1. Introduction

A clean environment is highly significant for healthy living and sustaining life on earth. As a whole, all living creatures are reliant on the environment for food, air, water, and many other requirements. Consequently, it is significant that each individual must contribute to save and protect the environment from various pollutants. Very important assets for life like water and air are under continuous threat from various organic pollutants and toxic chemicals generated from the chemical, agricultural, food and textile industries that act as poisons.¹,²

Carcinogenic dyes present in water restrict the path of sunrays and obstruct them from entering the aqueous system. This results in a reduced rate of photosynthesis and damage to aquatic animals.³ In addition to the impairment of body organs, dyes also affect public health by accumulation in living beings. Nitrophenol compounds are widely used in the synthesis of agrochemicals, fungicides and rubber. These are considered to be persistent pollutants and adversely affect the functioning of various body organs. An eco-friendly approach must be planned to carry out degradation reactions more precisely and efficiently for elimination of these toxic chemicals from waste water. Previously used conventional methods such as biological degradation, membrane filtration, chemical oxidation, and plasma ozonization have not been proved to be appropriate due to their complexity, low efficiency, time consuming mechanisms, disposal problems and being uneconomical.⁴,⁵

Among all the natural energy resources, solar energy is considered to be the most efficient, easily available and renewable energy source on earth. In the whole solar spectrum, 43% energy is provided by visible light whereas UV region contributes only 4% of energy.⁶,⁷ In this manner, improvement of effective photocatalysts, especially noticeable light responsive systems, is fundamental for the proficient usage of sunlight-based energy in photocatalysis. The general mechanism of photocatalysis involves the generation of activated electron–hole pairs in the valence band of semiconductor, followed by electron transfer from the valence band to the conduction band in the presence of light energy.⁸ These charged species play a major role in photocatalysis by providing surface...
for adsorption of species, and generate superoxide and hydroxide radicals which further participate in oxidation-reduction degradation reactions.

In past years, removal of pollutants by the photocatalytic process has become a matter of great interest. Until now, a number of semiconductor photocatalysts have been fabricated to remove toxic chemicals from the environment. TiO₂, ZnO, CuO, SnO₂, ZnS, CdS, BiVO₄, and g-C₃N₄ are considered to be the most common semiconductors utilised for light energy mediated catalytic reactions.⁷⁻¹² Out of all the semiconductor photocatalyst materials, BiVO₄ has gained maximum attraction because of its excellent photocatalytic activity in visible light region, low toxicity and high stability.¹³ BiVO₄ has a band gap of 2.44 eV that corresponds to λmax value between 300 and 400 nm. Its photocatalytic behavior promotes removal of toxic dyes, pesticides, disintegration of pollutants and production of hydrogen gas by splitting of water. One major limitation concerning its efficiency was a high rate of recombination of electron–hole pairs which retards its capability. This limitation was overcome by modifying the structure of BiVO₄ by doping with metals and non-metals or coupling with other semiconductors. With these efforts, the structure and morphology of BiVO₄ were tuned for its utilization as a photocatalyst in the presence of visible light. To date, a number of BiVO₄ based hybrid composites have been manufactured which exhibited higher photocatalytic activity towards photo-electrochemical reactions, dye degradation, mineralization of pesticides and splitting of water as compared to that of pure BiVO₄ semiconductor.¹⁴⁻²¹

In the present investigation, a sunlight activated heterojunction, MnV₂O₆/BiVO₄, was synthesized by a one pot hydrothermal method. The p-type MnV₂O₆ photocatalyst comprises narrow band gap energy (~1.6 eV) and exhibits high catalytic activity towards redox reactions involving splitting of water into hydrogen and oxygen, elimination of harmful pesticides, and degradation of toxic organic dyes under visible radiation.²²⁻²⁴ In addition to this, MnV₂O₆ also acts as an excellent anodic material in lithium-ion batteries, attributed to its continuous recycling activity.²⁵ The prepared MnV₂O₆/BiVO₄ heterojunction was utilized as a photocatalyst for degrading MB and RhB dyes, and reducing 4-NP in the presence of solar radiation. Photocatalytic experiments under same conditions were performed for sole BiVO₄ and MnV₂O₆ also.

2. Experimental

2.1 Materials and methods

Bi(NO₃)₃·5H₂O, NH₄VO₃, Mn(CH₃COO)₂·4H₂O, NaBH₄, polyvinylpyrrolidone (PVP), 4-nitrophenol, and MB and RhB dyes were purchased from LOBA Chemie Pvt Ltd India.

2.1.1 Synthesis of BiVO₄. Synthesis of pure BiVO₄ was carried out by adding 0.2425 g of Bi(NO₃)₃·5H₂O in 30 mL of distilled water while maintaining the temperature at 50 °C. In another beaker, 10 mL solution was made by adding 0.0585 g of NH₄VO₃. Then, slow mixing of the above solutions was carried out with continuous magnetic stirring for 30 min (pH = 2), followed by addition of PVP surfactant. The obtained mixture was transferred to a steel autoclave that was heated in an oven maintained at 180 °C. The obtained yellow-colored precipitates were thoroughly rinsed with distilled water and dried in an oven at 100 °C for 2 h (sample S-I).

2.1.2 Synthesis of MnV₂O₆. In this hydrothermal synthesis, a solution of 0.306 g of Mn(CH₃COO)₂·4H₂O in 50 mL distilled water was prepared and stirred for 30 min. To this solution, 0.29 g of NH₄VO₃ was added and stirring was continued. Then, PVP was added to prevent agglomeration of particles. The obtained blend was transferred to an autoclave and heated at 80–180 °C in an oven. The precipitates (brown colored) obtained were washed with distilled water and dried at 50 °C for 5 h (sample S-II).

2.1.3 Fabrication of MnV₂O₆/BiVO₄ heterojunction. A one pot hydrothermal method was utilized to prepare the MnV₂O₆/BiVO₄ heterojunction with different molar ratios. A solution of Bi(NO₃)₃·5H₂O in dilute HNO₃ was prepared and magnetically stirred till a clear suspension was obtained. Then, Mn(CH₃COO)₂·4H₂O was added and mixed thoroughly with magnetic stirring. An aqueous solution of NH₄VO₃ (50 mL) was prepared separately and added drop wise to the above mixture with continuous stirring. PVP was also added in the mixture to synthesize the composite with an optimum particle size and structure. After 2 h of continuous stirring, this mixture was transferred to an autoclave and placed overnight in an oven at 180 °C. The obtained precipitates were washed thoroughly with double distilled water (DDW) and dried in an oven for 5 h at 100–120 °C. By following the same procedure, composites with different molar ratios of MnV₂O₆/BiVO₄ i.e., 0.25 : 1.00, 0.50 : 1.00, 0.75 : 1.00, and 1.00 : 1.00 were synthesized by varying the amounts of reagents and labeled as S-III, S-IV, S-V and S-VI, respectively (Scheme 1).

2.1.4 Characterization of MnV₂O₆/BiVO₄ heterojunction. A Bruker Alpha-T spectrometer was employed to obtain FT-IR spectra of the synthesized heterojunction samples. UV-visible spectra of the fabricated heterojunction and organic dyes were obtained on a Shimadzu/UV-2600 UV-vis spectrophotometer at high resolution in a scan range of 200–800 nm using a transparent quartz cuvette of 1 cm width. An X-ray diffractometer was used to obtain XRD powder patterns of pure as well as doped samples. Topographic details of the heterojunction samples were visualized by using a FESEM, Carl Zeiss Supra 55 equipped with an EDS to perform elemental and chemical analysis of the samples. Highly magnified TEM images of the internal structure and size of particles were obtained using a JEOL JEM 2100 PLUS. The photoluminescence (PL) spectra were obtained at room temperature using a spectrofluorometer (HORIBA Fluoromax plus CP-0111).

2.1.5 Photocatalysis experiments. The photocatalytic performance of the synthesized BiVO₄, MnV₂O₆ and MnV₂O₆/BiVO₄ heterojunction samples with different molar ratios was estimated by degradation of organic dyes MB and RhB in natural sunlight. Day light from 9:30 am to 2:30 pm was utilized to perform the photocatalytic experiments. In this typical reaction, 50 mL solution of the organic dye MB (25 mg L⁻¹) was prepared in DDW with continuous magnetic stirring for 20 min. To this solution, 50 mg of the synthesized catalyst was added. Then, the solution was placed in natural sunlight. At standard
time spans, 5 mL of this solution was taken out, filtered to eliminate the catalyst and then centrifuged for 10 min. The progress of degradation was monitored by determining the absorbance of this centrifuged solution. The photocatalytic efficiency of pure BiVO₄ and pure MnV₂O₆ was compared by degrading MB and RhB dyes separately, under identical reaction conditions.

2.1.6 Photocatalytic reduction test of 4-nitrophenol. The catalytic performance of MnV₂O₆/BiVO₄ heterojunction for reduction was investigated using 4-nitrophenol (4-NP). In this process, a freshly prepared solution of NaBH₄ (1.0 mM) in distilled water was thoroughly mixed with a 50 mL solution of 4-NP (0.2 mM) in a beaker, and stirred on a magnetic stirrer. The colour of the solution instantly transformed to colorless from yellow. Subsequently, 15 mg of the heterojunction was put into the above solution. The reaction progress at room temperature was monitored by using a UV-visible spectrophotometer after equal gaps of time.

3. Results and discussion

The as-synthesized MnV₂O₆/BiVO₄ heterojunction was characterized using various sophisticated techniques like UV, FTIR, XRD, FESEM, HRTEM and XPS. UV-vis diffuse reflectance spectroscopy (DRS) of S-I to S-VI samples was performed and the results are displayed in Fig. S1 (ESI†). The band gap (E₉) values of BiVO₄ and MnV₂O₆ were found to be 2.5 eV & 1.60 eV, respectively, which agree with previous findings.²²,²⁶ The band gap of MnV₂O₆/BiVO₄ heterojunction samples i.e. S-III to S-VI was found to be 2.2, 2.1, 1.95 and 1.90 eV, respectively, signifying that the incorporation of MnV₂O₆ diminishes the band gap of BiVO₄. Moreover, this diminution affirms electronic coupling between MnV₂O₆ and BiVO₄.

FTIR spectra of pure BiVO₄, MnV₂O₆ and MnV₂O₆/BiVO₄ heterojunctions with varied molar ratios are shown in Fig. 1. The band in the 600–800 cm⁻¹ region was assigned to symmetric and asymmetric vibrations of the VO₄³⁻ group. The peak at 750 cm⁻¹ is attributed to the vibrations of Bi-V bonds, and stretching vibration of the V–O double bond is present at 1366 cm⁻¹.²⁷ The sharp peaks in 600–1000 cm⁻¹ region for MnV₂O₆ are attributed to the vibrations of V–O–V bonds. Short V–O bonds gave an absorption band at 903 cm⁻¹ and that of longer V–O bonds appeared at 815 cm⁻¹. In the FTIR spectra of MnV₂O₆/BiVO₄ heterojunction samples with different molar ratios, some additional peaks were observed as the amount of MnV₂O₆ increased. This observation confirmed that no structural change happened in the synthesized heterojunction composite. Sharp peaks in the region 1500–1550 cm⁻¹ were
observed for all composites and correspond to interactions of two metals. A clear sharp band at 1700 cm\(^{-1}\) could be attributed to the metal–oxygen stretching vibrations. The O–H stretching vibrations of lattice water molecules were observed at 3750 cm\(^{-1}\). Change in the peak intensity of BiVO\(_4\) was noticed which might be due to the interactions of both the semiconductors through the formed interface. IR data of composites with different molar ratios confirmed that both BiVO\(_4\) and MnV\(_2\)O\(_6\) semiconductors coexist in the composite.

The XRD patterns of synthesized BiVO\(_4\), MnV\(_2\)O\(_6\) and MnV\(_2\)O\(_6\)/BiVO\(_4\) heterojunctions are shown in Fig. 2. It can be noticed from the XRD pattern of BiVO\(_4\) heterojunction (Fig. 2S-II) that the diffraction peaks can be entirely indexed to a monoclinic phase (JCPDS card-96-901-3438). The corresponding peaks are displayed in the XRD spectrum of BiVO\(_4\) at 2\(\theta\) = 18.7 (4.74 Å), 28.9 (3.07 Å), 30.7 (2.92 Å), 34.6 (2.59 Å), 35.3 (2.54 Å), 39.7 (2.26 Å), 42.3 (2.13 Å), 46.7 (1.94 Å), 50.3 (1.81 Å), 53.5 (1.71 Å), 58.7 (1.54 Å) and 59.6 (2.1 Å) with indices (110), (−221), (040), (200), (−202), (−311), (150), (240), (−402), (310), (−421) and (042), respectively. The XRD pattern of MnV\(_2\)O\(_6\) semiconductor (Fig. 2S-II) clearly shows that the diffraction peaks match the provided data remarkably well (JCPDS card-96-711-9177), and no phase impurity was observed. The corresponding peaks are exhibited in the XRD spectra of MnV\(_2\)O\(_6\) at 2\(\theta\) = 9.5 (9.25 Å), 11.5 (7.65 Å), 17.5 (5.07 Å), 19.2 (3.45 Å), 25.8 (3.34 Å), 27.1 (3.29 Å), 28.3 (3.16 Å), 28.9 (2.13 Å), 31.5 (2.83 Å), 33.4 (2.67 Å), 35.0 (2.56 Å), 52.1 (1.75 Å) and 53.4 (1.71 Å) with indices (001), (100), (101), (002), (102), (011), (201), (003), (−112), (−302), (103), (401) and (−121), respectively. When a small amount of MnV\(_2\)O\(_6\) was introduced, no diffraction peaks of MnV\(_2\)O\(_6\) were observed in the XRD pattern of MnV\(_2\)O\(_6\)/BiVO\(_4\) heterojunction (Fig. 2S-II). With an increase of MnV\(_2\)O\(_6\) content, S-III, S-IV, S-V and S-VI displayed diffraction peaks of both BiVO\(_4\) and MnV\(_2\)O\(_6\), demonstrating the effective fabrication of MnV\(_2\)O\(_6\)/BiVO\(_4\) heterojunction. In order to find typical crystallite size of the samples, Debye–Scherer equation was employed.\(^{28,29}\) The crystallite sizes were observed as 32.7 (S-I), 34.01 (S-II), 31.35 (S-III), 25.49 (S-IV), 40.6 (S-V) and 40.1 nm (S-VI).

FESEM was performed to explore the morphology of synthesized heterojunction (Fig. 3a and b). The MnV\(_2\)O\(_6\)/BiVO\(_4\) heterojunction demonstrated a belt-like morphology with a length of 8–10 \(\mu\)m (Fig. 3a). Fig. 3b illustrates that the MnV\(_2\)O\(_6\)/BiVO\(_4\) nano-belts were homogeneously mixed to form an interface between the two materials \(i.e.,\) MnV\(_2\)O\(_6\) and BiVO\(_4\), and the thickness of nanobelts was tens of nanometers. The FESEM micrograph of pure BiVO\(_4\) nanoparticles displayed a rod like structure with a high degree of homogeneity. Pure MnV\(_2\)O\(_6\) nanoparticles have a globular structure with agglomeration (Fig. S2†). The morphology of the heterojunction was further explored by HRTEM (Fig. 3c and d). It was revealed that MnV\(_2\)O\(_6\) particles were homogeneously mixed with BiVO\(_4\) nanoparticles, and particle size of the resulting composite material was in 35–45 nm range which is comparable to that obtained from the XRD results. The corresponding SAED pattern showed clear ring patterns confirming the formation of polycrystalline MnV\(_2\)O\(_6\)/BiVO\(_4\) heterojunction.

The chemical states of as-synthesized MnV\(_2\)O\(_6\)/BiVO\(_4\) heterojunction were examined by XPS. Elements C, Mn, V, O and Bi were confirmed by the survey scan of XPS spectra (Fig. 4a). The high-resolution C 1s spectrum of MnV\(_2\)O\(_6\)/BiVO\(_4\) heterojunction (Fig. 4b) may be deconvoluted into two dissimilar peaks at 286.8 eV and 284.5 eV which are attributed to epoxide C (O–C–O) and C=C sp\(^2\) hybridized material, respectively.\(^{39}\) Peaks at 529.5 and 530.78 eV in the O 1s spectrum (Fig. 4c) are ascribed to the
516.7 eV relate to V, 2p1/2 and V, 2p3/2 which originate from the V 2p orbital (Fig. 4d), binding energy peaks at 524.1 eV and V5+.

O were conalso examined by XPS. Elements C, Mn, V and O and C, V, Bi and their wavelength values using the PL technique, and based on intensity of these emissions can be recorded corresponding to band gap energy values of the semiconductor. The to the ground state, various emissions are generated, depending upon band gap energy values of the semiconductor. The intensity of these emissions can be recorded corresponding to their wavelength values using the PL technique, and based on their intensity, the rate of recombination of active charged species can be detected. The PL spectra of pure BiVO4, pure MnV2O6, and BiVO4/MnV2O6 heterojunction are shown in Fig. S4.† For the pure BiVO4 semiconductor material, excitation occurred at 325 nm wavelength and corresponding to this excited energy, a broad band in the region of 550–650 nm was produced in the emission spectrum. Pure MnV2O6 showed excitation at 450 nm and delivered a highly intense peak at 562 nm. The intensity of these pure compounds was much higher as compared to that of the hybrid BiVO4/MnV2O6 heterojunction photocatalyst which confirmed successful separation of active charged species (electron–hole pairs) and reduced recombination rate which favored high photocatalytic activity of the heterojunction.

3.1 Photocatalytic reduction of 4-nitrophenol over MnV2O6/BiVO4 heterojunction

The waste water disposed off by industries probably contains hazardous nitrophenols and their derivatives. The main sources of nitrophenols and their derivatives are insecticide, synthetic dye and herbicide manufacturing industries.36 Hence, the elimination of these hazardous chemicals from industrial effluents is vital before it is discharged into water bodies.

However, it is hard to remove these compounds by regular microbial degradation due to their natural and artificial stability.37 Thus, it is essential to build up environment responsive strategies to remove such contaminants from waste effluents.38 UV-visible spectra during the reduction of 4-nitrophenol (4-NP) by NaBH4 using MnV2O6/BiVO4 heterojunction as a catalyst are given in Fig. 6. The absorption peak of the aqueous solution of yellow coloured 4-NP was observed at 317 nm. When an aqueous solution of NaBH4 was added, a red-shift was noticed at ~400 nm owing to the generation of nitrophenolate anion (Fig. S5†). The absorption peak at 400 nm remained invariable for a prolonged period, suggesting that 4-nitrophenolate ions could not be reduced by sole NaBH4 in the absence of as-synthesized catalyst. Pure MnV2O6 and BiVO4 nanoparticles illustrated little activity and hence, both of them can’t be considered worthwhile catalysts for 4-NP reduction. However, 4-NP was effortlessly reduced using both, NaBH4 and MnV2O6/BiVO4 heterojunction. The absorption peak corresponding to 4-NP at 400 nm progressively diminished and almost vanished after 40 min (Fig. 6a). Meanwhile, another absorption peak at ~297 nm corresponding to 4-aminophenol (4-AP) with increasing intensity emerged. This outcome confirmed the comprehensive transformation of 4-NP to 4-AP without the production of intermediates as established in earlier reports also.39 Absorbance and concentration of the solution are proportionate to each other and hence, absorbance at 0 (t = 0) corresponds to the initial concentration, and absorbance at t corresponds to the concentration at time t (Ct). The rate constant (k) was evaluated from the plot of ln(Ct/C0) vs. time (min) and its values were determined to be 0.0118, 0.0120, 0.008, 0.030, 0.12 and 0.045 min−1 for S-I, II, III, IV, V and VI, respectively for reduction of 4-NP (Fig. 6b).
3.2 Photocatalysis of dyes over MnV2O6/BiVO4 heterojunction

The photocatalytic activities of pure MnV2O6 and BiVO4 semiconductors as well as those of MnV2O6/BiVO4 heterojunctions were assessed by degrading MB and RhB dyes in solar light. The photocatalytic performance of MnV2O6/BiVO4 heterojunctions was optimized w.r.t. solution pH, varying photocatalyst dosage and lapse of time, to achieve maximum degradation.

The degradation results were recorded over a wide range of photocatalyst amounts and pH. It was noticed that dye degradation performance varied as a function of the amount of MnV2O6/BiVO4 heterojunction photocatalyst. As expected, the amount of MnV2O6/BiVO4 heterojunction photocatalyst for the degradation of both MB and RhB dyes followed the order: 50 > 40 > 30 and 20 mg. The increase in photocatalyst amount from 20 mg to 50 mg leads to an increase in dye degradation from 25

Fig. 4 XPS spectra of MnV2O6/BiVO4 heterojunction (S-V).
to 98.1% and 23 to 96.2%, respectively, for MB and RhB dyes. Evidently, the enhancement of degradation proficiency with an increase in the amount of heterojunction is primarily attributed to the increased number of active sites on the surface of MnV2O6/BiVO4 photocatalyst for UV light absorption.

The pH of solution is another most essential factor in photocatalytic degradation. Fig. S6† presents the effect of pH (range 3–10) on the degradation of both the dyes over MnV2O6/BiVO4 heterojunction photocatalyst. It was observed that both the MB and RhB dyes degraded to a maximum extent at pH 7 compared to lower or higher pH values. This behavior might be due to the formation of Fenton’s reagent at a lower pH and at a higher pH, MnV2O6/BiVO4 photocatalyst could leach into solution and form chemical sludge.49 Therefore, it was found that the as-synthesized photocatalyst was more efficient at pH 7.

The photocatalytic degradation of aqueous solutions of MB and RhB dyes over MnV2O6/BiVO4 heterojunction photocatalyst as a function of time was examined by UV-visible spectroscopy (Fig. S7†). A drastic decrease in absorption peak intensity with time was noticed, and the peak nearly disappeared within 6 and 35 min, respectively, for MB and RhB dyes.

It is clear from Fig. 7a that pure semiconductors BiVO4 (S-I) and MnV2O6 (S-II), and heterojunction photocatalysts, S-III, IV, V & VI have degraded 56, 45, 70, 86, 98 & 98.5% of MB dye after 6 min of sunlight irradiation. To endorse the self-photosensitization methodology, a blank experiment was likewise accomplished in the absence of catalyst under identical experimental conditions, and negligible degradation was noticed. When the catalyst was added to the dye solution, significant dye degradation was observed, indicating that the photocatalytic measure is largely responsible for dye degradation. To further investigate the photocatalytic efficiency of MnV2O6/BiVO4 heterojunction composite, the COD experiment was performed. The calculated COD value for MB and RhB solutions decreased from 160 to 40 mg L$^{-1}$ and 115 to 37 mg L$^{-1}$, respectively. These results showed that the mineralization yield of composite reached a value of 75% and 68%, respectively, for MB and RhB dyes, after irradiation with direct sunlight.

In addition, kinetic models were employed to comprehend the photocatalytic degradation process of MB dye. Similarly, a comparable performance for degradation of RhB dye under solar light in the presence of MnV2O6/BiVO4 heterojunction photocatalyst was observed (Fig. 7b). It was demonstrated from Fig. 7b that the intensity of absorption peak diminished appreciably with the passage of time, signifying the efficient disintegration of RhB dye using the MnV2O6/BiVO4 heterojunction photocatalyst. The debasement productivity of RhB dye over S-I, II, III, IV, V & VI was determined to be 47, 45, 58.7, 96 and 96.1%, respectively, after 35 min of sunlight irradiation.

Fig. 5 N$_2$ adsorption–desorption isotherm curves of MnV2O$_6$/BiVO$_4$ heterojunction (S-V); inset: pore size distributions.

Fig. 6 (a) Reduction of 4-nitrophenol with NaBH$_4$ over MnV$_2$O$_6$/BiVO$_4$ heterojunction shown by changes in UV-vis spectra; (b) graph of ln(C_0/C_t) vs. time.
In the heterogenous photocatalytic degradation process of organic pollutants, various active species comprising superoxide (‘O2–’) anion radicals, hydroxide (‘OH) radicals, and photo-generated electrons (e–) and holes (h+) are created under appropriate light irradiation.41 To figure out the active species that assumes a significant role in dye photodegradation utilizing Mn\textsubscript{V}\textsubscript{2}O\textsubscript{6}/Bi\textsubscript{V}O\textsubscript{4} heterojunction on irradiation by sunlight, different types of examinations on extinguishing active species were carried out by addition of separate scavengers in the reaction mixture. For this purpose, isopropyl alcohol (IPA), potassium iodide (KI) and benzoquinone (BQ) were employed for scavenging ‘OH, h+ and O\textsubscript{2}/C\textsubscript{0} radicals, respectively. Due to extinguishing of active species, photocatalytic response is little restrained and prompts modest degradation of both the dyes. The degree of decline brought about by scavengers in degradation demonstrated the role of competing responsive species.

Fig. 7(a) and (b) illustrate that photodegradation of both the dyes over Mn\textsubscript{V}2O\textsubscript{6}/Bi\textsubscript{V}O\textsubscript{4} heterojunction was considerably influenced on addition of scavengers. The photodegradation of dyes was significantly suppressed on addition of BQ (‘O\textsubscript{2}–’ scavenger) which indicated a crucial role of ‘O\textsubscript{2}–’ in the photodegradation procedure. The photodegradation activity of Mn\textsubscript{V}2O\textsubscript{6}/Bi\textsubscript{V}O\textsubscript{4} only marginally decreased on introducing IPA and KI which suggested that both ‘OH and h+ have a minor but synergistic role in the degradation reaction.36,42

3.3 Plausible mechanism of photodegradation

In the light of results obtained, a tentative mechanism has been suggested to clarify the improved photocatalytic activity of Mn\textsubscript{V}2O\textsubscript{6}/Bi\textsubscript{V}O\textsubscript{4} heterojunctions (Fig. 8). To perceive the band positions of Mn\textsubscript{V}2O\textsubscript{6}/Bi\textsubscript{V}O\textsubscript{4} heterojunctions, the potentials at conduction band (CB) and valence band (VB) edges of Mn\textsubscript{V}2O\textsubscript{6} & Bi\textsubscript{V}O\textsubscript{4} semiconductors were designed using the equations below:23

\[
E_{CB} = \chi - E^\circ - 0.5E_g
\]

\[
E_{VB} = E_{CB} + E_g
\]

where \(E_{CB}\), \(E_{VB}\), \(E^\circ\) and \(\chi\) denote the potential of CB & VB bands, energy of free electrons vs hydrogen (4.5 eV) and electronegativity (\(\chi\)) of the semiconductor, respectively.41 The following equation was used to get the value of \(\chi\):

\[
\chi = [\chi(A)^a\chi(B)^b]^{1/(a+b)}
\]

The constants \(a\) and \(b\) denote the number of atoms in the compounds,44 \(E_g\), \(\chi\), \(E_{CB}\) and \(E_{VB}\) values for Bi\textsubscript{V}O\textsubscript{4} were found to be 2.50 eV, 6.04 eV, +0.29 and +2.79 eV/NHE, respectively and are comparable to the reported values.45,46 The values of \(E_g\) and \(\chi\) for Mn\textsubscript{V}2O\textsubscript{6} are 1.60 eV and 5.90 eV, respectively. Consequently, \(E_{CB}\) and \(E_{VB}\) values for Mn\textsubscript{V}2O\textsubscript{6} were determined to be +0.60 and +2.20 eV/NHE.

In the light of above discussion and knowledge of active species involved, a potential mechanism for the degradation of organic dyes utilizing Bi\textsubscript{V}O\textsubscript{4}/Mn\textsubscript{V}2O\textsubscript{6} heterojunction has been projected as follows and is displayed in Fig. 8. When sunlight was...
illuminated over BiVO4/MnV2O6 heterojunction, the photons approaching the photocatalyst were hopefully consumed by BiVO4 and MnV2O6 counterparts, prompting the production of a few electron–hole pairs. BiVO4 has a high negative Δ E at band capability in comparison to MnV2O6. As a result, the electrons continue to move towards MnV2O6 from BiVO4 till the Fermi level stability of both is accomplished. Concurrently, OH is generated by oxidation of adsorbed H2O molecules by the photoinduced holes of the VB of MnV2O6 and BiVO4 semiconductors. Simultaneously, the electrons gathered on the exterior of MnV2O6 interact with the adsorbed oxygen to generate \cdotO2$^-$. Hence, the produced active species like OH$^-$, h$^+$ and \cdotO2$^-$ efficiently break down the dye molecules to CO2, H2O and non-toxic inorganic compounds.

Table 1 Comparison of heterojunctions for photocatalytic degradation of organic contaminants

<table>
<thead>
<tr>
<th>Sr. no.</th>
<th>Photocatalyst</th>
<th>Method of synthesis</th>
<th>Catalyst dosage (mg)</th>
<th>Pollutant/conc.</th>
<th>Source of light/time in min</th>
<th>Photocatalytic efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ZnO/Ag2O</td>
<td>Photochemical route</td>
<td>20</td>
<td>MB/3.12 x 10^{-5} mol L^{-1}</td>
<td>250 W UV, 500 W Xe lamp/4</td>
<td>99.5</td>
</tr>
<tr>
<td>2</td>
<td>AgBr/Bi2WO6</td>
<td>Hydrothermal</td>
<td>200</td>
<td>MB/10 mg L^{-1}</td>
<td>500 W Xe lamp/30 min</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>Ag2O/TiO2</td>
<td>Sol gel</td>
<td>10</td>
<td>4-NP/200 ppm</td>
<td>Solar/210 s</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>Ni3P/Ni13P3</td>
<td>Solvothermal</td>
<td>1.5</td>
<td>4-NP/14 mg L^{-1}</td>
<td>Solar/8 min</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>CuO/ZnO</td>
<td>Hydrothermal</td>
<td>30</td>
<td>MB/5 mg L^{-1}</td>
<td>Solar radiation/210 min</td>
<td>97</td>
</tr>
<tr>
<td>6</td>
<td>CuSbSe2/TiO2</td>
<td>Microwave method</td>
<td>100</td>
<td>RbH/MB/100 ppm</td>
<td>Long UV-A radiation/275 min</td>
<td>75.93 (RbH), 42.72 (MB)</td>
</tr>
<tr>
<td>7</td>
<td>CuO/C3N4</td>
<td>Ultrasound</td>
<td>10</td>
<td>4-NP/20 ppm</td>
<td>35 W Xe lamp/100 min</td>
<td>92</td>
</tr>
<tr>
<td>8</td>
<td>Ag-CuO/C3N4</td>
<td>Hydrothermal</td>
<td>100</td>
<td>4-NP/100 ppm</td>
<td>Ni light irradiation/4 min</td>
<td>97.8</td>
</tr>
<tr>
<td>9</td>
<td>CeO2/CuO/ C3N4</td>
<td>Chemical precipitation</td>
<td>125</td>
<td>MB (5 mg L^{-1})/RbH</td>
<td>LED lamp/80 min</td>
<td>58.46 (MB), 84.79 (RbH)</td>
</tr>
<tr>
<td>10</td>
<td>Bi2ZrO4/CdCuS</td>
<td>Hydrothermal</td>
<td>50</td>
<td>RbH/MB & 4-NP</td>
<td>Solar light/200 min</td>
<td>84 (RbH), 90 (MB), 100 (4-NP)</td>
</tr>
<tr>
<td>11</td>
<td>WO3-BPNs</td>
<td>Co-precipitation</td>
<td>50</td>
<td>RbH/10 mg L^{-1}</td>
<td>350 W Xe lamp/120 min</td>
<td>92</td>
</tr>
<tr>
<td>12</td>
<td>MOF/P-TiO2</td>
<td>Self-assembly hydrothermal</td>
<td>10</td>
<td>RbH/10 ppm</td>
<td>300 W Xe/25 min</td>
<td>97.6</td>
</tr>
<tr>
<td>13</td>
<td>MnV2O6/BiVO4</td>
<td>One pot hydrothermal</td>
<td>50</td>
<td>4-NP, MB & RbH (25 mg L^{-1})</td>
<td>Direct sunlight, 35 (4-NP), 6 (MB), 35 RbH</td>
<td>100 (4-NP), 98 (MB), 96 (RbH)</td>
</tr>
</tbody>
</table>

Table 2 Various factors of the kinetic models for degradation of MB dye

<table>
<thead>
<tr>
<th>Semiconductor/heterojunction</th>
<th>First order</th>
<th>Second order</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K_1</td>
<td>R^2</td>
</tr>
<tr>
<td>S-I</td>
<td>0.063</td>
<td>0.98</td>
</tr>
<tr>
<td>S-II</td>
<td>0.045</td>
<td>0.98</td>
</tr>
<tr>
<td>S-III</td>
<td>0.096</td>
<td>0.98</td>
</tr>
<tr>
<td>S-IV</td>
<td>0.183</td>
<td>0.99</td>
</tr>
<tr>
<td>S-V</td>
<td>0.283</td>
<td>0.98</td>
</tr>
<tr>
<td>S-VI</td>
<td>0.374</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Fig. 9 Graph of (a) pseudo first and (b) second order kinetics models for degradation of MB dye over MnV2O6/BiVO4 heterojunction.
products. A comparison of photocatalytic efficiency of some heterojunctions for degradation of organic contaminants is presented in Table 1.

3.4 Photocatalytic degradation kinetics

Furthermore, pseudo first and second order models were used to explore the kinetics of dye degradation. The pseudo first order rate equation of Langmuir is given as: \(\log(q_e - q_t) = \log q_e - k_1t \), where \(q_e \) and \(q_t \) denote the concentration of dye adsorbed at equilibrium and at any time \(t \), and the first order rate constant is represented by \(K_1 \). The plot of \(\log(q_e - q_t) \) vs. \(t \) for pseudo first order kinetics of MB dye is shown in Fig. 9a. The calculated values of \(K_1 \) and \(R^2 \) are given in Table 2.

The pseudo-second order rate equation was also applied to MB dye and is represented as: \(t/q_t = 1/K_2(q_e)^2 + t/q_e \), where \(K_2 \) is the second order rate constant. Fig. 9b demonstrates the plot of \((t/q_t) \) vs. \(t \) for pseudo second order kinetics of MB dye and \(K_2 \) and \(R^2 \) values are given in Table 2.

A similar process was established for rhodamine B (RhB) for thorough comparison of kinetics. Fig. 10(a and b) presents both the kinetic models for the degradation of RhB dye. The calculated \(K_1, K_2 \) and \(R^2 \) values for RhB dye are given in Table 3. Furthermore, the model’s applicability is examined using the \(R^2 \) values of all photocatalyst samples.

Interestingly, the results of kinetic models for the dyes are different. The \(R^2 \) value for MB dye varies from 0.97 to 0.99, and 0.86 to 0.99 for pseudo first and second order kinetic models,
respectively. For RhB dye, \(R^2\) varies from 0.91 to 0.99 and 0.96 to 0.99 for first and second order kinetic models, respectively. As a result, the data indicate that photocatalytic degradation of MB dye used a pseudo-first order process, whereas RhB dye used a pseudo-second order mechanism.

The cycling tests were performed to check the stability and reusability of MnV2O6/BiVO4 heterojunction (S-V) for photocatalytic degradation of MB and RhB dyes in solar light. The activity of the heterojunction was retained to a significant extent even after four consecutive cycles (Fig. 11a). The crystallinity and crystal structure of the photocatalyst were retained after four consecutive cyclic runs which is supported by the XRD pattern (Fig. 11b). The absence of leaching on the exterior throughout the photocatalytic response might be responsible for the insignificant drop in photocatalytic execution. These results indicate equitable stability and reusability of the synthesized heterojunction with extensive activity.

4. Conclusions

MnV2O6/BiVO4 heterojunction samples were prepared employing a hydrothermal technique. Among the synthesized samples, MnV2O6/BiVO4 heterojunction sample (S-V) with a ratio of 0.75 : 1.00 (MnV2O6 : BiVO4) showed the best performance under direct sunlight exposure for MB and RhB dye degradation. The active species playing the most significant role in dye photodegradation with MnV2O6/BiVO4 heterojunction was determined by employing isopropyl alcohol (IPA), potassium iodide (KI) and benzoquinone (BQ) as scavengers for ‘OH, h+ and ‘O2− radicals, respectively. The results revealed that photodegradation of dyes was significantly suppressed with BQ suggesting that ‘O2− played a key role in the photocatalytic degradation process. Furthermore, MnV2O6/BiVO4 heterojunction also successfully reduced 4-NP into 4-AP in a time span of 40 min without the production of any intermediates. This study provides an easy and speedy process for the degradation of toxic contaminants in waste water using direct sunlight.

Conflicts of interest

There are no conflicts to declare.

References

38 M. Nasrollahzadeh, S. M. Sajadi, A. R. Vartooni, M. Alizadeh and M. Bagherzadeh, Green synthesis of the Pd nanoparticles supported on reduced graphene oxide using barberry fruit extract and its application as a recyclable and heterogeneous catalyst for the reduction of nitroarenes, *J. Colloid Interface Sci.*, 2016, 466, 360–368.

47 S. Ma, J. Xue, Y. Zhou and Z. Zhang, Photochemical synthesis of ZnO/Ag₂O heterostructures with enhanced ultraviolet and visible photocatalytic activity, *J. Mater. Chem. A*, 2014, 2, 7272.

48 D. Wang, L. Guo, Y. Zhen, L. Yue, G. Xue and F. Fu, AgBr quantum dots decorated mesoporous Bi₅W₉O₃₆ architectures with enhanced photocatalytic activities for methylene blue, *J. Mater. Chem. A*, 2014, 2, 11716–11727.

49 O. A. Zelekew and D. H. Kuo, A two-oxide nanodiode system made of double-layered p-type Ag₂O@n-type TiO₂ for rapid reduction of 4-nitrophenol, *Phys. Chem. Chem. Phys.*, 2016, 18, 4405.

53 A. Verma, D. P. Jaihind and Y. P. Fu, Photocatalytic 4-nitrophenol degradation and oxygen evolution reaction in CuO@g-C₃N₄ composites prepared by deep eutectic solvent assisted chlorine Doping, *Dalton Trans.*, 2019, 48, 8594–8610.

54 A. Verma, S. Kumar, W. K. Chang and Y. P. Fu, Bi-functional Ag-CuₓO@g-C₃N₄ hybrid catalysts for the reduction of 4-nitrophenol and the electrochemical detection of dopamine, *Dalton Trans.*, 2020, 49, 625–637.

57 Q. Wang, B. Li, P. Zhang, W. Zhang, X. Hua and X. Li, 2D black phosphorus and tungsten trioxide heterojunction for enhancing photocatalytic performance in visible light, *RSC Adv.*, 2020, 10, 27538.