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Intraoperative frozen section analysis can be used to improve the accuracy of tumourmargin estimation during

cancer resection surgery through rapid processing and pathological assessment of excised tissue. Its

applicability is limited in some cases due to the additional risks associated with prolonged surgery, largely

from the time-consuming staining procedure. Our work uses a measurable property of bulk tissue to bypass

the staining process: as tumour cells proliferate, they influence the surrounding extra-cellular matrix, and the

resulting change in elastic modulus provides a signature of the underlying pathology. In this work we

accurately localise atomic force microscopy measurements of human liver tissue samples and train

a generative adversarial network to infer elastic modulus from low-resolution images of unstained tissue

sections. Pathology is predicted through unsupervised clustering of parameters characterizing the

distributions of inferred values, achieving 89% accuracy for all samples based on the nominal assessment (n

¼ 28), and 95% for samples that have been validated by two independent pathologists through post hoc

staining (n ¼ 20). Our results demonstrate that this technique could increase the feasibility of intraoperative

frozen section analysis for use during resection surgery and improve patient outcomes.
Introduction

Surgical removal is the gold standard treatment option for
many solid cancers and is oen the only curative option. Its
overall effectiveness relies on accurate estimation of the spatial
extent of the cancer to ensure it is completely removed while
avoiding unnecessary excision of healthy tissue. Intraoperative
frozen section (IFS) analysis can increase tumour margin esti-
mation accuracy through histopathological assessment of
stained tissue while the patient remains on the operating table.
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IFS is used in many types of cancer resection surgeries,
including colorectal liver metastases,1 lung,2 uterine,3 ovarian4

and breast,5 however debate continues on the usefulness of the
procedure in other surgeries such as pancreatectomies6 and
gastric resection.7 In cases of basal cell carcinoma, IFS enabled
surgeons to conserve tissue while conrming clearance of
excision margins;8 while in prostatectomies, IFS can be used to
determine whether a nerve sparing procedure can be carried
out, which greatly improves post-procedure quality of life for
patients in maintaining continence and sexual function.9

The drawbacks of IFS include the extra time the patient
spends under anaesthetic while the tissue is stained and
analyzed, increasing their risk, as well as the additional
resources required. One trial using IFS during prostatectomies
reported that the time from specimen removal to pathology
reporting varied from 18 to 47 minutes.10 IFS is also less accu-
rate compared with formalin-xed paraffin-embedded (FFPE)
histopathology due to freezing artefacts and difficulties
obtaining tissue sections of sufficient quality.11 Gagné et al.
concluded that the additional information gained was not
worth the added time and expense in the case of lung cancer
resection,12 while a study of intraoperative breast margin
assessment techniques found that despite the benets of IFS,
the cost and turnaround time was a signicant barrier to
widespread adoption.13 The main contributing factor to each of
Nanoscale Adv., 2021, 3, 6403–6414 | 6403
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Fig. 1 Schematic showing atomic force microscope (AFM) measure-
ment procedure of tissue sections adhered to a glass slide. The
cantilever, with a known spring constant, is used to indent a sample
and the resulting deflection of the laser beam due to the tissue's
structure is measured via the photodiode. The measured force and
indentation distance are used to compute the elastic modulus (EM) of
the tissue.

Fig. 2 (a) Microscope slide with 3D-printed structure to contain
physiological buffer during AFM measurement. Inset: adhered tissue
section. (b) AFM microscope field-of-view (FOV) showing 100 mm
thick section capturedwith standard AFM camera at 10�magnification
with cantilever visible. Scale bar 100 mm. (c) Identical image in (b) of 40
mm thick section captured with high dynamic range sCMOS camera.
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these limitations is the staining and assessment process: the
sample is snap frozen and transported to a pathology laboratory
where multiple sections must be cut, xed, stained and
assessed by a pathologist to determine if tumour cells are
present at the excisionmargin, requiring further tissue removal.

A number of novel imaging modalities have been proposed
to streamline this process. One uses a much simpler stain
combined with confocal uorescence and reectance contrast
microscopy, which allows for imaging of thicker tissue due to its
optical sectioning ability. The resulting pseudo-color image
mimics a haematoxylin and eosin (H&E) stain and is assessed by
a pathologist as in the standard procedure.14 Another technique
uses stimulated Raman spectroscopy (sometimes in tandem
with second harmonic generation imaging) to replicate the H&E
stain, which has the additional advantage of being label-
free.15,16 Hollon et al. combined this modality with a deep
learning classication algorithm for intra-operative diagnosis of
brain tumours without pathologist intervention.17 However,
both of these methods fundamentally rely on a pathological
assessment, either made by an expert human or an equivalent
algorithm. The former is becoming an increasingly scarce
resource18 while the latter have found limited clinical deploy-
ment due to their brittle nature, where nominally successful
algorithms may not maintain diagnostic accuracy when
deployed on images outside of their training datasets.19

An alternative to image-based pathological assessment uses
measurable physical properties of bulk tissue for diagnosis
without the need for staining or assessment, avoiding the issue
of interobserver variability in pathological diagnoses in
general,20,21 which can be exacerbated by the image quality
issues inherent to IFS.22,23 A well-known property of cancerous
tissue is its markedly different stiffness relative to surrounding
healthy tissue; prior to the advent of laparoscopic and endo-
scopic surgeries, surgeons oen used manual palpation to
estimate the extent of a cancerous mass.24,25 Localised changes
in stiffness can be quantied by measuring the elastic modulus
(EM) of the tissue, dened as resistance to elastic deformation
under the application of stress.26 Single cells cultured from
cancerous tissue generally have lower EM (larger deformability)
when compared to healthy cells as measured via atomic force
microscopy (AFM),27,28 and this increased cell motility is
hypothesized to drive the metastasis of cancerous tissue. The
relationship between the EM of bulk tissue and tumour
progression is more complex however due to the interaction
between cancerous cells and the extra-cellular matrix (ECM).29–31

An excellent review of the use of AFM in characterizing localised
changes in the EM of various tissue types by Stylianou et al.
nds that the EM of cancerous tissue is starkly heterogeneous,
leading to investigations into the use of these nanomechanical
signatures for label-free cancer diagnostics.32

Direct measurement of tissue samples using an AFM is not
a feasible replacement for histopathological assessment in an
intraoperative setting, however. Sample preparation is non-
trivial and measurements are time consuming; measuring
a 100 mm2 area takes approximately 10 minutes, while single
tissue sections can be up to 100 mm2 in size, and multiple
sections may require assessment for accurate margin
6404 | Nanoscale Adv., 2021, 3, 6403–6414
estimation. During the limited time period of sample viability
aer thawing, the number of AFM measurements that can be
made will likely not be sufficient to fully characterize a sample,
particularly under the time constraints of an intraoperative
procedure. An additional limitation is the difficulty in spatially
localising such small measurement areas, which is crucial for
assessing surgical margins. Previous studies that identied the
nanomechanical signatures of disease did so through a large
number of “blind” AFM measurements of bulk ($1 mm thick)
tissue sections, statistically correlating the ndings with post
hoc histopathology.27,33–35 Fig. 1 shows the general procedure for
measuring tissue samples using an AFM; the cantilever
assembly occludes much of the camera's eld-of-view (FOV),
reducing the contrast of the resulting image. Even for a 100 mm-
thick tissue section as shown in Fig. 2a and b, contrast is poor
and accurate spatial localisation of the measurement area is
challenging due to the highly scattering nature of the tissue and
the resulting lack of recognizable features.

In this work we measured tissue sections of intermediate
thickness (40 mm), which balanced image contrast with macro-
scopic structure (Fig. 2c), as the thin 5 mm sections typically used
for histopathological assessment lack the three-dimensional
ECM necessary for bulk tissue properties to be measurable. We
also imaged the sections with a high dynamic range sCMOS
camera rather than the camera supplied with the AFM system.
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Coarse registration procedure. (a) AFM FOV at 4�magnification
with region of interest (ROI) selected for registration outlined in solid
red box. Scale bar 500 mm. (b) Whole-sample image of unstained liver
tissue at 4� magnification with ROI from (a) overlaid. Scale bar 1 mm.
(c) Coarsely localized AFM measurement sites (pink boxes, not to
scale).
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The increased contrast allows for local features to be identied
and AFM measurement sites to be coarsely localised using
normalized cross-correlation, as illustrated in Fig. 3. Our
previous work used this coarse localisation procedure to estimate
the sample-wide EM by extrapolating measured values based on
structural information extracted from post hoc stained images,36

similar to Calò et al.37 Both methods require well-aligned images
of the section before and aer staining, which is oen not
possible if the tissue has warped or been damaged during the
process. In this work we eliminate the need for staining and ad
hoc AFM measurements entirely: localisation of measured areas
has been ne-tuned to obtain precisely registered pairs of
unstained tissue images and EMmaps, and these pairs were used
to train a style transfer deep learning architecture to infer the
sample-wide EM of tissue sections from low-resolution grayscale
microscopy images. The resulting EM distributions contain the
nanomechanical signatures of the underlying tissue pathology
identied previously,27,33–35 and unsupervised clustering of
distribution parameters provides an accurate prediction of tissue
pathology, validated through pathologist assessment of post hoc
stained sections. The use of a well-optimized prediction algo-
rithm allows for much more rapid diagnoses compared to time-
intensive diagnostic methods such as IFS analysis or ad hoc AFM
measurements.
‡ Human Tissue Authority License #11016. Ethical approval was obtained prior to
all sample measurements. Patient clinical metadata is provided in Table S1 in ESI.
Experimental design
Sample preparation and measurement

AFM measurements were made on a total of 28 tissue samples
collected from 7 patients diagnosed with colorectal or
© 2021 The Author(s). Published by the Royal Society of Chemistry
pancreatic cancer metastasis of the liver undergoing curative
resection surgery, obtained through the Tissue Access for
Patient Benet program and the Royal Free Hospital.‡ Punches
were taken from nominally healthy and cancerous regions for
comparison and ash-frozen with liquid nitrogen, embedded in
Tissue-Tek optimal cutting temperature (OCT) compound and
cut using a cryostat (Leica CM1860) at a thickness of 40 mm. Cut
sections were stored at�20 �C and thawed immediately prior to
measurement. Samples were washed twice carefully with
distilled water to remove excess OCT compound and immersed
in a physiological buffer (Gibco Dulbecco's Modied Eagle
Medium, Thermo Fisher Scientic). Excess buffer was removed
and tissue glue applied using a ne glass capillary tube around
the edges of the section to adhere it to the microscope slide.
Once the glue had hardened tissue sections were fully
immersed in 4 mL of fresh buffer held in place by a custom 3D-
printed plastic frame xed to the microscope slide with silicone
paste (Fig. 1 and 2a).

A JPK NanoWizard 3 atomic force microscope (Bruker Nano
GmbH) with a so tipless cantilever and 10 mm diameter
borosilicate bead with spring constant k ¼ 0.08 N m�1 (CP-
mMasch CSC12, sQube) was used to acquire on average 10–20
force maps per sample; each force map consisted of 64 force-
indentation curves captured over a 10 mm � 10 mm measure-
ment area in an 8 � 8 grid (corresponding to 1.25 mm lateral
spacing). Measurement sites were selected to characterise as
much of the section as possible while avoiding regions where
the tissue was not well adhered to the slide or where the
structure was not conducive to reliable force-indentation
measurements, e.g. large voids or disintegrated tissue.
Measurement settings used were 3.0 mmmaximum indentation
depth, 1.0 mm s�1 indentation speed and 2–5 nN of indentation
force applied in force mapping mode; parameters were chosen
to avoid inelastic deformation of the tissue and to allow the
tissue to recover its shape aer retraction. If a force-indentation
curve could not be captured, e.g. because the tissue height was
beyond the retraction range of the cantilever, the force map at
that location was recorded as NaN. The cantilever sensitivity
and spring constant were calibrated daily prior to each sample
measurement using the JPK calibration tool's thermal noise
method based on the procedure described by Hutter and
Bechhoefer.38 The resulting force curves were analyzed using
JPK analysis soware to calculate bulk tissue EM by tting the
Hertz/Sneddon model for contact mechanics, taking the
indenter shape into account.39,40
Generating a paired image-EM map training set

To learn the relationship between unstained image intensity
and EM, we acquired a training set of paired microscopy images
and EM maps through accurate post hoc spatial localisation of
where the AFM measurements had been made on the bulk
tissue section. This was done in a two-step registration process:
the rst involved coarsely registering images of the
Nanoscale Adv., 2021, 3, 6403–6414 | 6405
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Fig. 4 Fine registration process for generating training pairs. Blue dotted boxes outline coarsely registered 30 mm � 30 mm microscopy image
patches for each measurement area at original resolution (1.625 mm pixel size). Pink dashed boxes outline 10 mm � 10 mm EM maps (input
resolution 1.25 mm, output resolution 0.3125 mm) and green dashed box outlines 10 mm � 10 mm tissue topology map (intermediate resolution
0.125 mm). Purple dashed boxes outline contrast enhanced and upsampled 30 mm � 30 mm microscopy image patch (intermediate resolution
0.125 mm). Combined green/purple dashed box outlines mutual information map. Orange dotted box outlines finely registered 20 mm � 20 mm
microscopy image patch (output resolution 0.3125 mm).
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measurement site (captured with the AFM cantilever in view) on
a whole-sample image of the tissue section using normalized
cross correlation (see Fig. 3), followed by a ner registration
procedure that used an estimate of the tissue topology to
localize the measurement area at a much higher spatial reso-
lution (see Fig. 4).

(A) Coarse measurement site localisation. A tiled image of
each unstained tissue sample immersed in buffer (Fig. 3b and c)
was acquired using an upright microscope (Olympus BX63) with
a motorized sample positioning stage (Prior Scientic) and
a PIFOC objective focusing stage (Physik Instrumente) prior to
all AFM measurements. Images were captured at 4� magni-
cation (Olympus PLSAPO4X, 0.16 NA) using a colour digital
camera (PCO edge 5.5c) with a pixel size of 6.5 mm and sensor
size of 2560 � 2160 pixels, giving a eld of view (FOV) of 4.1 �
3.5 mm in size. The microscope was controlled with custom
soware written in LabVIEW (National Instruments) and
images were stitched into a whole-sample image using an
ImageJ plugin.41 The AFM system was mounted on an inverted
optical microscope (Olympus IX73) also tted with a colour
digital camera (PCO edge 3.1c) having a smaller sensor size and
FOV (3.3� 2.5 mm), and a single image of the tissue section was
captured at 4� magnication (Olympus PLSAPO4X, 0.16 NA)
immediately prior to each measurement (Fig. 3a). The
measurement area is occluded by the cantilever in these images
hence the need for registration on the whole-sample image to
extract pixel intensities for each location. A 40� magnication
template image of the AFM cantilever with the tissue contact
point in focus (the borosilicate bead) was captured prior to all
measurements, where the measurement area could be accu-
rately determined. To match the magnication of the unstained
6406 | Nanoscale Adv., 2021, 3, 6403–6414
tissue section images (4�), a series of template images were
taken of the cantilever in focus at increasing magnication and
sequentially registered to create a 4� template image with
a known measurement area. The approximate location of the
cantilever tip could then be determined for each measurement
site by calculating the normalized cross correlation between the
template image and each AFM image, nding the location of the
maximum correlation and using this calculated offset to
determine the measurement area's location in the FOV (see Fig.
S1 in ESI†). Normalized cross correlation was again used to
register the AFM image with known measurement area on the
whole-sample image and coarsely localise the measurement
area on the sample (see Note S1 in ESI†).

(B) Finemeasurement area localisation. A larger image patch
was extracted around the coarsely-determined measurement
site (approximately 30 mm � 30 mm to account for any errors
during registration) and the measurement site was nely
localised within that extracted area. The extracted image patch
was rst contrast enhanced using contrast-limited adaptive
histogram equalization (CLAHE)42 with a 32 pixel window. The
difference in AFM measurement grid spacing (1.25 mm) and
camera pixel size (1.625 mm at 4� magnication) required
upscaling and linearly interpolating to match the effective pixel
sizes. The ratio between themwas 13/10, thus the image patches
were upscaled to an effective matched pixel size of 0.125 mmand
the 100 mm2 8 � 8 measurement area when similarly upscaled
corresponded to an 80 � 80 pixel area. Additional structural
information obtained during the AFM measurement was used
to assist in nely localising the measurement area, specically
the tissue topology, which was estimated from the relative axial
offset of the tissue contact point of the cantilever prior to each
© 2021 The Author(s). Published by the Royal Society of Chemistry
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individual force-displacement curve measurement; the tissue
topology map is identical in size and resolution to the EM map.
Given that the direct relationship between topology and image
intensity is unknown, a more general similarity metric was used
for registration. The mutual information of two variables
quanties the amount of information gained about one of the
variables (image intensity) from observing the other (tissue
topology).43 It was calculated in a similar manner to 2D cross
correlation, i.e. as a function of the displacement of the tissue
topology map relative to the tissue image patch, and output as
a similarity map with the same dimensions as the image patch.
The 80� 80 region of the patch corresponding to the maximum
computed mutual information was taken as the nely localised
AFM measurement area. The resulting image patches and cor-
responding EM maps were downsampled to 64 � 64 and 32 �
32 in size respectively and saved as training pairs. The training
and validation set consisted of 386 image-EM map pairs in an
80/20 split (see Note S2 in ESI†).
Style transfer network architecture and training

The style transfer architecture for converting image intensity to
EM on a pixelwise basis was trained in a generative adversarial
network (GAN) conguration based on an implementation of
Pix2Pix44 using the Keras machine learning API.45 In the GAN
conguration, a generator network produces a synthetic output
image (an EM map in this case) conditioned on an input image
(a microscopy image of unstained tissue) and is trained simul-
taneously with a discriminator network that is optimized to
distinguish synthetic EM maps from real measured ones,
improving the accuracy of generated or predicted EMmaps. The
generator consisted of a U-Net architecture46 with one addi-
tional downsampling layer relative to the return arm, which
takes input image patches that are larger than the output EM
maps (400 mm2 vs. 100 mm2), increasing the information avail-
able to the network. This prediction architecture was also
chosen to accommodate the large tissue contact area of the
cantilever bead (see Fig. S2 in ESI†). The generator U-Net con-
tained 5 downsampling blocks, each consisting of a 2D con-
volutional layer, a leaky ReLU layer with an alpha value of 0.2
and batch normalization (momentum 0.8), with the exception
of the initial block. The return path contained 4 upsampling
blocks, each consisting of a transposed deconvolution layer
followed by dropout and batch normalization layers as well as
a concatenation skip input layer. Image patches and EM maps
were scaled to a range of �1 allowing for a tanh activation
function in the nal convolutional layer, with EM values clam-
ped between 0 and 2 kPa in accordance with expected values
published in the literature (see Discussion). The discriminator
consisted of a 2D average pooling layer to reduce the size of the
input patch to 32 � 32, followed by four blocks, each with a 2D
convolutional layer, a leaky ReLU layer with an alpha value of
0.2, batch normalization (momentum 0.8) with the exception of
the initial layer and a dropout layer with a rate of 0.25. The
validity was computed by a 2D convolutional activation layer.
The combined generator and discriminator model was
compiled with mean squared error and mean average error as
© 2021 The Author(s). Published by the Royal Society of Chemistry
loss functions with weights of 1 and 100 for the discriminator
and generator respectively, and with the Adam optimizer
(learning rate 0.0002, beta 0.5). The model was trained with
a batch size of 16 for 10 000 epochs in Keras using a Tensorow
backend, and training took just over 3 hours on a NVIDIA Tesla
V100 GPU with 32 GB of onboard memory.

EM prediction and sample validation

For prediction, the unstained whole-sample images were
upscaled to match the effective pixel size of the training patches
and CLAHE contrast enhancement was applied with a 32 pixel
window size. The mismatch in input and output patch size
required extracting overlapping patches from the input image
using the extract_image_patches function in Tensorow to
generate a contiguous whole-sample EM prediction (see Fig. S3 in
ESI†). Predictionmaps weremasked to ignore background pixels,
uid bubbles, tissue glue and areas where the tissue was out of
focus, detached or folded (see Fig. S4 in ESI†). Fig. 5a and d show
whole-sample images of unstained tissue input to the network
with output EM maps shown in Fig. 5b and e. Each sample was
nominally classied as “colorectal/pancreatic cancer metastasis”
or “non-disease associated tissue” based on where the sample
was excised from during surgery, which provided the only vali-
dation in some cases where post-measurement staining was not
possible due to poor sample quality or COVID-19 restrictions. In
most cases however (>70%), samples were xed in 4% para-
formaldehyde immediately aer AFMmeasurement, stainedwith
H&E and imaged at 20� magnication (Olympus PLN20�, 0.4
NA) in three dimensions to account for sample thickness. Volu-
metric stacks were converted into extended depth of eld two-
dimensional images and stitched together using ImageJ plu-
gins.41,47 Stained whole-sample images (Fig. 5c and f) were
randomly numbered and assessed by two independent patholo-
gists who had been informed of the tissue type (liver) and the type
of cancer that might be present (colorectal or pancreatic cancer
metastasis). Assessment consisted of determining whether any
tumour cells were present in the section and providing any other
relevant information on the tissue pathology. Both pathologists
classied all samples as “necrotic”, “brotic”, “no tumour”,
“tumour”, or some combination of these four main tissue types.
In one case, the nominal assessment of colorectal cancer
metastasis did not match either pathologist's assessment of “no
tumour”; pathologist assessments were always used as the nal
validation label (see Fig. S5 in ESI. Full details for all samples are
also given in Table S2 in ESI.†). We note that stained histopa-
thology images were not used during the registration procedure
or while training the prediction algorithms; they were only used
for validation of tissue pathology diagnoses. As a nal validation
test, histograms of the measured EM values were compared with
both the sample-wide predicted values and the predicted values
of the localized measurement areas only (see Fig. S6 in ESI†).

Predictive clustering

Fig. 6c shows the distribution of inferred EM values of two ROIs
of a typical sample, and the tissue structure visible in the H&E
image has a clear inuence on the shape of these distributions.
Nanoscale Adv., 2021, 3, 6403–6414 | 6407
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Fig. 5 Liver tissue samples (a)–(c) G350-01 and (d)–(f) G350-02-02 (scale bars: 1 mm), with G350-01 classified as “necrotic/no tumour” and
G350-02-02 classified as “tumour”. (b) and (e) Show predicted EM values of unstained images (a) and (d). (c) and (f) Show post hoc stained
sections.
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Fig. 7 also shows typical sample-wide distributions for several
different tissue types present in the sample set. The following
parameters were calculated for each inferred whole-sample
distribution to characterize its shape, and quantify how it
changes due to the tissue structure that is revealed through
staining: the mean, which estimates the overall stiffness of the
tissue, the standard deviation, which indicates heterogeneity of
values, and skewness, a measure of the “tailedness” of a distri-
bution or the presence of outliers.48 The extracted parameters
were then used to group the samples into predictive clusters in
an unsupervised manner using a Gaussian mixture model.
Unsupervised clustering refers to the fact that no labels were
assigned to the distributions during clustering, and the algo-
rithm identied patterns in the extracted parameters and
grouped the sample distributions accordingly; the assigned
labels were then compared to the actual validation labels ob-
tained from the nominal or histopathological assessments. The
optimal number of clusters (3) was determined without a priori
knowledge of any sample pathology using the evalclusters
MATLAB function (MathWorks) according to the gap criterion49

with a squared Euclidean distance metric. A 3-component
Gaussian mixture model was t to the extracted parameter
dataset using the tgmdist function with diagonal covariance
matrices, a probability tolerance of 1 � 10�6, a regularization
value of 0.01 and 10 replicates. Starting values were chosen at
random with uniform mixing proportions. The resulting
6408 | Nanoscale Adv., 2021, 3, 6403–6414
mixture model was used to cluster the samples via the cluster
function, and the assigned cluster for each sample served as
a prediction of tissue pathology based on the most frequent
nominal or histopathological assessment found in that cluster
(see Fig. 8).
Results and discussion

Fig. 5 shows two samples taken from patient G350: the non-
disease associated tissue sample G350-01 shown in the top
row was assessed as “mostly necrotic/no tumour”, and the
colorectal cancer metastasis sample G350-02-02 shown in the
bottom row was conrmed to have “tumour [cells] present
throughout the section”, identied as metastatic adenocarci-
noma. Fig. 6 shows a sample excised from patient G340 with two
ROIs shown in more detail, including histograms of the pre-
dicted EM values for each of these regions. This sample (G340-
03-02) was also conrmed to have metastatic adenocarcinoma
present. While the heterogeneity of the inferred EM may be
visually apparent in the tumour samples, it is the distribution of
values that contains relevant, quantiable signatures of the
underlying tissue pathology, as shown in the inset histograms
in Fig. 6c.

Fig. 7 shows histograms of the sample-wide predicted EM
maps for four typical samples, illustrating how tissue structure
affects the distribution shape. The magnitude and range of EM
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Liver tissue sample G340-03-02 classified as “tumour”. (a) Shows unstained section and (b) shows post hoc stained section (scale bars 1
mm). (c) Shows network prediction of EM values with (a) as input. Insets: unstained and stained ROIs (scale bar 250 mm). Histogram in bottom left
shows distribution of predicted EM values for each ROI. n¼ 350, 166 for narrower distribution in yellow and n¼ 313, 293 for broader distribution
in cyan.
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values agree with previous characterizations of liver tissue as
summarized by Stylianou et al.: measured EM proles of healthy
liver tissue are generally unimodal in shape with means of up to
1 kPa and widths in the hundreds of pascals.32 Fig. 7a shows
necrotic tissue compared to normal liver, where the lack of
brous proteins that contribute to bulk stiffness results in
a lower overall EM, in agreement with previously published
work.32 Fibrotic tissue has a much larger EM in general, again
typied by a unimodal distribution of EM values with a larger
mean than healthy tissue,50 and this increased EM is clear in
Fig. 7c.

The predicted whole-sample EM distributions shown in
Fig. 6c and 7 differ in shape from those observed in previous
works however, where thick ($1 mm) tissue sections were
measured with AFM cantilever tips tens of nm in size, resolving
individual cells and collagen bres.27,32,33 The AFM measure-
ments in this work were made using a tipless cantilever and
10 mm diameter borosilicate spherical bead on 40 mm thick
sections, as ner tips were found to puncture the sections,
generating spurious measurements. Previous high-resolution
measurements of liver tissue with metastatic cancer present
resulted in starkly bimodal EM proles, characterized by lower
and higher elasticity peaks (LEPs/HEPs) corresponding to
highly motile cancerous cells and the stiffening ECM.32 Tian
et al.measured a liver sample with colon cancer metastasis and
© 2021 The Author(s). Published by the Royal Society of Chemistry
extracted LEP/HEP values of 0.65 � 0.13 kPa and 2.26 � 0.60
kPa,51 and the LEP is in agreement with published EM values of
high motility colon cancer cells (0.4–0.6 Pa).52,53 This bimodality
is clearly not present in the tumour tissue distribution shown in
Fig. 7b due to the reduced spatial resolution of the AFM scan-
ning, and recent work by Calò et al. characterizing human liver
tissue using 5 mm cantilevers also measured EM distributions
similar in shape and magnitude to those presented here.37

Despite this reduction in spatial resolution, the biome-
chanical structure that gives rise to the bimodality resolved with
a ner tip is still discernible from the shape of the tumour
distribution compared with normal liver shown in Fig. 7b, and
the extracted parameters allow for accurate classication of
tissue pathology through unsupervised clustering. Predictions
are shown in the three-dimensional plot in Fig. 8 where solid
coloured shapes indicate the cluster and overlaid symbol(s)
denote pathologist or nominal assessment. Several samples
resulted in discordant diagnoses, denoted by overlapping
symbols. Black symbols show pathologist assessments and
white symbols denote nominal assessments where staining
could not be completed. The two clusters represented by blue
circles and green squares were assigned “tumour” and “no
tumour” respectively, whereas the third cluster represented by
orange diamonds was assigned the label “necrotic/no tumour”
to distinguish it from the rst “no tumour” cluster as it
Nanoscale Adv., 2021, 3, 6403–6414 | 6409

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1na00527h


Fig. 7 Typical predicted EM distributions of four tissue types present in the sample set. Pairwise comparisons between (a) non-tumour and
necrotic, (b) non-tumour and tumour, (c) non-tumour and fibrotic, and (d) fibrotic and tumour tissue sections. Insets: same distributions plotted
using a base 10 logarithmic scale.
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contained two samples that had been condently assessed by
one of the pathologists as mostly necrotic. It is more likely
however that this is simply a second group of non-tumour
samples. The predictive clustering achieved an overall classi-
cation accuracy of 89.2% (n ¼ 28), where a prediction was
correct if the name of the predicted cluster matched at least one
part of the pathological assessment. The accuracy for fully
validated samples was 95% (n ¼ 20) (full details for all samples
are given in Table S2 in ESI†), which is comparable to the re-
ported accuracy of 95% for IFS analysis in the diagnosis of liver
lesions when compared with gold-standard FFPE
histopathology.54

Automated image classication algorithms generally rely on
feature extraction using sequential convolutional layers, and
the feature representation is optimized to achieve the highest
classication accuracy. In histopathology, samples are typically
imaged in colour at high resolution, resulting in a very large
feature space. Rather than training a network to make a patho-
logical diagnosis from these features, we instead trained a style
transfer network to convert grayscale image intensity to EM on
a pixelwise basis. The advantage of generating these sample-
wide EM maps based on biomechanical measurements rather
than mimicking an H&E stain or replicating a histopathological
diagnosis entirely is the objectivity of the parameters that can
be extracted to identify the tissue pathology, decoupling margin
6410 | Nanoscale Adv., 2021, 3, 6403–6414
estimation from the inherently subjective process of visual
image-based assessment. IFS analysis in particular is vulnerable
to interobserver variability due to freezing artefacts and the
consequent reduction in image quality.20–23 AFMmeasurements
characterising tissue are vulnerable to signicant variabilities
in the form of random and systematic errors as outlined by
Schillers et al.,55 and are particularly sensitive to errors from
calibration of the cantilever; the method presented here uses
multiple measurements of different tissue samples carried out
across a signicant period of time (approximately 15 months) to
train a generalized algorithm, allowing for the effects of random
error to be averaged out. Our method also relies on inferring
relative differences in the tissue sections and uses these
differences to make an informed diagnosis rather than the
absolute value of EM measurements, which reduces the impact
of systematic error inherent to many AFM measurement
procedures.

The sensitivity of the classication algorithm is most starkly
demonstrated by samples G245-17-01 and 02 shown in Fig. 7d
and 8; both were similarly classied by one pathologist as
brotic with adenocarcinoma likely present on the right-hand
side. The network inference of G245-17-01 was restricted to
the le portion of the sample, as the area containing the
potentially cancerous tissue was out of focus, which tended to
generate spurious EM predictions (see Fig. S4 in ESI†). This
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Three-dimensional plot of parameters extracted from each predicted sample distribution, with solid colour shape indicating predicted
cluster, and overlaid symbol indicating clinical assessment. Black symbols denote confirmed assessments of post hoc stained sections, whereas
white symbols denote nominal assessments for samples that could not be stained. Two-dimensional projections onto each axis are shown to
illustrate direct relationships between each of the extracted parameters.
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sample was misidentied by the clustering algorithm as “no
tumour”; brotic samples were not isolated into a fourth
cluster, likely because this was the only sample that was truly
brotic with no cancer present in the prediction area. G245-17-
02 in contrast was correctly classied as “tumour”, agreeing
with the same pathologist's assessment of likely adenocarci-
noma in the lower right corner, and the EM prediction was
made on the entire section. Mitigating the effects of out of focus
regions would signicantly improve the accuracy of our method
(see next section for further discussion). The prediction and
clustering algorithm also correctly classied all sections
extracted from patient G209 as “no tumour” despite an incor-
rect nominal assessment; one of the punches (G209-05) was
nominally classied as pancreatic cancer metastasis during
resection, however none of the three sections from this punch
contained any cancerous tissue, as conrmed by both pathol-
ogists' assessment (see Fig. S5 in ESI†).

Sample G278-09-01 was assigned a nominal classication of
“tumour” during excision, however the histopathological
© 2021 The Author(s). Published by the Royal Society of Chemistry
diagnosis was discordant. One assessment queried the presence
of necrosis and possible adenocarcinoma, while the other
classied the section as normal liver, with both accompanied by
a strong caveat that classication was difficult due to the poor
quality of the stained section (The thickness of the samples
contributed to difficulties in validation as standard histopa-
thology samples are usually 5 mm thick rather than 40 mm). This
sample was labelled “necrosis/tumour/no tumour”, and while
this partially matched the predicted cluster of “no tumour”, this
prediction was considered to be only weakly validated. Addi-
tional sections from this punch (G278-09-02 and 03) were also of
poor quality and could not be stained as they dissolved during
post-measurement xation. Their cluster prediction of “no
tumour” did not match the nominal label, but based on the
diagnosis of G278-09-01, we suspect that the prediction may
have been correct; without a histopathological assessment to
conrm this however, these sections were considered to be
incorrectly classied. Improving the validation process would
be a priority of future work on this technique.
Nanoscale Adv., 2021, 3, 6403–6414 | 6411
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Finally, we acknowledge the sample size and computational
complexity of our prediction algorithm as the limitations of this
proof-of-concept study. Sample measurement was curtailed due
to the COVID-19 pandemic, and samples that had been ob-
tained from the biobank could not be measured prior to the
national lockdown in the United Kingdom in March 2020 and
are no longer viable. All data from sample G209-06-03 was
excluded from the training set and served as a validation
sample, and was correctly classied by the algorithm. Enlarging
the sample size to provide additional training data as well as
additional validation samples that have not been previously
measured would form a major component of future work. The
major advantage of an automated prediction and classication
architecture is the potential for virtually instantaneous diag-
noses, provided sufficient computational resources are avail-
able. Our existing algorithm is not instantaneous however, and
the processing time is comparable to the lower bound of typical
IFS analyses (15 minutes). Our algorithm is not optimized or
parallelized, and this would also be a focus of additional
development on this method (a description of the computa-
tional bottlenecks in our prediction algorithm is provided in the
description of Fig. S3 in ESI†).

Conclusions

The workow presented here spatially localised AFM measure-
ments of tissue with unprecedented accuracy, producing a high-
quality training set for a style-transfer architecture to infer
biomechanical information from low-magnication images of
unstained liver tissue. To our knowledge, it is the rst publicly
available dataset of its kind. Fig. 6c shows in particular how the
network is able to predict regions of high EM that correspond to
increased levels of the brous ECM protein collagen as evident
in the stained image, despite an absence of obvious features in
the unstained image. The network was also able to infer regions
of lower EM due to the inuence of highly motile tumour cells,
albeit at a reduced spatial resolution than in previous studies.
The inuence of the structure that gives rise to this heteroge-
neity is still apparent in the predicted sample-wide distribu-
tions, and extracted parameters quantifying the shape of these
distributions were clustered to classify the underlying tissue
pathology with comparable accuracy to standard IFS.54 The
prediction architecture presented here has the potential to
bypass the time-consuming staining and assessment procedure
that has limited the use of IFS in certain procedures despite its
signicant clinical benets. It also replaces the subjective
assessment of high-resolution colour images with objective
analysis of biomechanical data, extracting signatures of
cancerous progression in tissue that are well supported in the
literature. The required imaging modality (brighteld micros-
copy) is fast, label-free, inexpensive and familiar to clinicians.

While our results agree with previously reported values for
liver tissue,32,37,50–53 the network inference and clustering
prediction could be ne-tuned further with measurement of
additional samples. The difficulty in obtaining well-aligned
and high-quality images of post hoc stained samples for vali-
dation is clear from the samples shown in Fig. 5d and f, and
6412 | Nanoscale Adv., 2021, 3, 6403–6414
future work would incorporate the imaging methods
described previously to generate pseudo-H&E stained images
for more reliable conrmation of pathology, as they are well-
suited to thick tissue and are non-destructive.14–16 Novel
wideeld imaging methods with large elds of view and
depths of eld would enable a whole-sample image to be
captured in a single exposure, and increased depth of eld
would rectify the issue seen with one sample where some of
the tissue was out of focus, affecting the accuracy of EM
inference.56–58 Due to the network architecture requiring
overlapping input patches to generate a contiguous whole-
sample EM map, the prediction process is time and memory-
intensive, and increasing the computational efficiency of our
implementation will form a signicant focus of future work.
Additional imaging modalities could also be introduced
during the AFM measurement workow such as phase
contrast or autouorescence, which would provide more
information to the network during training. Acquiring addi-
tional samples and enlarging the training set would only
improve the quality of the EM prediction and clustering
algorithm, and we expect it would generalize well to other
tissue types that also exhibit these nanomechanical signatures
of tumour progression.
Data availability
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an MIT open source license.
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