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The machine learning field can be defined as the study and application of algorithms that perform

classification and prediction tasks through pattern recognition instead of explicitly defined rules. Among

other areas, machine learning has excelled in natural language processing. As such methods have

excelled at understanding written languages (e.g. English), they are also being applied to biological

problems to better understand the “genomic language”. In this review we focus on recent advances in

applying machine learning to natural products and genomics, and how those advances are improving

our understanding of natural product biology, chemistry, and drug discovery. We discuss machine

learning applications in genome mining (identifying biosynthetic signatures in genomic data), predictions

of what structures will be created from those genomic signatures, and the types of activity we might

expect from those molecules. We further explore the application of these approaches to data derived

from complex microbiomes, with a focus on the human microbiome. We also review challenges in

leveraging machine learning approaches in the field, and how the availability of other “omics” data layers

provides value. Finally, we provide insights into the challenges associated with interpreting machine

learning models and the underlying biology and promises of applying machine learning to natural

product drug discovery. We believe that the application of machine learning methods to natural product

research is poised to accelerate the identification of new molecular entities that may be used to treat

a variety of disease indications.
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1. Introduction

Natural products have long been a rich source of bioactive
entities that enabled drug discovery. Natural products can be
broadly dened as chemical entities that are produced by
a living organism, and these oen take the form of primary
metabolites (those required for life, or unique to a subset of life/
conditions) and secondary metabolites (those that are advan-
tageous but not required; these are the focus of this review).
Natural products represent a source of therapeutic opportunity
and microbial mechanistic insights. In recent years, the natural
product eld has benetted from contributions from the
machine learning (ML) eld, both chemically and biologically.
In this review we will discuss how ML advances are being
applied to natural products and natural product drug discovery.
We will focus on howML is being used to understand biological
and chemical “languages” (i.e. genomes and molecular struc-
tures) and how this uniquely informs insights into natural
product chemistry and diversity. We will further review how
genome mining and related techniques are being used to
understand links between microbiome natural products and
human health. We will discuss how the identication of
disease-associated novel metabolites and/or targets from the
microbiome show promise in empowering pharmaceutical drug
discovery.
2. Relevant advances in machine
learning
2.1 Recent advances in machine learning

ML is a long-established eld enjoying a resurgence of interest
and activity in recent years. The ML eld can be dened as the
study and application of algorithms that perform prediction or
exploration tasks through pattern recognition instead of
explicitly dened rules.1 Such algorithms may be further clas-
sied into groups such as supervised and unsupervised
learning, with the former referring to algorithms that use and
map data to known groups for classication, and the latter
referring to algorithms that do not use pre-dened or known
groups (e.g. “clustering” samples by similarity). Algorithms can,
for example, be further classied into parametric algorithms
(those that make assumptions about the data distribution) and
non-parametric algorithms (those that do not make distribu-
tion assumptions). Overall ML is a rich eld, and for a more
complete review of ML background and concepts we recom-
mend Tarca et al.2

ML's current surge in activity is largely the result of
increasingly powerful computational resources and the avail-
ability of large datasets. One primary motivation for using ML
techniques is the performance scalability offered by the ability
of the algorithms to enhance themselves as they adjust and
“learn” from datasets. Such approaches also allow their users to
extract useful information from large, complex datasets at scale.

The ML eld has continued to grow in its breadth of appli-
cations and approaches. Some impactful ML applications have
included speech and image recognition/classication,3–5 media
This journal is © The Royal Society of Chemistry 2021
recommendation engines,6,7 and geographical mapping and
navigation.8 In these applications, ML is leveraged as a way to
gain valuable information from very complex data types and
very large datasets. These applications, in which ML is used to
gain signal from complex data, have also extended into the eld
of natural product biology and chemistry. In biology and
chemistry, ML can leverage its propensity for complex pattern
recognition to gain novel insights into genomic signatures,
chemical activities, compound diversity, and therapeutic
associations.

2.2 Advances in deep learning

Deep Learning (DL) is a sub-discipline of ML that is increasingly
relevant to natural product biology and chemistry. DL refers to
the area of ML that utilizes deeply-layered neural networks that
conceptually behave like the networks of neurons found within
the human brain. DL approaches have been gaining popularity,
powering many methods relevant to computational biology
including sequence alignment,9 protein structure predic-
tion,10,11 and decoding of splicing signals.12,13 DL has also been
applied in chemistry, such as informing high throughput
screening (HTS), Quantitative Structure Activity Relationship
(QSAR) analyses, and others.14–16

One important application of biological and chemical DL is
in understanding natural product diversity and chemistry. This
is especially evident in the applications of DL natural language
processing (NLP) methods. To date, the majority of NLP appli-
cations have been centered around understanding spoken and
written languages, although scientists are increasingly re-
purposing these techniques to provide an understanding of
genomic and molecular “languages”. Much like NLP
approaches can be used to represent and dene words by their
sentence context, scientists are using NLP to represent and
dene genomic elements, such as genes, by their genomic
context.10,17,18 Likewise NLP approaches are being applied to
represent and dene molecules and fragments as new mathe-
matical structures; an approach that provides new insights and
analytical opportunities for understanding chemical relation-
ships and activities.19,20 When applied to natural product
chemistry and genome mining, these and other DL and NLP
approaches are providing new insights into natural product
diversity, chemical properties, and therapeutic potential. Below
we pursue a more detailed discussion of these natural product
insights, as they are empowered by DL, NLP, and other ML
approaches.

3. Understanding natural product
chemistry through ML & genome
mining

A key approach to understanding natural product chemistry
and biology is through understanding the genomes in which
their synthesis pathways are encoded. Natural products are
largely the products of microbial biosynthesis, whose processes
are encoded by biosynthetic gene clusters (BGCs) within their
genomes. A BGC is a group of genes in close genomic proximity,
Nat. Prod. Rep., 2021, 38, 1100–1108 | 1101
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Fig. 1 The biological and chemical steps for identifying BGCswithML techniques. This flow chart highlights the steps of genome annotation (e.g.
how we represent genomes, using values such as DNA sequences), biosynthetic gene cluster detection from genomes, structure prediction of
the natural product from a given biosynthetic gene cluster, activity profiling and chemical diversity of the natural products, and the downstream
applications including microbiome studies and drug discovery. Each section lists the important high-level methods used, including the machine
learning applications. Abbreviations are as follows: pHMM¼ profile HiddenMarkov Model, HMM¼HiddenMarkov Model, Pfam¼ Protein Family,
LSTM ¼ Long Short-Term Memory Network, MS/MS ¼ Tandem Mass Spectrometry, SVM ¼ Support Vector Machine. A detailed reference of
biosynthetic gene clusters & natural product prediction and analysis methods is provided in ESI Table 1.†
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which together orchestrate the synthesis of secondary metabo-
lites via a complex pathway of enzymatic reactions and regula-
tory switches. In addition to advances in traditional molecular
biology methods (e.g. heterologous expression and knock-out
studies), the advent of next generation sequencing technolo-
gies and the increasing abundance of complete microbial
genomes, ML genome mining approaches have provided
a profound opportunity to understand natural product chem-
istry and diversity through their BGC “genomic language”. The
process of identifying BGCs with ML techniques can be broken
down into a series of biological and chemical steps, which we
dene as annotation, feature representation, BGC identica-
tion, structural prediction, and activity proling (Fig. 1).
3.1 Genome annotation

The rst step of the natural product genome mining process,
genome annotation, can include representing the genome as
a data string as simple as the raw DNA or amino acid sequence
of the genome, or can include more sophisticated information
such as genes. An example of a major leap beyond these
genomic annotations, such as raw DNA sequences, was the
adoption of prole Hidden Markov Models21,22 (pHMMs) which
provide a high-level feature representation by annotating
conserved functional subunits of proteins. Sets of pHMMs
1102 | Nat. Prod. Rep., 2021, 38, 1100–1108
curated by the rst BGC detection approaches were greatly
supplemented by databases such as Pfam23 or CATH.24 While
future approaches will likely benet from improved speed and
accuracy of protein domain detection using DL methods [Uni-
Language, Google ProtCNN], pHMMs remain a foundation of
feature annotation for many BGC detection methods.

Aer genomes are annotated, they can further be repre-
sented as näıve or pre-trained numeric vectors using DL and
NLP approaches. Vector representation approaches can provide
unique functional insights into the input feature space as well
as improved downstream performance. The utility of this
approach was recently highlighted by the tools Pfam2Vec,
Mod2Vec, and others,25–27 where protein family domains
(Pfams) and functional modules were converted to numeric
vectors based on their genomic context. Many other vectoriza-
tion methods are directly inuenced by (and in some cases are
derivatives of) the revolutionary Word2Vec algorithm, although
many have yet to be incorporated into the BGC space.28 Bio-
logical interpretations of Word2Vec include DNA2Vec (DNA
vectorization),29 Gene2Vec (gene vectorization),18 and ProtVec
(protein and protein family vectorization).30 While these latter
vector-based representation approaches are not currently being
leveraged for natural products, we expect them to be used more
in coming years.
This journal is © The Royal Society of Chemistry 2021
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3.2 Biosynthetic gene cluster detection

Once a genome has been annotated and potentially converted to
numeric vectors, BGCs are identied. Early approaches
employed relatively simple intergenic distance thresholds on
top of BLAST or prole Hidden Markov Model (pHMM) hits to
detect biosynthetic areas of interest (NP.searcher,21 SMURF22).
This approach was extended by two commonly used BGC
detectionmethods PRISM31 and antiSMASH,32 which devised an
extendable framework of rules for the detection of numerous
biosynthetic product classes based on presence and absence of
specic protein domains. While the predened rules in PRISM
and antiSMASH improved performance, they are by denition
not ML approaches because many aspects are hard coded.

As a supplement to rule-based methods such as PRISM and
antiSMASH, ML approaches have been introduced with the goal
of detecting novel BGCs independently of known biosynthesis
mechanisms. ClusterFinder33 uses a second two-state HMM on
top of a chain of pHMM-detected Pfam tokens, where each Pfam
token contributes a specic positive or negative weight to BGC or
non-BGC likeness. This approach was further supplemented by
DeepBGC,26 which used a bi-directional Long Short-Term
Memory (LSTM) network fed with a sequence of Pfam tokens
represented as meaningful vectors (Pfam2Vec) generated by pre-
training on a corpus of bacterial genomes. While these
approaches have offered some analytical advantages (i.e. poten-
tial to identify completely novel BGCs and thus NPs), it is
important to note that they do have higher false positive rates
than many rule-based approaches. Other notable methods use
promoter motif hits or expression microarrays in fungi and RNA
sequencing in plants, including CASSIS34 and FunGeneClusterS35

for detection and PlantClusterFinder36 for validation. Building
upon this idea, MetaBGC employed co-abundance clustering to
group biosynthetic short reads into putative BGCs.37
3.3 Chemical structure prediction

Aer BGCs have been identied by these genome mining
strategies, BGC information can be used to better understand
natural product chemistry. Predicting natural product structure
from a genome sequence is a daunting challenge that still
requires development, however some approaches are being
utilized to tackle this. AntiSMASH and PRISM are tools that use
a variety of curated rules to predict structural scaffolds of
natural products from BGCs.31 Other tools focus on single BGC
classes as ways to predict natural product structures from
precursors, such as DeepRiPP (which relies on rule-based RiPP-
Prism instead of ML),38 BAGEL (which relies on database
matches to inform potential structures),39 RODEO40 and RiPP-
Miner (which performs ML predictions but is based on a rela-
tively small dataset that may be prone to overtting)41 for
ribosomally synthesized, post-translationally modied peptide
(RiPP) precursor peptides. SANDPUMA42 is a tool for non-
ribosomal peptide-synthetase (NRPS) substrate specicity,
although its ML approach can have some shortcomings in that
it’s NRPS domain substrate training set can yield erroneous
predictions. Another important tool, NRPSpredictor,43 largely
pioneered the use of support vector machines to predict NRPS
This journal is © The Royal Society of Chemistry 2021
substrate specicity. Because structural prediction from BGCs
is complex, BGC product structure is oen elucidated using
experimental techniques such as heterologous expression,
purication, and accompanied MS/MS.44,45 Metabolomics
approaches, in which targeted and untargeted MS/MS proles
are taken, is also an increasingly useful approach used for
structural elucidation.
3.4 Activity proling & chemical diversity

In studies where BGC-derived natural product structures are
elucidated, many ML techniques are providing further infor-
mation around activity, mechanistic targets, toxicity, and other
features. Graph neural networks46 are promising tools for
working with chemical structures, and can be applied to anti-
biotic discovery16 or predicting drug–target interactions.47 Deep
neural networks can also be used for generation of drugs,
natural products and metabolites, for example with the tool
MOSES.48 Together these advances are allowing us to better
understand natural product biology and chemistry.

There are many ML opportunities for analyzing genomic and
chemical diversity of predicted BGCs and their natural prod-
ucts. At the genomic level, BGCs can be clustered and compared
to their putative orthologs, for example using the BiG-SCAPE/
CORASON toolkit.49 On the chemical level, putative RiPP
precursor structures can be aligned to a database of known
chemical structures in order to assign a novelty index and der-
eplicate known products, as implemented in BARLEY.38 Finally,
natural products can be prioritized using their predicted
activity. Leveraging the fact that antibiotic BGCs oen contain
a second resistant copy of their antibiotic target gene, ARTS50

performs resistant target gene genome mining for antibiotics
with novel targets.

While some ML methods provide scaffold predictions and
other “clues” to natural product structures, the promise of
discovering accurate yet novel chemistry remains elusive. Rule-
based approaches still remain the backbone of BGC detection
and natural product chemistry research, as they create
a community-driven feed-forward discovery loop by continuous
extension of their rule sets based on novel insights gained from
applying them to unexplored genomes and communities. Since
version 5.1.12, antiSMASH has also allowed for the detection of
putative BGCs using more lenient rule sets. However, the
prospect of detecting a whole novel subclass of natural products
requires a more data-driven approach. In our view, the ultimate
limitation of current approaches is the fact that they use the
same underlying protein functional annotation methods such
as pHMMs (SANDPUMA, RRE-Finder51), they do not pre-process
the gene sequences features (NeuRiPP, NRPSPredictor43) or take
an intermediate approach (DeepBGC). Contrastingly, machine
translation, speech recognition, and image processing appli-
cations have shown that the true potential of DL does not lie in
a single-layer architecture of aggregated hand-craed features,
but rather in a comprehensive multi-layered architecture. Such
multi-layered architectures utilize low-levels to ingest a raw
genomic sequence through layers pre-trained on available data,
as well as nal layers that predict the desired target. Finally,
Nat. Prod. Rep., 2021, 38, 1100–1108 | 1103
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irrespective of detection methods, validation with unseen
datasets is needed in the eld, instead of validation using
random splits which fail to account for the highly conserved
nature of BGCs. For example, this was illustrated by NeuRiPP's
and DeepBGC's ability to re-discover biosynthetic classes
hidden during training.26,52

3.5 Data availability for BGC and NP ML models

A critical aspect of all ML methods discussed above is data, as
the choice of ML algorithm is associated with data quality and
quantity and different kinds of data are suitable for different
applications. For example, if one wanted to use a supervised
learning method to predict BGCs or the bioactivity of NPs one
would need a high-quality validated database such as MIBiG or
one of the ones summarized in the recent review.53 Unfortu-
nately, the lack of large quantities of high-quality data and
standardized databased for ML models are a great challenge for
the eld.

4. Exploring the natural product
landscape of the human microbiome
4.1 Natural products of the environmental microbiome

The natural environment has long been a source of natural
products and anti-microbial compounds. In particular, soil and
marine microorganisms have been the source of numerous
important natural products.54–56 Traditionally, the discovery
process has required the collection of soil and marine micro-
organisms, followed by culturing, extracting, and then
screening compounds from these cultures. Although the
majority of organisms in these environments are not culturable,
several antibiotics have been discovered without any knowledge
of the enzymes involved in the biosynthesis or the corre-
sponding genes (for review, see ref. 57). These traditional, top-
down approaches have been complemented by more recent
bottom-up approaches, which leverage advances in genomics
and bioinformatics, such as high throughput sequencing,
genomemining, andML to identify and activate gene clusters in
the host organism.58

4.2 Understanding natural products of the human
microbiome

The scalability of microbial mining advances described above
have begun being used in the complex human microbiome
genomics systems. The ClusterFinder algorithm has been used to
identify >14 000 putative small-molecule encoding BGCs in
human-associated bacterial genomes, most of which were from
the oligosaccharide and the RiPP natural product classes.45 One
sub-class of RiPPs, thiopeptides, were found to be widely
distributed in the genomes andmetagenomes of human gut, oral
and vaginal microbiota.45 Experimental interrogation of this
group of BGCs revealed a novel antibiotic with activity against
several Gram-positive vaginal pathogens.45 Another tool, Met-
aBGC, has been applied to metagenomic data to identify type II
polyketide synthases from gut, skin and oral samples.37 Although
some of these gene clusters are associated with particular small
1104 | Nat. Prod. Rep., 2021, 38, 1100–1108
molecules of known/predicted activity, the vast majority of these
gene clusters remain uncharacterized.59 Despite the recent
advances in the search for natural products in the human
microbiome, the eld is currently facing several challenges, such
as how to prioritize the numerous identied and predicted BGCs
for further discovery, or how to establish whether these microbes
actually produce particular secondary metabolites in humans.60

Although the majority of BGCs and natural products in the
human microbiome remain uncharacterized, studies are now
beginning to associate BGCs with disease states, potentially
leading to discoveries of novel natural products, novel druggable
targets, novel lead compounds, and other important drug
discovery advancements. By mapping metagenomic data to
databases of known BGCs (such as MIBiG61 or IMG-ABC) or using
tools (such as antiSMASH, DeepBGC orMetaBGC) to predict novel
BGCs from metagenomic data we can begin to describe the BGC
landscape of a given population. Differential abundance and/or
ML algorithms can then be applied to link BGCs to disease
phenotypes. For example, a recent paper used a combination of
differential abundance testing and random forest classiers to
identify 43 BGCs found in the human gut that could discriminate
patients with Parkinson's disease from healthy controls.62 Other
recent work has used similar methods to identify over a thousand
oral BGCs that were differentially represented between healthy
subjects, dental caries and periodontitis.63
4.3 Methodological challenges & opportunities

The detection of BGCs and their products in human and envi-
ronmental data have been pursued by diverse bioinformatic
strategies. While these novel bioinformatic methods are
becomingmore popular and offer promising steps forward, they
suffer from several challenges including a lack of large publicly
available datasets, lack of dataset-associated metadata, shallow
sequencing depth, small sample sizes, and an widespread
inability to validate ndings across multiple studies (largely due
to the aforementioned limitations). Another limitation is the
availability of sequenced bacterial genomes from diverse
samples as many tools rely on these to predict the initial sets of
BGCs. However as larger, deeper, and more diverse meta-
genomic datasets become available, and other tools like meta-
genome assemblers become more precise, our ability to
leverage ML approaches in this eld will improve.

Finally, even though these methods allow the identication
of BGC signatures that are associated with a particular disease,
determining if the BGC of interest is expressed and what
metabolite/small molecule it produces remain difficult, as dis-
cussed above. The incorporation of other ‘omics’ technologies
can help resolve these issues. Comparative transcriptomics of
cultured bacterial strains from the human microbiome can be
used to determine which BGCs are transcriptionally active.44

However, as most bacteria in the human microbiome are
unculturable, other methods, such as metatranscriptomics, will
be required to determine BGCs that are active and differentially
expressed between healthy and diseased microbiomes. Other
technologies such as metabolomics63 or synthetic biology64 can
be combined with these approaches to help associate BGCs of
This journal is © The Royal Society of Chemistry 2021

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0np00055h


Review Natural Product Reports

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
N

ov
em

be
r 

20
20

. D
ow

nl
oa

de
d 

on
 2

/1
2/

20
26

 5
:0

1:
19

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
interest to the small molecules they encode. Lastly, the appli-
cation of long-read sequencing not only to bacterial genomes
from the human microbiome but also to the microbiome
samples themselves offers the ability to increase the sensitivity
of BGC prediction and annotation using ML tools.65
5. Translating machine learning to
natural product drug discovery

An exciting aspect of applying ML to genomics and natural
products is the promise of empowering new avenues of drug
discovery. With the FDA approval of nine natural product-based
drugs in 2019 alone, natural products continue to be a fruitful
source for small molecule drug discovery and target identica-
tion.66 Despite this, classic screening approaches can suffer
from inefficiencies, such as redundant discoveries, which can
yield low returns on investment. In the context of the micro-
biome, BGCs and their natural products provide unique
insights into potential underlying mechanisms of microbe–host
and microbe–microbe interactions, and indeed many natural
products have been associated with therapeutically relevant
activities including antibiotic activity66 and immunomodulatory
activity.67,68 By elucidating mechanisms and the underlying
chemistry by which microbiome metabolic products interact
Fig. 2 Machine learning applications within a “functional biosynthetic gen
process of taking a biosynthetic gene cluster (BGC) and resulting natural
by identifying BGCs associated with disease states inmicrobiome dataset
in experimental validation of whether the natural product is associated wi
molecule can be carried forward as a drug hit, or if the natural product is n
running target assays to identify appropriate molecule drug hits (orange).
to be tested in a clinical setting. This diagram highlights the high-level dru
for machine learning to be applied and improved (right).

This journal is © The Royal Society of Chemistry 2021
with human cells in disease states, researchers are better able to
design small molecule screens and identify putative targets and
drug candidates, which could lead to better therapies. These
approaches are enabling our ability to more completely under-
stand the biosynthetic potential of organisms through their
genomic languages, allowing us to more accurately predict
structures and activity features of natural products such as
toxicity, and equipping us to develop improved therapeutics by
associating these natural products with disease phenotypes.
5.1 Functional BGC screening for drug discovery

ML models and BGCs are becoming increasingly valuable in
drug discovery, especially for target identication. At a high
level, traditional small molecule drug discovery is a process in
which therapeutic targets (e.g. receptors in a pathway) are
identied and “targeted” with a molecule (e.g. a receptor
agonist) to modify a biological process and confer a therapeutic
benet. This process involves extensive experimentation and
renement before the nal molecule is an acceptable drug
candidate for clinical evaluation. In the context of BGCs and the
microbiome, BGCs and their resulting natural products can be
considered a starting point in which therapeutic targets (e.g.
a receptor associated with a natural product) can be identied
as promising, due to its association with disease states through
e cluster screen” to facilitate drug discovery. This workflow outlines the
product to clinical evaluation as a lead compound. The process begins
s (blue). The BGC-derived natural product(s) are purified (purple) for use
th the predicted disease phenotype (red). The validated natural product
ot a reasonable drug hit, it can serve as a starting point for building and
Finally the molecular hits are developed into lead compounds (yellow)
g discovery steps of the process (left), as well as the areas of opportunity
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data analysis (i.e. reverse translation) (Fig. 2). The analytically
identied natural products can inform target identication and
follow up experimentation can validate such in silico ndings.
Together this set of prediction and validation steps could be
considered a “functional BGC” screen for targets that warrant
further development.

Once a promising BGC-associated drug target has been
identied (and further validated in vitro and in vivo), a high
throughput screen (HTS) can be run to test millions of mole-
cules against an assay designed to identify which molecules
confer the desired activity associated with that target. The
molecules that confer the desired therapeutic activity are
considered “hits” whose activity and feasibility are then further
optimized through medical chemistry. The nal optimized
molecule from this process is considered a lead, which is the
best candidate for progressing into early-stage clinical trials for
safety, and then efficacy.

As discussed above, one way in which ML can impact natural
product drug discovery pipelines is by aiding in activity
prediction, such as toxicity or potential for clinical advance-
ment.16,26 The high throughput screening approach is very time
consuming and expensive, and ML algorithms are beginning to
enable more rened hit and lead identication by agging
chemicals that are potentially toxic, unstable, or likely to be
ineffective in the clinic, which are based on their training data.16
5.2 Existing challenges & future opportunities for machine
learning

One of the challenges with leveraging ML methods in natural
product identication is the lack of interpretability. The ability
of ML algorithms, especially DL algorithms, to measure signal
from complex and high dimensional data makes them incred-
ibly useful for nding new signals in data, but this comes at
a cost. The complexity and dimensionality make it difficult to
interpret what key features are predictive. In the context of BGC
identication, this lack of interpretability can make it difficult
or impossible to identify a single mechanism or target of
interest. Said another way, there is oen a tradeoff between
model predictability and interpretability, where one comes at
the cost of the other. When leveraging these techniques, it is
becoming increasingly critical for scientists to balance the
predictability and interpretability of their models, so as to
achieve an outcome that meets their needs of either high
predictive performance or interpretability of key predictive
features. An important area of future development will be
continued improvements in interpretable models (including
components such as feature importance calculations), as well as
continued effective integration of ML models with rule-based
approaches, so as to improve scientic interpretability.

Another challenge for leveraging ML with natural product
identication is establishing the appropriate validation of nd-
ings. While ML techniques can guide our scientic exploration
and development, experiments are still required to protect
against false positive discoveries. Such validation will include in
vitro activity assays and in vivo phenotypic studies. Just as it is
important for the eld to continue developing new and improved
1106 | Nat. Prod. Rep., 2021, 38, 1100–1108
models, it is also important for us to continue working toward
more effective and t-for-purpose validation approaches (e.g. cell-
based in vitro activity assays for validation screening).

Yet another challenge remains the lack of training data,
especially in the natural product space which involved complex
genomic and chemical information. This lack of data in turn
limits researchers' abilities to build strong ML models and
tools. An area of future development for the natural product
eld will likely include publications and resources of structured
data such as BGCs, their natural products (including chemical
structures), their RNA and protein expression conditions, any
associated disease states, and their activity classes. As this
information grows, we likewise expect to see improvements in
ML space.
5.3 Future outlook

Overall, we expect ML and microbial genomics to continue
playing important roles in drug discovery and development. By
leveraging tools from other elds such as NLP, we are able to
view our biological and chemical systems through a new lens,
and glean new insights into the underlying systems. By applying
ML techniques to biological experiments, we can predict which
molecules might have therapeutic benets. By using ML for
tasks such as activity and toxicity prediction, we can make our
drug discovery and development processes less resource
intensive and more accurate. With this being said, we also
clarify that ML and DL alone are not the only route forward for
the natural product eld, and diverse approaches (including
rule-based methods and others) will continue to be critical for
incorporating human expertise and addressing ML shortcom-
ings such as high false positive rates due to limited training
data and other issues. Together ML, genomics, and natural
products have great potential for improving drug discovery and
impacting human health.
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20 H. Öztürk, A. Özgür, P. Schwaller, T. Laino and E. Ozkirimli,

Drug Discovery Today, 2020, 25, 689–705.
21 M. H. Li, P. M. Ung, J. Zajkowski, S. Garneau-Tsodikova and

D. H. Sherman, BMC Bioinf., 2009, 10, 185.
22 N. Khaldi, F. T. Seifuddin, G. Turner, D. Ha,

W. C. Nierman, K. H. Wolfe and N. D. Fedorova, Fungal
Genet. Biol., 2010, 47, 736–741.

23 S. El-Gebali, J. Mistry, A. Bateman, S. R. Eddy, A. Luciani,
S. C. Potter, M. Qureshi, L. J. Richardson, G. A. Salazar,
A. Smart, E. L. L. Sonnhammer, L. Hirsh, L. Paladin,
D. Piovesan, S. C. E. Tosatto and R. D. Finn, Nucleic Acids
Res., 2019, 47, D427–D432.

24 I. Sillitoe, N. Dawson, T. E. Lewis, S. Das, J. G. Lees,
P. Ashford, A. Tolulope, H. M. Scholes, I. Senatorov,
This journal is © The Royal Society of Chemistry 2021
A. Bujan, F. Ceballos Rodriguez-Conde, B. Dowling,
J. Thornton and C. A. Orengo, Nucleic Acids Res., 2018, 47,
D280–D284.

25 D. S. Chiriac, Genomic and Metabolic Guided Discovery of
Bacterial Natural Products, MS thesis, Queen's University,
2019.

26 G. D. Hannigan, D. Prihoda, A. Palicka, J. Soukup,
O. Klempir, L. Rampula, J. Durcak, M. Wurst, J. Kotowski,
D. Chang, R. Wang, G. Piizzi, G. Temesi, D. J. Hazuda,
C. H. Woelk and D. A. Bitton, Nucleic Acids Res., 2019, 47,
e110.

27 A. Viehweger, S. Krautwurst, D. H. Parks, B. König and
M. Marz, 2019, bioRxiv: 524280, DOI: 10.1101/524280.

28 T. Mikolov, I. Sutskever, K. Chen, G. Corrado and J. Dean,
2013, CoRR: abs/1310.4546.

29 P. Ng, 2017, arXiv: abs/1701.06279.
30 E. Asgari and M. R. K. Mofrad, 2015, arXiv: abs/1503.05140.
31 M. A. Skinnider, N. J. Merwin, C. W. Johnston and

N. A. Magarvey, Nucleic Acids Res., 2017, 45, W49–W54.
32 K. Blin, S. Shaw, K. Steinke, R. Villebro, N. Ziemert, S. Y. Lee,

M. H. Medema and T. Weber, Nucleic Acids Res., 2019, 47,
W81–W87.

33 P. Cimermancic, M. H. Medema, J. Claesen, K. Kurita,
L. C. Wieland Brown, K. Mavrommatis, A. Pati,
P. A. Godfrey, M. Koehrsen, J. Clardy, B. W. Birren,
E. Takano, A. Sali, R. G. Linington and M. A. Fischbach,
Cell, 2014, 158, 412–421.

34 T. Wolf, V. Shelest, N. Nath and E. Shelest, Bioinformatics,
2016, 32, 1138–1143.

35 T. C. Vesth, J. Brandl and M. R. Andersen, Synth. Syst.
Biotechnol., 2016, 1, 122–129.

36 P. Schlapfer, P. Zhang, C. Wang, T. Kim, M. Banf, L. Chae,
K. Dreher, A. K. Chavali, R. Nilo-Poyanco, T. Bernard,
D. Kahn and S. Y. Rhee, Plant Physiol., 2017, 173, 2041–2059.

37 Y. Sugimoto, F. R. Camacho, S. Wang, P. Chankhamjon,
A. Odabas, A. Biswas, P. D. Jeffrey and M. S. Donia, Science,
2019, 366, 1–11.

38 N. J. Merwin, W. K. Mousa, C. A. Dejong, M. A. Skinnider,
M. J. Cannon, H. Li, K. Dial, M. Gunabalasingam,
C. Johnston and N. A. Magarvey, Proc. Natl. Acad. Sci. U. S.
A., 2020, 117, 371–380.

39 A. J. van Heel, A. de Jong, C. Song, J. H. Viel, J. Kok and
O. P. Kuipers, Nucleic Acids Res., 2018, 46, W278–W281.

40 J. I. Tietz, C. J. Schwalen, P. S. Patel, T. Maxson, P. M. Blair,
H. C. Tai, U. I. Zakai and D. A. Mitchell, Nat. Chem. Biol.,
2017, 13, 470–478.

41 P. Agrawal, S. Khater, M. Gupta, N. Sain and D. Mohanty,
Nucleic Acids Res., 2017, 45, W80–W88.

42 M. G. Chevrette, F. Aicheler, O. Kohlbacher, C. R. Currie and
M. H. Medema, Bioinformatics, 2017, 33, 3202–3210.

43 M. Rottig, M. H. Medema, K. Blin, T. Weber, C. Rausch and
O. Kohlbacher, Nucleic Acids Res., 2011, 39, W362–W367.

44 G. C. A. Amos, T. Awakawa, R. N. Tuttle, A. C. Letzel,
M. C. Kim, Y. Kudo, W. Fenical, B. S. Moore and
P. R. Jensen, Proc. Natl. Acad. Sci. U. S. A., 2017, 114,
E11121–E11130.
Nat. Prod. Rep., 2021, 38, 1100–1108 | 1107

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0np00055h


Natural Product Reports Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
N

ov
em

be
r 

20
20

. D
ow

nl
oa

de
d 

on
 2

/1
2/

20
26

 5
:0

1:
19

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
45 M. S. Donia, P. Cimermancic, C. J. Schulze, L. C. Wieland
Brown, J. Martin, M. Mitreva, J. Clardy, R. G. Linington
and M. A. Fischbach, Cell, 2014, 158, 1402–1414.

46 X. Wang, Z. Li, M. Jiang, S. Wang, S. Zhang and Z. Wei, J.
Chem. Inf. Model., 2019, 59, 3817–3828.

47 W. Torng and R. B. Altman, J. Chem. Inf. Model., 2019, 59,
4131–4149.

48 D. Polykovskiy, A. Zhebrak, B. Sanchez-Lengeling,
S. Golovanov, O. Tatanov, S. Belyaev, R. Kurbanov,
A. Artamonov, V. Aladinskiy, M. Veselov, A. Kadurin,
S. I. Nikolenko, A. n. Aspuru-Guzik and A. Zhavoronkov,
2018, arXiv: abs/1811.12823.
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