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Bioinformatic approaches to document and analyse chemical structures, biosynthetic gene clusters and

analytical data play an important role in the study of natural products. Every year, such a large number of

new algorithms, tools and databases are released, that it is difficult to keep track of all the latest

developments. The aim of this short article is to provide a concise overview of and reference to the

major tools, methods and databases that have been released in the past year.
Introduction

The study of natural products involves various different types of
data, including structural, genomic, metabolomic and spec-
troscopic data. All these types of data require computational
algorithms and resources to effectively process, analyze and
contextualize them. The past decade has seen an acceleration in
the development of new tools and databases that are relevant to
natural product researchers. Here, we provide a concise over-
view of the latest tools and databases for the analysis of natural
product chemical structures, the identication and annotation
of biosynthetic gene clusters, and the analysis of natural
product diversity in metabolomic datasets. The ESI† includes
a table listing all tools and databases discussed here.

Chemical structure databases

Following the release of the Natural Product Atlas in late 2019,1

several specialized databases for natural products from specic
organisms or compound classes were released. These included
a new version 3.0 of the Streptome-DB,2 which included �2500
new natural product structures from streptomycetes, as well as
CyanoMetDB,3 a database covering �2000 natural product
structures from cyanobacteria. From a compound class-guided
perspective, MacrolactoneDB4 appeared, which includes
�14 000 macrolactone structures and their bioactivity infor-
mation. The NORINE database for nonribosomal peptides also
saw a new release,5 which included integration of the recently
published retrobiosynthetic algorithm rBAN6 to automatically
identify the constituent monomers and other building blocks of
these important natural products. While natural product
ty, Wageningen, The Netherlands. E-mail:

tion (ESI) available. See DOI:

f Chemistry 2021
structures remain distributed across many different databases,
the COlleCtion of Open NatUral producTs (COCONUT)7

combines structures from a wide range of open-access data-
bases into a single resource.
Cheminformatic tools

To utilize and leverage such structural data, a number of rele-
vant new cheminformatic tools have appeared. NPClassier8 is
a deep-learning-based algorithm that can help automatically
classify sets of structures (e.g., taken from a database or ob-
tained from a set of library matches in a mass-spectrometric
dataset) into classes and superclasses; thus, it can automati-
cally identify whether molecules are, e.g., terpenoids, poly-
ketides or peptides. To map chemical space in more detail, and
to identify structural similarities between molecules, molecular
ngerprints are oen used. In this area, two new ngerprint
technologies, NC-MFP9 and MAP4,10 were presented that
showed promising performance in explaining biological activi-
ties or differentiating closely related metabolites, respectively.
Finally, to help seed compound structure databases, a new
method, DECIMER,11 was developed to recognise chemical
structures from images in journal papers.
Identifying biosynthetic gene clusters

Genome mining is playing a more and more important role in
natural product discovery. A range of well-known methods is
available to identify biosynthetic gene clusters (BGCs) in
genomes. Several of these were updated this year, such as
PRISM4 (ref. 12) (see discussion under ‘Predicting chemical
structures’), as well as SeMPI version 2.0,13 which includes
matching of predicted BGC products to natural product data-
bases. Several new approaches were added to this set of tools:
EvoMining14 is able to look for bacterial biosynthetic pathways
Nat. Prod. Rep., 2021, 38, 301–306 | 301
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that show no or only limited sequence similarity to known
biosynthetic systems, by identifying paralogues of primary
metabolic enzymes that have undergone accelerated evolution
towards a secondary metabolic function. Aimed at fungi, CO-
OCCUR15 provides a new way of identifying BGCs based on
shared syntenic relationships between biosynthetic genes.
Another fungal BGC identication tool, TOUCAN,16 was also
released. A particularly challenging type of BGCs to computa-
tionally identify are those encoding the biosynthesis of Ribo-
somally synthesized and Posttranslationally modied Peptides
(RiPPs), because of the apparent large diversity of unknown
RiPP classes for which rule-based detection is not possible (as
the required knowledge to design such rules is not yet avail-
able).17 Several new algorithms were release this year that utilize
machine learning and pattern-recognition approaches to this
end, including DeepRiPP,18 RRE-nder19 and decRiPPter,20 on
top of other approaches like RiPPER21 that had been published
last year, some of these aiming at the identication of novel
RiPP classes. Another tool to identify RiPP biosynthetic path-
ways, RODEO, was extended with capabilities to explicitly
identify linaridins.22
Charting biosynthetic gene cluster
diversity

To be able to cope with datasets covering thousands or even
hundreds of thousands of genomes, new algorithms were
released to chart the diversity of BGCs in genomic data. BiG-
SCAPE and CORASON23 enable automated sequence similarity
networking and reconstruction of BGC phylogenies to facilitate
the exploration of thousands of BGCs from diverse organisms.
More recently, BiG-SLICE24 was released, which scales up this
principle by allowing the grouping of millions of BGCs into gene
cluster families; the BiG-FAM database25 makes these gene
cluster families easily searchable for the scientic communi-
ties, and allows assignment of BGCs to such families directly
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from antiSMASH results. The new cblaster tool26 provides
a quick way to perform similarity searches of BGCs by remote
querying the NCBI web services, and to enable visual gene
cluster comparisons between selected BGCs, the related
clinker27 tool provides a highly user-friendly method.

Biosynthetic gene cluster databases

Several databases of biosynthetic gene clusters were also
updated or released this year. The MIBiG repository for experi-
mentally characterized biosynthetic gene clusters saw a second
release,28 in which 851 new BGCs were added and the database
was made searchable online. Two databases for computation-
ally predicted BGCs, antiSMASH-DB29 and IMG-ABC,30 were also
updated with new features, including extension with fungal
data and fully refreshed contents, respectively. A new atlas of
fungal BGCs from �1000 fungal genomes, called Prospect, was
also released, which includes gene cluster family assignments
for these gene clusters.31 Finally, databases with curated sets of
high-quality genomes, such as the ActDES database for actino-
mycetes32 released this year, will make it easier to navigate high-
quality data when navigating biosynthetic potential of various
taxa.

Target-based genome mining

Finding the needle in the haystack within these giant datasets is
not trivial. Target-based genome mining approaches make it
possible to identify BGCs encoding the production of natural
products with a biological activity of interest, such as antibi-
otics. An updated version of the ARTS pipeline33 now enables
identication of potential self-resistance genes in BGCs from
across the tree of life, including metagenomic data. A similar
approach, specically dedicated to polyketide BGCs, was also
released by others.34 Additionally, a new study shows that
transporter-encoding genes can also be used as functional
markers for target-based genome mining.35

Predicting chemical structures

The ability to (partially) predict chemical structures of the
products of BGCs is key for identifying potential chemical
novelty during the genome mining process, as well as for
matching BGCs to metabolites from analytical data. Several new
tools have been developed that can aid in such efforts. The new
version 4 of PRISM12 has improved chemical structure predic-
tion capabilities, which made it possible to train machine-
learning models to predict the biological activity of BGC prod-
ucts based on these structure predictions. Two new algorithms,
DDAP36 and PKSpop,37 provide improved prediction of docking
domain interactions between polyketide synthases, which
determine the order of these enzymes in the assembly lines, and
thus also the order of the incorporated monomers in their nal
products. To go from monomers towards nal products,
another group published a machine-learning method that
predicts macrocyclization patterns for both polyketides and
nonribosomal peptides.38 Extending beyond the scope of
This journal is © The Royal Society of Chemistry 2021
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megasynthases, the AdenylPred39 algorithm presents a new
method to predict catalytic functions and substrate specicities
for the whole superfamily of adenylate-forming enzymes, which
include not only nonribosomal peptide synthetase adenylation
domains, but also e.g. fatty-acyl CoA-ligases and beta-lactone
synthetases.
Analysing natural product NMR data

Elucidating chemical structures is arguably worth more than
predicting them. NMR data play a crucial role in this, but
algorithms to automate the analysis of such data have been
lagging. In the past year, some exciting breakthroughs were
published in this area. The SMART 2.0 algorithm40 is a con-
volutional neural network-based approach that automatically
generates structure hypotheses from 1H–13C-HSQC spectra.
Other methods that aid in interpreting NMR spectra also
appeared, including a classier that assigns molecules to
a natural product class based on 13C spectra41 and the DP4-AI
machine learning algorithm that aims to automate structure
assignment from NMR spectra.42 For the analysis of natural
product mixtures (extracts or fractions), MixONat43 provides
a new tool for automated dereplication.
Developments in mass spectrometry
data analysis

Within the realm of analytical techniques, the analysis of
tandem mass-spectrometric (MS/MS) data has been revolu-
tionized in recent years, and a range of groundbreaking new
methods have been added in 2020. The ZODIAC algorithm44

uses Gibbs sampling and Baysian statistics to accurately predict
molecular formulas for a compound by considering joint frag-
ments and losses in fragmentation trees, CANOPUS45 uses
fragmentation spectra to automatically classify molecules into
�2500 classes with deep learning, and Retip46 provides a new
way of predicting metabolite retention times from chemical
structures. MetFID47 provides a new neural network-based
algorithm to predict compound ngerprints from MS/MS
spectra, which aids the structural annotation of the under-
lying metabolites. With MASST,48 a ‘BLAST for molecules’ was
introduced that facilitates rapid similarity searches for MS/MS
spectra and allows users to assess in which publicly available
samples a metabolite of interest is present. Several new
methods for and improvements to molecular networking tech-
nologies were also put forward, including Spec2Vec,49 which
uses natural language processing to identify similarities in
a way that takes into account patterns observed across large
datasets. Additionally, feature-based molecular networking
(FBMN)50 was introduced in the Global Natural Products Social
Molecular Networking (GNPS) infrastructure, which incorpo-
rates information from ion mobility separation. Additionally,
the GNPS framework was also improved to facilitate the analysis
of gas chromatography-mass spectrometry data,51 and the ReDU
system makes it possible to straightforwardly re-analyze public
MS/MS datasets by identifying them through a controlled
This journal is © The Royal Society of Chemistry 2021
vocabulary.52 As an alternative to molecular networking,
Qemistree facilitates analysing chemical diversity from MS data
using hierarchical clustering.53 Finally, several developments in
databases of mass spectra are notable: BMDMS-NP54 provides
a comprehensive library of almost 3000 ESI-MS/MS spectra for
plant natural products, while METLIN provides molecular
standards for �850 000 metabolites, including many natural
products.55

Linking MS data to structures and gene
clusters

Improvements have also been made for the analysis of specic
types of molecules, such as peptides: with CycloNovo,56 a new
soware was released that enables high-throughput de novo
sequencing of peptides from MS/MS data. In addition, NRPro57

automatically annotates and dereplicates peptidic natural
products based on their tandem mass spectra. Such peptides
can be linked to BGCs with increasing effectiveness, with
methods such as MetaMiner,58 which matches genomically
predicted peptides with their possible modications to the
monomers inferred fromMS data. Connecting MS data to BGCs
can also be done based on absence/presence correlations of
molecules and gene clusters across strains, and the NPLinker
framework provides the rst full-edged soware that auto-
mates this, and also introduces a new scoring function.59

Conclusions

Computational methods are becoming more and more
ingrained in the day-to-day science of natural product
researchers, and the speed with which new methods are intro-
duced reects this. Even outside the familiar realms of natural
product bioinformatics outlined above, exciting new
approaches are being introduced, including a new deep
learning approach to predict antibiotic activities from chemical
structures60 and computational approach to automatically plan
efficient routes toward the total synthesis of natural products.61

The year 2021 is likely to again provide a similar range of new
approaches, and navigating the diversity of available algorithms
will become an increasingly important skill for those who are
trained in natural product science.
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Rodŕıguez, L. F. Nothias, C. M. Aceves, M. Panitchpakdi,
E. Brown, F. Di Ottavio, N. Sikora, E. O. Elijah, L. Labarta-
Bajo, E. C. Gentry, S. Shalapour, K. E. Kyle, S. P. Puckett,
J. D. Watrous, C. S. Carpenter, A. Bouslimani, M. Ernst,
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