characterized. Schilmiller et al. used CSSLs and
a forward genetics approach to identify the diversity of mono-
and sesquiterpene biosynthesis and associated QTLs in the
secreting glandular trichomes of tomato.159 The authors iden-
tied genomic regions including potential candidate acyl-
transferases, which regulate the accumulation of total trichome
terpenes or acyl sugars, alteration of sesquiterpenes with intact
monoterpene moieties, accumulation of the monoterpene
a-thujene, and acylsucrose lacking an acetyl group, and shis in
the length of the acyl chains in acyl sucrose. Furthermore,
Schilmiller et al. functionally characterized the BAHD family of
acyltransferases (Solyc01g105580 or SlAT2), encoding an acetyl-
CoA-dependent acyltransferase, and found the addition of
acetyl groups to the major detectable tetra-acylsucrose.160

Moreover, Alseekh et al. identied 338 putative metabolite QTLs
associated with avonoids, steroidal glycoalkaloids, and other
specialized metabolites using the seeds of Solanum pennellii
introgression lines. Authors experimentally validated avonoid-
associated QTLs, including Solyc12g098600 and Sol-
yc12g096870, which encode seed-specic uridine
5-diphosphate-glycosyltransferases.161 In a comprehensive
multi-omics analysis using a population of hundreds of diverse
tomato accessions, Zhu et al. identied thousands of genetic
regions associated with metabolism.162 They showed that the
alleles of the genes associated with large fruit were linked to
metabolism and identied ve major loci that reduced the
accumulation of anti-nutritional steroidal glycoalkaloids in ripe
fruit. Using an introgression population developed from the
wild Peruvian accession of Solanum pennellii (LA0716 or
PI246502) and the Solanum lycopersicum cultivar M82, Szy-
manski et al. established the genetic basis of chemical varia-
tions accompanying the transfer of wild-type fruit traits.163 In
this study, integrated genome-transcript-metabolite-phenotype
QTL analysis was used to elucidate the biosynthesis of escu-
leosides and lycoperosides from a-tomatine during fruit devel-
opment and ripening.
This journal is © The Royal Society of Chemistry 2021
These and several other exceptional studies on Arabidopsis,
tomato, rice, wheat, soybean, pepper, maize, and potato, among
other plant species, have shown a strong association of
specialized metabolites with QTLs.157,158,164–166 These lines also
offer a potential resource for identifying the intermediates of
a given metabolic pathway. However, the generation of such
lines is challenging and requires time and resources. Never-
theless, the advantages of discovering new properties and
establishing newmetabolites through such lines are promising.
Articially generated genetic variability within a given species
through fast-neutron or gamma-ray bombardments and ethyl
methanesulfonate (EMS) mutagenesis is an alternative to screen
and select lines based on the desired phenotype for further
characterization.167
4.3. Natural variants for metabolome-assisted functional
genomics

Within a given plant species, ecosystem changes result in
spontaneous mutations driven by evolutionary processes, such
as natural or articial selection (i.e., domestication), thus
deriving natural intraspecic variation (hereaer, natural vari-
ation).133,168 These natural variants are also the main toolsets for
plant breeders to establish inbred lines with desired agro-
nomical traits.169 Natural variants include single-gene (mono-
genic) allelic variants and, in many cases, even massive changes
through transposon-based genome expansions, deletion/
expansion of enzymes, and altered regulation of enzymes
involved in biosynthetic pathways. The natural variants of Ara-
bidopsis have served to identify over 100 genes associated with
the adaptation of plants to different natural environments,
including transcription factors, hormones, and primary and
biosynthetic enzymes.132,170 In natural variants of Arabidopsis,
untargeted metabolite proling identied 18 unknown mass
features, including novel avonol derivative saiginol A, which
shows enhanced UV-B absorbent properties compared with
other phenylpropanoids.41 With over 400 000 rice germplasm
accessions stored in gene banks worldwide, the metabolite
proling of rice natural variants identied differential levels of
aromatic and bioactive metabolites across accessions, contrib-
uting to typical characteristics and phenotypes.152,171,172 Natural
variants of crops such as tomato, soybean, maize, potato,
peanut, strawberry, and cucumber are being collected and
maintained worldwide, offering an excellent resource for iden-
tifying new metabolites and their association with the pheno-
type.162,169,173,174 The availability of high-quality genome
assemblies allows researchers to use natural variants for accu-
mulating molecular evidence, resulting in colossal
chemodiversity.

Genome-wide association studies (GWASs) have gained
prominence in achieving a high resolution (to the single
nucleotide level) and dissect the genetic architecture with the
associated traits.132,174 The advantages of GWAS coupled with
metabolomics for large-scale interactive gene-metabolite
annotation and identication and metabolic pathway elucida-
tion are well-known.175,176 The combination of GWAS with
untargeted metabolomics of 440 Arabidopsis natural variants
Nat. Prod. Rep., 2021, 38, 1729–1759 | 1743
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identied the novel specialized metabolite N-malonyl-D-alloi-
soleucine.177 GWAS, combined with metabolomics of 529 rice
accessions, enabled the identication and functional charac-
terization of 36 candidate genes associated with the specialized
metabolism of physiological and nutritional importance.175

Furthermore, unknown metabolites, including sakuranetin,
pyridoxine O-glycoside, and phytocassane D, and 166 other
metabolites were identied using associations with functionally
related genes with this approach. GWAS combined with QTL
analysis identied genes involved in specialized metabo-
lism.178,179 GWAS is increasingly being applied in the combina-
tion of QTLs to identify and validate potential single-nucleotide
polymorphisms (SNPs) associated with a given trait180,181 as it
allows the precise identication of the genes and genomic
regions associated with the trait of interest. Relatively fewer loci
oen control the metabolic traits with signicant effects,
making the combination of GWAS with QTL and coexpression
analysis a powerful functional genomics approach.
Metabolome-associated GWAS analysis can assign unknown
metabolites to a specic genomic region, which can be further
used in prioritization for further structural validation.182

One of the limitations of GWAS, which mainly uses short-read
sequencing for mapping to a single reference genome, is the loss
of genetic information from highly polymorphic regions due to its
dependence on the sequence similarity. A single reference genome
for a plant species, given the huge natural variants, alsomeans that
it may not include some of the vital genomic segments or genes
responsible for specic features.183,184 Therefore, pangenomes are
essential to understand the extent of genomic variation and overall
molecular features that characterize a species. A pangenome for
a given species mainly includes the core genome, shared across
natural variants, and the dispensable genome, genetic part that
varies across the participating accessions, including its chemo-
diversity.183 The comparison of genomes between the inbred
grapevine variety Pinot Noir (PN40024; sequenced in 2007; refer-
ence genome) and the grapevine variant Uruguayan Tannat clone
(UY11) containing high polyphenol levels in the berry skin and
seed showed that 1873 genes were absent in the reference
genome.185 UY11 expressed 141 novel unique genes encoding 19
different enzymes associated with polyphenol biosynthesis,
including cultivar-specic genes regulating polyphenol accumula-
tion. The pangenome for tomato, constructed using 725 phyloge-
netically and geographically distinct accessions, identied 4873
genes absent from the reference genome.186 Moreover, TomLoxC
(Solyc01g006540) was revealed to be involved in the production of
apocarotenoid, which contributes to the desirable tomato avor.
Pangenome for Brachypodium dystachyon showed that the core
genome was rich in genes associated with essential processes such
as primary metabolite synthesis, while the dispensable genome
was rich in genes associated with disease resistance and abiotic
stress response.187 Most importantly, the dispensable genome
showed higher synonym substitution compared to the core
genome, suggesting ongoing active evolution within these natural
variants through these gene sets, including genes associated with
metabolism. Pangenomes for Arabidopsis and some of the key
crops, including maize,188 soybean,189 rice,190,191 medicago,192

tomato,186,193 Brassica napus,194 sunower,195 wheat,196 and Brassica
1744 | Nat. Prod. Rep., 2021, 38, 1729–1759
oleracea,197 have been constructed in the past few years and are
a valuable resource for identifying various genes and their func-
tions, which confer a characteristic phenotype to a given cultivar.
The analysis of natural variants can help understand the role of
genetic diversity to derive the evolution of specialized metabolites'
biosynthesis through means such as SNPs, small insertions/
deletions, structure, gene presence/absence, gene copy number,
and other miscellaneous genomic features. Pangenome, GWAS,
and QTL analysis combined withmetabolomics in natural variants
provide a means to link unknown metabolites to genes of known
function, which can be used to predict and annotate additional
metabolites and genes.
4.4. Comparative genomics and phylogenetic approaches to
elucidate the metabolites' diversity and role in speciation

Comparative genomics and phylogenomics approaches allow for
tracing back and speculate regarding events that drove the evolu-
tion of specialized metabolites, including the identication of key
genes and metabolites.179 Evolutionary forces, including (1) local-
ized gene duplication, sub-genome duplication, or whole-genome
duplication, followed by sub- or neo-functionalization of specic
enzymes; (2) allelic variation; (3) gene loss; and (4) catalytic
promiscuity, work cohesively under the inuence of positive
natural selection to bring large structural diversity in specialized
metabolism.168,198 A generalized scenario for the evolution of
specialized metabolites involves the emergence of new enzymes
through local, sub-genome, or whole-genome duplications, thus
providing gene pools to evolve new functions responsible for che-
modiversity.199,200 In the dynamic evolutionary process, enzyme
catalytic promiscuity allows the divergence of themetabolic stream
toward enhanced chemodiversity. Gene duplication with enzyme
promiscuity, followed by changes in the substrate specicity, has
been identied as the mechanism underlying the evolution of the
glucosinolate biosynthetic pathway.201 The catalytic promiscuity of
the enzymes, such as acyltransferases, a diverse enzyme family
catalyzing O-acylation and N-acylation of structurally diverse
acceptor substrates including alkaloids, phenylpropanoids, terpe-
noids, and acylsugars, is one of the key driving forces of metabolite
diversity.202 By expressing a bifunctional lysine/ornithine decar-
boxylase enzyme, L/ODC, in Arabidopsis, Shimizu et al. showed the
emergence of non-native specialized metabolites, including
alkaloid-like metabolites.203 The authors used the core chemical
structure of cadaverine to identify themetabolic intermediates and
enzymes involved in articially established chemodiversity in Ara-
bidopsis; they demonstrated the role of promiscuous enzymes in
deriving the metabolite diversity and described the emergence of
metabolite scaffolds as the key event.

Analyzing the genomes of multiple plant species has
provided evidence of a rather surprising prevalent convergent
evolution for different metabolite classes across the plant
kingdom.204 Comparative genomics using genomes of Nicotiana
attenuata and Nicotiana obtusifolia showed the association of
genome evolution with the establishment of nicotine biosyn-
thetic pathways.205 Caffeine and other purine alkaloid biosyn-
thetic pathways in plants have evolved from several unrelated
gene families.206 The biosynthesis of MIAs, one of the most
This journal is © The Royal Society of Chemistry 2021
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diverse and economically valuable metabolite classes, has
evolved convergently.207 Using comparative genomics and phy-
logenomics, Rai et al. showed the importance of strictosidine
biogenesis in the evolution of camptothecin and other MIA
biosynthetic pathways.207 They compared the genomes of MIA-
producing plants and showed that enzymes associated with
MIA biosynthesis emerged aer the evolution of functional
strictosidine synthase (STR). STR loss was associated with the
loss of the ability to evolve the cellular components essential for
MIA biosynthesis. They also identied the parallel evolution of
CPT biosynthesis in distant plant species. Convergent evolution
through substrate promiscuity has also been reported for Lys-
derived alkaloids, sesterterpenoids, glucosinolates, benzyliso-
quinoline alkaloids, and tropane alkaloids.204

A general analytical pipeline to discover candidate genes
involved in specialized metabolism begins with synteny analysis
(intra- and inter-species) to identify gene sets that are conserved
across the plant species, produce similar classes of metabolites,
and have undergone duplication. Such gene sets can be further
analyzed for gene family classication, followed by synonymous
substitution analysis to identify genes with recentmodications or
specialization. Phylogenetic analysis and hypothesis testing using
various (HyPhy) tools208 with prior knowledge of the type of
specialized metabolite produced in the target plant species allow
the identication of positively selected candidate genes. Compar-
ative genomics and phylogenomics with homology-based annota-
tion predict the potential enzymatic activity and spatial expression
patterns in tissues accumulating specialized metabolites as the
criteria can further assist in narrowing down the candidate genes
for functional characterization.207 Phylogeny-based enzyme classi-
cation allows predicting potential functions of candidate genes,
and in extension, metabolite intermediates of the associated
enzymatic reactions. Phylogenomics-based plant metabolite
structure prediction is not new but the analytical scale is limited to
a few candidate structures and requires time and resources. In
a recent study, Defossez et al. constructed a framework to predict
the landscape-scale phytochemical diversity of known and
unclassied molecules using an untargeted metabolomics
approach on 416 grassland vascular plant species with phyloge-
netic information, species distribution modeling, and ensemble
machine learning.209 The authors showed that the functional
phytochemical diversity and identity could be predicted from
phylogenetic branching and ecological characteristics, offering an
approach to discover bioactive molecules outside the well-
established biodiversity hotspot. The association of phylogeny
with phytochemical diversity suggests the advantage of combining
genomics with metabolomics to identify the genes and unknown
metabolite intermediates associated with specialized metabolism.
4.5. Gene cluster analysis to link the genome architect with
the metabolome

Until recently, plant metabolic gene clusters were regarded as
unreal, given the complexity of the genome structure and the
compartmentalized biosynthesis of specialized metabolites.
However, recent studies have identied the physical proximity
of genes associated with specialized metabolism, highlighting
This journal is © The Royal Society of Chemistry 2021
the possibility of loose or partial gene clusters in plant
genomes.210 For well-characterized biosynthetic pathways of
specialized metabolites, such as anthocyanins, carotenoids,
and glucosinolates, genes are not clustered and are rather
scattered throughout the genome. Nevertheless, with the
increased number of available high-quality genomes, genome
mining has shown clear evidence of clustered genes associated
with different specialized metabolic pathways. The signicant
proximity of genes associated with specialized metabolism on
the chromosomes of Arabidopsis has been identied.211 Since
the rst report on metabolic gene clusters associated with
benzoxazinoid biosynthesis in maize, over 20 clusters associ-
ated with the biosynthesis of diverse classes of specialized
metabolites, including diterpenes, triterpenes, polyketides,
steroidal alkaloids, monoterpene indole alkaloids, benzyliso-
quinoline alkaloids, and cyanogenic glycosides, have been
identied and validated across different plant species.132,133 The
unexpected phenomenon of prevalent specialized metabolite
gene clusters across different plant species offers a unique
opportunity to discover and characterize genes and metabolites
associated with specialized metabolism. One of the most
remarkable gene clusters identied was in the Opium (poppy)
genome; the noscapine gene cluster included the (S)- to (R)-
reticuline (STORR) gene fusion and four genes associated with
morphine alkaloid biosynthesis, representing a total of 28 genes
localized in the 584 Kb region of chromosome 11.212 The further
analysis of this genome revealed that all functionally charac-
terized BIA biosynthetic genes are part of the gene clusters,
including several potential functional genes such as
PS1126530.1 (cytochrome P450) and PS1126590.1 (methyl-
transferase) co-expressed with 15 other genes from the BIA
biosynthetic pathway.

Recently developed toolsets such as PlantClusterFinder,213

PhytoClust,214 and plantiSMASH215 allow users to select the gene
segment length, co-expression pattern, similarity with previously
identied plant metabolic gene clusters, number of tandem
repeats, and type of member enzymes as screening criteria to
predict the plant gene clusters. PhytoClust and plantiSMASH
offer gene co-expression as one of the criteria to identify the gene
clusters. PlantClusterFinder relies on the assigned genes to
a given pathway and uses the knowledge of previously identied
gene clusters to identify new gene clusters. With relatively fewer
functional gene clusters being identied, whether the origin of
gene clusters in plants is to provide the advantage of co-
expression by shared promoter elements and the local chro-
matin environment, as in the case of microorganisms, remains
debatable. Based on comparative genomics for known gene
clusters, coinheritance has been proposed as the central driver of
cluster formation.207 Comparisons of the thalianol gene cluster at
the species level revealed differences in cluster organization and
auxiliary gene involvement, with the interplay between core and
unlinked auxiliary genes elucidating a mechanism underlying
diversication across plant species.216 The analysis of gene clus-
ters in the O. pumila genome identied 357 potential gene clus-
ters, including 30 gene clusters associated with MIA
biosynthesis,207 conserved across plant species. Remarkably,
while most gene clusters were conserved and collinear between
Nat. Prod. Rep., 2021, 38, 1729–1759 | 1745
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the O. pumila and coffee genomes, a single gene encoding STR
was lost from the functional gene cluster C1541 of the coffee
genome. Further comparative genomics and phylogenetic anal-
ysis showed that retaining STR was vital for the evolution of MIA
biosynthesis—an opportunity that was lost for coffee, resulting in
a completely different chemotype of this species. Similarly, gene
clusters associated with various other metabolic pathways are
also heterogeneous, with genes in the morphine and SG path-
ways being scattered and genes in thebaine and noscapine
pathways being closely clustered.217 The conserved nature of the
gene clusters reported thus far in the plant species producing
similar specialized metabolites and the associated dynamics
within the genomic region suggests gene clusters as metabolic
modules for the evolution and maintenance of chemodiversity.
The reduced rate of recombination between the genes at prox-
imity explains the reason for conserved gene clusters across
species.210 Simultaneously, this could serve as a positive selection
force for genes related to local adaptation. During evolution, the
tandem duplication of genes within a gene cluster and sub-/neo-
functionalization could offer a means to expand the metab-
odiversity, thus offering a site for the active evolution and
expansion of chemodiversity. Conversely, the loss of critical
genes or the entire gene cluster would result in a loss of the ability
to retain or evolve an entire family of specializedmetabolites and,
ultimately, the dominance of other metabolite families to expand
within the plant species.207

The physical proximity of gene clusters conserved across
plant families does offer a case to expect the production of
similar metabolite classes, as observed in the case of wide-
spread localization of C-terminal trans-prenyltransferase and N-
terminal terpene synthase involved in the biosynthesis of a large
sesterterpene repertoire in Brassicaceae.218 While the number of
identied gene clusters across plant genomes is growing, there
is no clear approach to rationalize, that is, to select genes for
functional characterization, restricting one's ability to take full
advantage of these discoveries. A gene cluster in which
members are strongly coexpressed can be prioritized for func-
tional characterization, and encoded enzymes can be tailored to
provide clues into the prediction of new metabolites. In cases of
conserved gene clusters across plant species that produce
similar classes of specialized metabolites, gene information can
be tailored to predict metabolite intermediates, which can be
further validated using NMR or MS/MS-based approaches.
Combining coexpression analysis, integrative omics, compara-
tive genomics, and phylogenomics for gene sets assigned to
a given gene cluster offers an exciting avenue for resolving the
structures of some unknown mass features identied through
metabolomics. This would provide a means to prioritize the
mass features for further characterization and validation.
4.6. Machine learning and genomics to explore cellular
components involved in specialized metabolism

The discovery of new metabolites, including their structural
features, has always been a challenge. Exploiting the advantages
of the increasing number of high-quality genomes and
approaches such as machine learning and deep learning has
1746 | Nat. Prod. Rep., 2021, 38, 1729–1759
the potential to drive genome-assisted natural product
discovery in plants, and future efforts in this direction are
warranted. Machine learning approaches rely on large datasets
to avoid data overtting. Machine learning in genomics is not
new and has been at the core of gene prediction, protein
domain prediction based on sequence information, and
promoter motif prediction.132,219,220 Since recent genomics
analyses have generated massive data, the application of deep
learning-based neural network approaches in biology has
offered opportunities of using genomics to predict molecular
signatures, including transcription factors, epigenetic markers,
chromatin state, histone binding state, and gene expression.219

Almost all these tools have been developed, tested, and applied
to human or animal genomics, and the direct transfer for plants
is possible. However, specic properties that characterize the
plant genome219 must be considered. For instance, modeling
the gene expression levels for maize must consider the tetra-
ploid nature of its genome, which would lead to the biased
quantication of the gene expression, resulting in the poor
quality of the test and training datasets.221 Advances in deep
learning have been successfully exploited to develop applica-
tions and tools for plant identication, species distribution
modeling, weed detection, plant disease, and pest forecasts,
and crop yield predication based on images, thus playing
signicant roles in advancing the eld of plant phenology and
functional trait biology.222,223 The application of deep and
machine learning for predicting miRNAs and their targets
(miTAR,224 DeepMirTar,225 miRAW226), tRNA annotation (tRNA-
DL227), polyadenylation sites (DeepPASTA228), transcription
factor binding sites (DeFine,229 DeepBind,230 DeepSEA231), long
non-coding RNAs (IncRNA-LSTM232), genomic methylation cites
(DeepCpG233), RNA-binding protein binding sites (pysster234),
protein–protein interactions (DPPI,235 AutoCorrelation,236 and
SigProd237), essential genes (DeepHE238), and phenotype based
on genotype (DeepGS239) underscores the potential future roles
of these approaches to extract meaningful knowledge from
genomic data.

One of the exciting applications of deep learning for image
processing is the development of Google DeepVariant.240

DeepVariant views mapped sequenced data as an image and
treated variants as image classication to identify structural
variants, including SNPs, short-indels, and inversions, and
outperformed conventional mapping-based approaches in
terms of accurate calling.241 Several tools based on the Deep-
Variant framework have been developed, including DeepSV,242

for the accurate identication of genomic deletions, and
DeepTrio,243 for predicting the parental structural variants, thus
allowing diploid genome phasing. DeepVariant combined with
other tools, particularly highly accurate long-read sequencing
platforms such as PacBio, allows for the further investigation of
highly repetitive regions to identify variants with roles in the
evolution of desired traits and natural product biosynthetic
pathways.244 The machine- or deep learning application for
predicting protein functions and tertiary structures has ach-
ieved remarkable success. For instance, the deep learning tool
AlphaFold allows for the accurate prediction of protein tertiary
structure based on an input gene sequence.245,246 In this study,
This journal is © The Royal Society of Chemistry 2021
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authors established computational method to predict protein
structures de novo with atomic accuracy. In another related
study, a three-track neural network-based integrated approach
was used to transform information at the 1D sequence level, the
2D distance map level, and the 3D coordinate level to achieve
relative accuracy of the predicted protein structure as achieved
by AlphaFold approach.247 Using this approach, the authors
managed to generate accurate protein–protein complex models
from sequence information alone, which offers key insights into
the protein function of unknown structures. Compared with
years of hard work put into accurately predicting protein
structures using a combination of X-ray crystallography and
cryo-imaging, the computational prediction of the protein
structure is much faster with comparable accuracy, highlighting
the possibility of predicting the functions of unknown enzymes
in the future. High-quality and high-throughput prediction of
enzyme commission (EC) numbers using DeepEC248 and
DEEPre249 is another important approach in genomics-based
metabolomics. Accurate EC number prediction allows to iden-
tify enzyme catalytic functions and establish gene–protein
interaction relationships. Therefore, these tools are the key for
building genome-scale metabolic networks and designing novel
metabolic pathways. Recently, Moore et al. described a machine
learning approach to evaluate the features associated with
genes involved in specialized metabolism.250 Although estab-
lished and tested for Arabidopsis, the model can be transferred
to other plant species for predicting genes involved in natural
product biosynthesis.

The extraction of accurate genomic features is valuable for
building a genome-scale metabolic model, representing
a template for describing the overall ongoing metabolic
processes. Modeling approaches, such as metabolism with gene
expression (i.e., ME model), biochemical systems approach, and
kinetic modeling, are widely used, together with careful manual
curation to reconstruct a metabolic model.251,252 Genome-scale
metabolic models rely on accurate gene prediction and func-
tional annotation; therefore, advances in accurate gene predic-
tion and annotation are valuable for expanding the scope of
metabolic networks in plant natural product discovery. Genome-
scale metabolic models have been successfully created for several
plant species, including Arabidopsis, maize, oilseed rape, rice,
soybean, and crassulacean acidmetabolism (CAM) plants, as well
as for Chlamydomonas.132,251,253–255 Annotation and manual cura-
tion of metabolic network resources such as plant metabolic
network (PMN),213,256 which includes the reference database
PlantCyc (https://plantcyc.org/) and 126 species/taxon-specic
databases, are valuable for providing an overview of possible
metabolic processes across different plant species based on
a standard metabolic framework adopted from MetaCyc. For
instance, PlantCyc provides access to manually curated and/or
computationally predicted information on enzymes, biochem-
ical reactions, and processes shared among or unique to over 500
plant species. Seaver et al. established an algorithm to streamline
automated plant genome annotation and used a curated
template of metabolite compartmentalization for over 100
metabolic subsystems to reconstruct metabolic models for 39
plant species.255,257 Using this PlantSEED network, authors
This journal is © The Royal Society of Chemistry 2021
reconstructed plant primary metabolic model with improved
compartmentalization and comparative consistency. Although
the presence of a gene is not sufficient to predict whether it is
functional, the annotation-based genome-scale model offers
a framework to further rene metabolic models using mass
balance as constraints for variables such as conditional or time-
based gene expression and metabolic ux analysis, among
others, resulting in reconstructed metabolic models for the
accurate prediction of the metabolic state under a given condi-
tion.251,258 Advances in predicting gene expression using gene
sequences, phylogenic considerations, and chromatin state using
machine learning approaches could be used to generate datasets
that may serve as constraints to further rene the metabolic
models. The scope of machine learning for gene feature anno-
tation and multi-omics analysis, together with constraint-based
metabolic modeling, is vast and could drive future discoveries
of new metabolites.132,258,259

The annotation and prediction of gene function and its
associated features are imperative, and much effort has been
put into this area. Adopting prole-hidden Markov models
(pHMMs) with homology-based gene annotation enables reli-
able representation based on conserved functional subunits of
proteins and accurate gene functional annotation.219 The
second and third critical assessment of functional annotation
(CAFA), a timed challenge to assess the computational methods
for automatically assigning protein functions, has shown
progress in accurately predicting molecular functionals and
biological annotations, which is encouraging for future appli-
cations of genomics to detect newmetabolites.260 As the number
of sequenced plant genomes is increasing and the sequencing
of complex genomes is becoming more accessible, comparative
genomics and phylogenetics-based identication of phytoche-
modiversity hotspots is feasible.209 Integrative omics has been
the core of plant functional genomics efforts to date, and by
incorporating comparative genomics, a multicriteria-based
approach can be used to prioritize genes and unknown
metabolites for in-depth characterization.261,262 Applying deep
learning-based models to predict system responses using multi-
omics datasets has seen tremendous progress; nevertheless, it
is difficult to interpret these models. More interpretable models
can be built using alternates such as SHAP263 and DeepLIFT,264

which assign importance or contribution values to the nal
model outcome. Future advances in accurate constraint-based
genome-scale metabolic models for specialized metabolism
and their integration with deep learning models would offer
more avenues to discover and predict unknown metabolites.

5. Prospects of metabolomics

So far, we have discussed in detail the widely used LC-MS/MS
and genomics approach based on cutting-edge techniques in
metabolomics. In the following sections, several advanced and
emerging technologies for metabolite annotation using other
fragmentation techniques, ion mobility, andmass spectrometry
imaging are highlighted. Moreover, we discuss the perspective
of metabolomics and elaborate on how this area can be
expanded with advances such as “virtual metabolomics” and
Nat. Prod. Rep., 2021, 38, 1729–1759 | 1747
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how the AI research meets with mass spectrometry data in
metabolomics to accelerate the discovery of unknown metabo-
lites and the increase in annotation condence.

5.1. Structure elucidation using other mass fragmentation
technologies

Low-energy CID (<100 eV)-based mass fragmentation is the gold
standard of LC-MS/MS-based metabolomics to elucidate the
structure of metabolites. However, the MS/MS spectra do not
contain all the structural information since some of the weakest
chemical bonds in a molecular ion are preferentially cleaved by
the accumulation of the collision energy (i.e., excitation of
molecular vibrations). Therefore, alternative approaches are
required to complement CID-centric MS/MS spectral information
and further elucidate unknown metabolite structures. Recently,
several conventional and practical methodologies to determine
double bond positions, cis (Z)/trans (E) isomers, and acyl chain
positional isomers have become popular in lipidomics because of
their biological relevance. In addition to classic ozone-induced
dissociation (OzID),265 which requires prolonged reaction time
for fragmentation, the Paterno–Buchi (PB) reaction is used to
determine the position of the double bonds in free fatty acids and
complex lipids, such as glycero(phospho)lipids.266,267 Following
the lipid double bond reaction with acetone or 2-acetylpyridine
under UV irradiation, the produced oxetane (four-membered ring
ether) moiety is preferentially fragmented by low-energy CID.
Combinedwith 2-acetylpyridine andMSn analysis, the PB reaction
can be used to determine the double bond positions and sn-
positional isomers.268 mCPBA epoxidation for lipid double-bond
identication (MELDI)269 can be used together with LC-MS/MS
and DESI-MSI. In addition, radical-induced dissociation tech-
niques, such as oxygen attachment dissociation (OAD),270 electron
impact excitation of ions from organics (EIEIO),271 and ultraviolet
photodissociation (UVPD),272 are used for the same purposes but
require no derivatization/reaction. In OAD, gas-phase hydroxyl
radicals are introduced into the collision cell, and this radical
binds to the double bond moiety, leading to odd electron-centric
double bond-specic cleavage as charge remote fragmentation.
EIEIO combined with EID using electron energy of 0–20 eV has
been proposed, which can generate sequential fragment ions, as
acquired in EI-MS. UVPD is used together with MSn fragmenta-
tion, in which one of the fragment ions from low-energy CID is
isolated and irradiated. All the above techniques can be used in
combination with ion mobility separation and IMS, although the
required computational support is not as adequate at the
moment. Although these approaches are currently applied only in
lipidomics and proteomics, theymay be useful in natural product
chemistry to elucidate complex molecular structures and accel-
erate the discovery of new molecules.

5.2. Spatial metabolomics with ion mobility (IM)
spectrometry and toward spatial multi-omics

IM spectrometry has become a popular technique in metab-
olomics and lipidomics to increase (1) the peak capacity in MS
data, (2) the purity of the MS/MS spectra, and (3) the condence
in metabolite annotation. IM spectrometry coupled with tandem
1748 | Nat. Prod. Rep., 2021, 38, 1729–1759
MS, such as parallel accumulation-serial fragmentation
(PASEF),273 is also an attractive approach to increase the reliability
of metabolite annotations. Microbial lipidome has been illus-
trated using LC-IM-MS/MS.57 IM can be maximized with mass
spectrometry imaging (MSI) since IM complements MSI in terms
of isobaric separation and annotation condence. Therefore,
spatial metabolomics with MALDI-IM-MS274 is expected to
become popular in the coming future. Although the accuracy
criteria for metabolite annotation in MSI have been reported
without CCS information,275 false discovery rate (FDR)-controlled
spatial metabolomics analysis can be performed in combination
with comprehensive CCS databases. In the future, data-
independent MS/MS acquisition techniques may be coupled to
MALDI-IM-MS to further accelerate spatial omics; therefore,
CompMS tools such as METASPACE (https://metaspace2020.eu/)
supporting a common data format (imzML)276 should be devel-
oped to accelerate spatial metabolomics research.

In the coming decade, spatial multi-omics is expected to
become a challenging research area of molecular biology.
Various biotechniques for spatial transcriptomics have been
actively developed. For instance, using Visium,277,278 Slide-
seqV2,279 or photo-isolation chemistry (PIC),280 RNA expression
can be determined at a spatial resolution of 10–200 mm. In
addition, spatial proteomics is executable using mass cytom-
etry281 and DNA-tagged antibody sequencing,282 among other
techniques.283 In addition, even in spatial metabolomics, the
existence of “purinosome metabolon”, which is a molecule
reactor machine consisting of multiple enzymes for purine
biosynthesis in a single cell, has been discovered at a spatial
resolution of <1 mm using gas cluster ion beam secondary ion
MS (GCIB-SIMS).284 Advances in the relevant informatics eld
can further support these biotechniques. Importantly, the
information on metabolite, protein, and RNA localization
facilitates the study of molecular mechanisms and elucidation
of plant metabolic pathways.
5.3. Plant kingdom-wide annotation

The development of MS technologies has enabled us to obtain
large-scale metabolomics data with extraordinary sensitivity
and accuracy at high resolution and in great detail. A certain
number of metabolites in Arabidopsis thaliana are bio-
synthesized via roughly 27 416 genes (https://
www.arabidopsis.org/index.jsp) in its genome. These metabo-
lites show organ, tissue, and cell specicity. This spatial
metabolite diversity suggests the diverse roles of metabolites in
different tissues. Articial intelligence-based approaches are
expected to allow rapid and accurate chemical categorization of
unknown metabolites. Biosynthetic genes of the assigned
metabolites can be narrowed down by a combination of other
omics approaches with metabolomics, and their functions can
be revealed using genome-editing approaches, such as CRISPR-
Cas9.285 The comparative analyses of these transgenic plants
lacking metabolites, as a result of genome editing, can reveal
the physiological roles of these metabolites.

The next step is to expand these analyses beyond a single
species. Other omics studies have shown the direction, in which
This journal is © The Royal Society of Chemistry 2021
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metabolomics should head, i.e., plant kingdom-wide annotation.
There are approximately 391 000 vascular plants on the Earth,1

and they likely produce as many metabolites as there are stars in
our galaxy, earning the moniker “metabolite cosmos”. To
accomplish this plant kingdom-wide annotation, the perfor-
mance of metabolomics must be improved in terms of chemical
annotation. A key to this improvement is to add additional
dimensions to the MS/MS data, such as the data acquired using
SIL, isotopic ne structure analysis, and IM spectrometry.
Another key is to focus on highly segmented structures (e.g.,
functional moieties or partial structures). The strategies for N-
and S-metabolites indicate that such approaches of proling do
not rely on structures but simply on the elements. Further
segmentation can promote the identication of unknown
metabolites with double or triple bonds; ketones; hydroxyl,
amino, and carboxylic moieties; and halogens. Focusing on
segmented moieties can also promote the elucidation of the
complete structure based on the MS/MS spectra. However,
approaches to segment the reconstruction are inadequate. Using
accumulated MS/MS spectra, fragmentation patterns can be
observed in certain structures. The construction of a partial
structure, which can be searched in databases, will prove to be
a breakthrough in nding novel metabolites.286,287

5.4. Virtual platform-based annotation

Two foremost problems in metabolomics are (1) the difficulty of
chemical annotation and (2) the cost of instruments and soware.
While the former problem has been gradually solved, as described
above, the latter remains unsolved in academia. To solve these
problems, database or platform-based projects are ongoing. These
efforts have achieved outstanding results, advancing the eld of
metabolomics. However, researchers still must perform chemical
annotation manually. A solution is to virtually share the whole
metabolome data with complete chemical annotation. Although
there is a risk to the providers, it is worth actively conducting
metabolomics. The providers must stipulate evidence and refer-
ence to detect incorrect annotations. Once the data are obtained
from a database, researchers can perform “virtual metabolomics”
using free academic soware programs, such as MS-DIAL, MS-
FINDER, GNPS, or currently available analytical tools. All data,
free soware/programs, and annotation results render access to
metabolomics easier when new metabolites are explored. To
reduce data, most data can be centered at particular organizations
that have the required infrastructure or can reliably perform
chemical annotation based on data procured from companies. An
NCBI-like resource for metabolome is highly desired to promote
new discoveries. Nonetheless, owing to its sheer vastness, we
cannot expect to deal with phytochemodiversity even with
sophisticated infrastructures, technologies, and approaches.

5.5. Articial intelligence for mass spectrometry data (AIMS)
research

Currently, 1.5 million spectral records of over 40 000 metabo-
lites are available as the CID-MS/MS training dataset; the
statistics are based on the databases explained in the section
“3.2.2. Mass spectral databases for annotation”. Moreover, 0.7
This journal is © The Royal Society of Chemistry 2021
million records of over 570 000 compounds are available as the
EI-MS training dataset; the statistics are based on the spectral
records of MassBank,32 MoNA, NIST20, and Wiley10. Given that
the machine learning of face recognition has been carried out
by 0.1 M–300 M face images of 1 K to 4 M identities,288 where K
and M denote kilo and million, respectively, we believe that the
size of the mass spectral records is not small for machine
learning research. For example, a simple question in AIMS
research is to ask whether the highly accurate prediction for the
existence of hydroxy moiety (–OH) is possible or not by the MS
properties. Because water loss is observed in >50% molecules
containing the hydroxyl moiety (see Section 3.2.3.), the accuracy
would be increased when multiple properties are considered.
Likewise, the prediction model for each of the 881 PubChem
ngerprints and others can be constructed. Moreover, the pre-
dicted ngerprints can be used to search the structures for
unknown spectra, and the idea is rstly implemented in CSI:-
FingerID.289 Although the fragmentation tree (FT)290 and kernel
support vector machine (KSVM) have been used as the model
parameters and machine learner, respectively, in CSI:FingerID,
further AIMS research would be needed to facilitate annotation
in metabolomics.

In lipidomics, the in silico tandem mass spectral libraries or
rule-based annotations are used for the annotation pipeline,57 in
which the information of the product ion abundances are not
considered, although the ion abundances can be used to predict
the sn1/sn2 positional isomers.291 Because the m/z values (qualita-
tive information) can be theoretically generated in silico, the next
step in lipidomics annotation is to consider and predict the
intensities: deep learning studies have been performed in shotgun
proteomics.292 In this light, the AIMS research for natural products
is not enough yet because even the m/z values are unpredictable
although the issue has been tackled by the developers of CFM-ID.121

The important note in this area is that the number of informatics
researchers in metabolomics is very small compared to that in the
genomics research eld. The data for AIMS researches are avail-
able, as mentioned above. Moreover, over 50 TB of rawMS data are
available at Metabolomics Workbench293 and MetaboLights294 as
the test dataset. Further stimulation of this AIMS research eld will
undoubtedly contribute to an increase in the accuracy and preci-
sion for predicting the molecular formula, metabolite class,
substructure,molecular backbone, and even the stereochemistry of
structures.

6. Conclusion

Over two decades have passed since Oliver et al. rst used the
term “metabolome” in their article.295 Advances in metab-
olomics have changed plant biochemical approaches from
empirical (bottom-up) to computational (top-down) methods.
At present, various protocols for metabolome analysis have
been proposed based on empirical experiences, and reliable
computational approaches for sample preparation and MS
analysis have been well established. In omics research (metab-
olomics, lipidomics, glycomics, proteomics, transcriptomics,
and genomics), where massive data are generated every day,
reproducibility, reusability, and transparency have become
Nat. Prod. Rep., 2021, 38, 1729–1759 | 1749
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fundamental. Recently, many journals have encouraged to
submit raw MS data (primary data) in respective reposito-
ries293,294 and metabolite prole data (secondary data) generated
from these raw data, which is a welcome step to accelerate open
science.

We believe that in the coming era of computational
(metabolomics) science, it will be pivotal to extract metabolites
and their biological information from large-scale data with high
accuracy to facilitate the reuse of metabolomics datasets and
efficiently elucidate the molecular mechanisms driving the
observed phenotypes. Metabolomics and the complementary
techniques described in Fig. 1 require computational sciences
and/or novel approaches to improve the annotation rate and to
deepen the understanding of metabolisms. In addition to the
role of storage of mass spectral records, the supports of frag-
ment ion curation, spectra search engine, and knowledge
conversion from chemical to biology (metabolite) will maximize
the value of level 1 identication of metabolites. Moreover,
processing tools, databases, and repositories for mass spec-
trometry imaging (MSI) should be further developed since the
MSI spatial data of newly identied metabolites offer informa-
tion on metabolite localization, thereby enhancing the
discovery of the associated genes and proteins that are active in
the same environment. Moreover, functional genomics, single
cell metabolomics and transcriptomics, and spatial multi-omics
techniques such as MALDI/DESI-MS for spatial metabolomics,
and Visium,277 Slide-seqV2,279 or PIC280 for spatial tran-
scriptomics should be integrated efficiently with the hypothesis
generated by metabolomics to mine the candidate genes that
regulate novel metabolites and/or elucidate the association of
the metabolites with the plant phenotype.

Moreover, increasing the annotation rate by computational
sciences in combination with ion mobility, spectral library, stable
isotope labeling, and ultra-high-resolution MS will enhance the
discovery in metabolite-based genome-wide association study
(mGWAS)296,297 and illuminate the diversity of metabolites in the
plant kingdom. Although the advances in genomics enable one to
discover the gene clusters and to decode the plant revolution from
the viewpoint of metabolisms, the information of metabolomics is
essential not only to validate the gene functions but also to offer
new opportunities for genome mining that meets with novel
metabolites. In this context, computer-assisted smart metabolite
annotation of data is warranted to advance the research in natural
product chemistry, elucidate the true diversity of plant specialized
metabolites, and identify novel drug targets. Though we have
introduced a number of available spectral records and MS raw
data, these numbers are still growing. Importantly, computational
technologies are advancing at an astounding pace. Given the
indispensability of metabolomics in biology, we hope that the
present review will be helpful not only to the researchers active in
this eld but also to students and/or beginners undertaking
metabolomics research.
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