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A thorough understanding of complex interactions within particulate
systems is a key for knowledge-based formulations. Hansen solubility
parameters (HSP) are widely used to assess the compatibility of the
dispersed phase with the continuous phase. At present, the determi-
nation of HSP is often based on a liquid ranking list obtained by
evaluating a pertinent dispersion parameter using only one pre-
selected characterization method. Furthermore, one cannot rule out
the possibility of subjective judgment especially for liquids for which it
is difficult to decipher the compatibility or underlying interactions. As
a result, the end value of HSP might be of little or no information. To
overcome these issues, we introduce a generalized and technology-
agnostic combinatorics-based procedure. We discuss the principles of
the procedure and the implications of evaluating and reporting
particle HSP values. We demonstrate the procedure by using SiN,
particles synthesized in the gas phase. We leverage the analytical
centrifugation data to evaluate stability trajectories of SiN, dispersions
in various liquids to deduce particle-liquid compatibility.

1. Introduction

The genesis of ink and slurry formulations, constituting func-
tional nano- to micron-scale particles that are dispersed in
solvent(s) along with additives, has mainly been in the empir-
ical domain. Such dispersions are ubiquitous in the production
of electrochemical energy conversion and storage devices, e.g.,
in catalyst layers of fuel cells* and electrolyzers,” electrodes of Li-
ion batteries® etc. To have control over dispersion quality, the
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choice of the right dispersion procedure is indispensable.
Previous studies report significant impact of dispersion
methods on end-product properties.*” For instance, Wang
et al.® systematically studied the effect of mixing methodology
on the fuel cell performance. Pollet and co-workers®** high-
lighted the importance of the most commonly used ultrasound
technique during ink formulation. Understanding the interac-
tions of particles, stabilizing agents,"”” and solvents® which
themselves can act as a ligand and coordinate or interact with
the particle surface™** and how these interactions influence the
function and performance of the end-product has been a central
pursuit for research and industry alike.'® In making any
formulation, several decision steps are required to narrow down
to the best recipe. For instance, (a) which solvent or mixture of
solvents yields desirable dispersion stability, (b) what additives
(e.g., polymeric surfactants or inorganic pigments), impart
stabilizing properties, (c) what solvent or particle concentra-
tions are adequate, (d) what recipes are cost-effective and
environmentally sustainable. To assist in enabling rational
choices for the above-listed decision steps, the use of Hansen
solubility parameters (HSP) is a promising approach. Although
being quite mature for polymers and molecules, HSP in the
context of (nano)particles are clearly less developed. We identify
two reasons. Firstly the general issue of dispersity and hetero-
geneity of the materials where hybrids and composites are
becoming increasingly important and secondly, the handling
issues that complicate the proper execution of experiments.
Both result in a demand for non-subjective decision-making
and well-defined standards and procedures.

1.1 Theory of Hansen solubility parameters (HSP)

With the principle of “like dissolves like”, the HSP method
developed by Charles M. Hansen' provides a quantitative
appraisal of the compatibility of the dispersed phase with the
continuous phase. The reader is referred to extensive prior work
for in-depth theoretical background of the HSP methodology.*®
Briefly, the solubility (or dispersibility) interaction is described
using the dispersion energy (3D), polar-dipolar energy (3P), and
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hydrogen bonding energy (3H), all expressed per molar volume,
in MPa'’. Originally developed to study the extent of the solu-
bility of polymers in various solvents, the method has been
extended to evaluate HSP for solute particles. The three axes,
corresponding to 8D, 3P, and dH, constitute the Hansen space in
which a solvent is represented as a point, and a solute is rep-
resented as a volume, typically as a sphere, known as the
Hansen sphere (see Fig. 1).

Consider a solvent is located at the point (8D,,3P;,8H;), and
the solute is indicated with a sphere of radius R, and center
(3D,,dP,,3H,). Then the interaction between the solvent and
solute is expressed as R, and can be calculated using the
modified distance formula in eqn (1). The parameter RED,
which describes the relative energy difference of the system, can
be evaluated as the ratio of R, and R, as per eqn (2). Solvents
with RED >1 will ideally be located outside the sphere indicating
poor solute-solvent affinity (the red tetrahedron in Fig. 1), and
conversely, solvents with RED <1 will be located inside the
sphere indicating good solute-solvent interaction (the blue
cube in Fig. 1).

R: = 43D, — 3D, + (3P, — 3Py)> + (3H, — 3H))* (1)

R,
RED = 2! )

Using the known solubility parameters of “N” solvents,
a numerical method is applied to find an extremum of an
objective function (or a fitness function) in a three-dimensional
space, which is essentially solving for the coordinates and
radius of the Hansen sphere. For HSP calculations, algorithms
such as Nelder-Mead Simplex,*>*® genetic algorithms,*"**
among others, can be employed for optimization routines as
custom scripts or implemented through widely used software
tools like HSPiP,*"** or Microsoft® Excel sheets.*® Regardless of
the numerical method, a fitness function of the form G(3D, 3P,

Fig. 1 3-Dimensional Hansen space with axes representing three
energy contributions 3D, 8P, and dH. The solute is located at the center
of the sphere of radius Rp, with poor liquid (red tetrahedron) outside
the sphere and good liquid (blue cube) inside the sphere.
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dH, R,) as shown in eqn (3) can be written. Then g; is calculated
depending on the optimization algorithm.>®
1
N N
G(dD, dP, 3H, R)) = Hg[(6D7 dP, d3H, Ry) (3)
i=1

Further, in solving the fitness function, there is a need to
define constraints, e.g., the Hansen sphere radius cannot be
zero. Additionally, a set of solvents should be defined which are
to be encompassed by the Hansen sphere (good solvents as 1),
and to be excluded (poor solvents as 0).

To arrive at the HSP values, the objective of an optimization
routine is (i) to maximize the fitness function (eqn (3)), (ii)
minimize R, (iii) while avoiding both any wrongly included
poor solvents inside the Hansen sphere and (iv) wrongly
excluded good solvents outside the Hansen sphere. The key to
a consistent HSP value is that all these factors are met simul-
taneously. Thus far, we can appreciate the fact that obtaining
a reliable HSP value is sensitive to convergence to an extremum
in a multi-dimensional space. Before continuing the discus-
sions on the nuances of HSP evaluation and the aspects to be
considered, we switch to a brief overview of some representative
particle HSP studies in the literature.

2. HSP for particles

In the context of particle dispersibility, the resulting parameters
can also be referred to as HDP (Hansen dispersibility parame-
ters). While this contentious terminology might be more intu-
itive from the perspective that particles do not dissolve in
solvents, the basis for adopting them is weakly justified.** The
reader is referred to Abbott's work for in-depth discussion and
reasoning behind the adoption of different terminologies.*
Also suggested by Abbott, HSP can be thought of as Hansen
similarity parameters.** Hence, in this communication, we will
refer to the HSP of particles. Furthermore, whenever particles
are discussed, we refer to solvents as liquids.

For evaluation of HSP of particles, they are typically
dispersed in several probe liquids (PLs) of interest, and their
dispersion behavior is characterized. The premise behind it is
that if the particle is well-dispersed in a set of liquids (good
liquids), their HSP values will be closer together. Conversely, the
particle HSP is further away from that of the liquids (poor
liquids) when they do not demonstrate desirable dispersibility.

2.1 Related work

Wieneke et al.”® reported HSP values of TiO, nanoparticles (NPs)
by investigating the dispersion quality using dynamic light
scattering (DLS) and visual inspection. Similar methods were
adopted by Sehlleier et al.* to identify the best suited porogenic
liquid for the synthesis of a silicon/carbon composite material.
Fujiwara et al.?® reported HSP values and dispersibility of copper
particles before and after various surface treatments using DLS.
Choi et al.** studied the dispersibility of ZnO NPs for photo-
voltaic applications using induction-coupled plasma mass
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spectroscopy. However, the role of subjectively scoring some of
the liquids leading to unreliable HSP values has been a topic of
contention.

To alleviate issues of subjectivity, Sif3 et al.*® proposed
a methodology to first rank liquids based on relative sedimen-
tation times (RSTs), and then incrementally classify liquids as
good, referred herein as the successive scoring method. The
work describes the calculation of HSP for a commercial carbon
black (Printex® L, Evonik Industries), using fourteen PLs and
dispersion characterization by means of analytical centrifuga-
tion (AC). Using an intelligently guessed value for integral
extinction (IE), corresponding RSTs were calculated based on
which all liquids were ranked. To start out, HSP was calculated
with the top two liquids with the highest RST, chosen as good,
and the rest chosen as poor. Then the HSP was calculated based
on three liquids scored as good and the rest as poor. This
process was repeated until only one liquid was scored as poor.
As a result, twelve HSP values were obtained. The final reported
HSP was the one where the HSP values plateau, i.e., do not
change upon further addition of good liquids. In subsequent
studies, the described method was applied to other particulate
systems such as ZnO quantum dots* and SiO, particles.”
However, intricacies in choosing an appropriate IE threshold
can impact the ranking order based on RSTs. Indeed, what
stands out in these reports is the endeavor of non-subjective
ranking and the power of AC to study sedimentation behavior
and assess dispersion stability in an accelerated manner.

Recently, Fairhurst et al.®* reported the applicability of the
NMR relaxation technique as an advantageous method to select
suitable liquids for initial wetting and dispersing zinc and
aluminium oxides. Herein, twelve liquids were ranked based on
relaxation numbers (RN), and then HSP was calculated by
incrementally scoring liquids as good. The reported HSP was
the center of the best-fit sphere drawing boundaries between
good and poor liquids.

Some commonalities across the above-discussed methods
are - (i) the reliance on one characterization method only and/
or (ii) reporting a definitive ranking order (or grouping list)
based on an appropriate parameter (e.g., RST or RN). Often,
the information derived from tracking only one parameter
from one type of measurements to decide which liquid is good
and which is poor will be restricted. Perhaps we can only
conclusively deduce about “some” liquids but are required to
classify “all” the liquids as 0 or 1, bringing in subjective
judgment.*® Certainly, another characterization method can
yield another appropriate parameter to rank the liquids. As
a result, the HSP values can arguably change based on the
characterization technique or measured parameter, leaving no
standard methodology to evaluate and report HSP. What lacks
currently is a technology-agnostic framework for evaluating
and reporting HSP for particles that can be generalized and
extended to any measurement platform or ranking procedure.
Noteworthy, such a framework would also provide huge
advantages as different materials might require different
characterization techniques based on their disperse and
physico-chemical properties.
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2.2  What this work is about

Recollecting our discussion on the HSP calculation procedure,
the successive scoring method, ranking liquids as good until
a stable HSP (plateau) is obtained can also be susceptible to
errors due to artefacts in non-convergence of optimization
routines. So far, a systematic understanding of how the opti-
mization surface changes with the addition of each good liquid
is missing. Aspects such as - if the extremum indeed exists or
whether the applied constraints are necessary and/or sufficient
question the reliability of the converged extremum. It is almost
serendipitous that for a particular set of particle systems (e.g.,
Printex® L carbon black) and liquids, a stably converged HSP is
available. In fact, when the said procedure is applied to ZnO
quantum dots,** the authors caution the reader on the calcu-
lated HSP, as many good liquids are wrongly allocated outside
the Hansen sphere. In summary, building a consensus on the
usefulness of the successive scoring method as a generalized
standard approach can be difficult though it is certainly an
important cornerstone in the endeavor of getting rid of too
often prevailing subjectivity.

To this end, this work touches on three main aspects. First,
we describe a new combinatorics-based procedure as a general
framework for HSP calculations in order to embrace the ambi-
guity in evaluating good or poor liquids. Second, we discuss the
nuances of evaluating and reporting particle HSP values and
their ramifications on the quality and reliability of the said
value. Third, we leverage the measurement results from an AC
device and evaluate stability trajectories to deduce liquid
compatibility. To demonstrate and discuss these three aspects,
we investigate the HSP of SiN, NPs as a running case example.
SiN, NPs were chosen as a technically relevant model system
because of their promising use-case in Li-ion batteries to give
improved long-term cyclability and stability.**°

3. Experimental section for case
example
SiN, NPs were prepared by pyrolyzing SiH, in the presence of

NH; in the gas phase (see ESIf methods for details of the
particle synthesis), followed by dispersing the sieved powder

Table 1 List of liquids used to study the dispersion behavior of SiN,
NPs

Liquids Abbreviation
Acetone Ace
Diacetone alcohol DAA
Ethanol EtOH
Ethyl acetate EA
Hexane Hex
2-Propanol IPA
Methanol MeOH
N-Methyl-2-pyrrolidone NMP
Propylene carbonate PC
Tetrahydrofuran THF
Toluene Tol
Water —

© 2021 The Author(s). Published by the Royal Society of Chemistry
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(Mesh-270, 63 pum) into twelve PLs (see Table 1 for the list of
liquids used here) and finally characterized using an AC device
LUMiSizer® (LUM GmbH, Berlin, Germany). The primary
particle size range (30-300 nm)* was large enough that no size-
dependent dispersion effects were observed.*® As-synthesized
particles were “clean” without ligands or other residuals due to
the high reaction temperature (900 °C), however, they might be
slightly oxidized at the surface due to handling at ambient
conditions.** Throughout all experiments, the particles were
dispersed in ultrapure liquids without the addition of ligands/
surfactants. Details on the dispersion preparation and AC
measurements are provided in the supplementary methods. As
explicitly studying the effects of dispersion parameters is out of
the scope of current work, we did not change it throughout this
work. ESI Fig. S11 shows scanning electron microscopy micro-
graphs of the particles in six PLs, namely Ace, DAA, EtOH, NMP,
Tol, and water.

4. Case example using the successive
scoring approach

We first attempt to evaluate HSP using the successive scoring
approach to demonstrate its limitations. The IE plot (ESI
Fig. S2t) exemplifies the first set of intricacies involved in
making an intelligent guess on a threshold IE value. Further, on
incrementally adding good liquids, there is no clear plateau,
and a minimum is achieved when eleven of the twelve liquids
are scored as good (see ESI Fig. S3 and Table S27}). Reporting the
corresponding HSP value can be misleading, to say the least, as
it clearly does not corroborate to available evidence on the
goodness of eleven liquids. ESI Fig. S41 shows photographs of
sample vials of four liquids. It is clear that the dispersions when
using Tol and Hex, are unstable and hence poor. Overall, the
results only reassert the issues, and that the results need to be
considered with care and caution.

5. Our contribution: combinatorics-
based procedure to deal with the
calculation of HSP for any particle
system

5.1 Overview of the procedure

Fig. 2 describes the decision chart for the combinatorics-based
procedure to deal with the calculation of HSP, for any particle
system. Altogether, the process can be summarized in the
following steps -

1. Calculate all possible permutations (Q) for scoring when
starting out an HSP study. This is made under the assumption
that only the total number of PLs is known (=N), and there is no
available information on their affinity towards the particles.

2. Perform measurements and investigative studies to eval-
uate the dispersibility characteristics. This is done to gather
evidence to rank, order and decide whether the liquid is good or
poor. Here, any characterization method can be adopted, even
more than one.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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3. Based on the newly acquired information from Step 2
regarding which PL has targeted dispersibility traits, update the
number of possible permutations (Q) by eliminating redundant
combinations of good or poor PLs.

4. If necessary, repeat Steps 2 and 3 to minimize the possible
permutations Q.

5. Calculate the values for HSP with the remaining number
of PL scoring permutations.

The key aspect here is always to know upfront the maximum
number of combinations in scoring 1 or 0 for the tested liquids.
We now delve into the details of each of the steps mentioned
above.

5.2 Step-by-step description of the combinatorics-based
procedure

In the first step, no characterization studies have been per-
formed to elucidate particle-liquid interactions. Hence, we can
consider that there is absolutely no information on the good-
ness or poorness of the chosen PLs. All possible number of
permutations for scoring N liquids as good (1) or poor (0) can be
given by 2V, But at least two good liquids and one poor liquid
are required for evaluation of HSP. Hence, all scoring combi-
nations which do not fulfil these criteria need to be excluded. As
a result, the maximum number of allowable permutations (Q)
to score liquids, is given by eqn (4).

Qo =2" - - \c-Ac (4)

Here, §C (which is read as N choose 0) is always equal to 1 and
represents the case where all N PLs are scored as poor. Similarly,
NC represents the case where all N PLs are scored as good and is
also equal to 1. And lastly, J'C represents the number of cases
where only one PL is scored as good and is equal to N. Thus, Q,
is nothing else than all possible permutations for HSP evalua-
tion after subtraction of the forbidden cases. To give an idea,
Table 2 lists the number of permutations (Q,) for up to twelve
liquids calculated using eqn (4). A longer list of values can be
accessed in supplementary Table S3.1 For example, if N = 4,
then Qo = 10 scoring permutations are possible, based on which
a set of ten HSP values can be calculated. Similarly, if N = 12 as
in the case of our example, then Q, = 4082 permutations are
possible. Thus, there are 4082 possible HSP values for our case
example when studying SiN,. NPs using twelve liquids. Although
testing a larger number of liquids is certainly preferable, we
want to raise awareness that possible permutations will also be
very large. It should be noted that we do not suggest trying out
all these permutations and calculate all different possible HSP
values. This number should be merely used as a starting point.
Next, we move to Step 2, in which we gather as much
experimental evidence or expert knowledge regarding the dis-
persibility of the prepared samples as possible. This is done to
explore possibilities of determining their goodness or poorness.
Before moving to Step 3 in the following paragraphs, we will see
how the number of possible scoring permutations is reduced
significantly but stepwise with each piece of additional
“knowledge” gained regarding the behavior of the PLs.

Nanoscale Adv., 2021, 3, 4400-4410 | 4403
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START

List down probe liquids (N) to be
studied

Can a different set of
liquids be studied?

Are poor
liquids known?

Yes

Calculate permutations
Qm according to eqn 6

Y

Calculate permutations

Q| according to eqn 5

Yes

No

Can more liquids be
identified as poor or good?

No

Are the no. of
permutations close to or less

than the no. of probe
liquids?

Yes

END
Report calculated HSP, outliers for
all the permutations

Calculate HSP with the remaining permutations

Fig. 2 Decision chart for the combinatorics-based procedure to deal with the calculation of HSP for any particle system.

Now, if there is sufficient reason to believe that some liquids
are poor (=L), then we are left with (N — L) liquids. Hence, the
possible scoring permutations Q; can be calculated using eqn
(5). Here ¥ §C which equals to 1, represents the case where all
remaining (N — L) liquids are scored as poor. And "~ }{C, which
equals to (N — L), represents the cases where only one liquid is
scored as good. These cases do not confer to the aforemen-
tioned criteria, and hence are subtracted, for maximum
possible permutations (2V~).

0/= 2"~ Ve - Ve

(5)

4404 | Nanoscale Adv, 2021, 3, 4400-4410

Again, referring to Table 2, for N = 4, when one of the liquids
is known to be poor, then Q; = 4 scoring permutations are
possible. When two of the four liquids are known to be poor,
then only Q; = 1 permutation is possible. One can easily find
this solitary scoring possibility as {1, 1, 0, 0}. Similarly, for N =
12, Q; is 2036 and 1013 for one and two known poor liquids,
respectively. Here, we can already see how the number of
possible permutations is cut into half with each extra piece of
information that can be added to the poorness of PLs.

Similarly, if there is sufficient evidence to believe that some
liquids are good (=M), then we are left with (N — M) liquids. On

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Possible scoring permutations for HSP evaluation
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Known poor liquids Both good &

Known good liquids (Q,,) (@) poor liquids known (Q;,)
N No information
liquids (Qo) M=1 M=2 L=1 L=2 M=2L=2
3 3 2 1 1 0
4 10 6 3 1 1
5 25 14 7 11 4 2
6 56 30 15 26 11 4
7 119 62 31 57 26 8
8 246 126 63 120 57 16
9 501 254 127 247 120 32
10 1012 510 255 502 247 64
11 2035 1022 511 1013 502 128
12 4082 2046 1023 2036 1013 256

similar lines of eqn (4) and (5), a formula can be easily derived
to calculate all possible scoring permutations Q,,.

N-M N M
2 — v G,

O = N |M>1
m 2N7AM_%1\Ajc_(J)VMc7

M =1 (©)

Table 2 also lists Q,, values for different combinations of N
and M calculated as per eqn (6). For N =4, Q,, = 6 and Q,, = 3
scoring permutations are possible for M = 1 and M = 2 good
liquids, respectively. Coming back to our case example with
twelve PLs, we again see how 4082 permutations are reduced to
2046 when one of the twelve liquids is scored as good, which is
further reduced to 1023 when two of the twelve liquids are
scored as good. Again, scoring certain liquids as poor or good is
the direct outcome of some experimental characterization,
visual inspection or known prior information.

Finally, when we simultaneously know that L and M number
of liquids are poor and good respectively, the resultant scoring
permutations can be evaluated using N — L — M liquids, as
given in eqn (7).

VM >
le = 2N7L7M7NLJMC’ ‘M: 1

NLM

)

Table 2 describes the number of permutations for different
scenarios of known L poor and M good liquids simultaneously.
As an example, for N = 12, there are Qj, = 256 possible
permutations if two of them are known to be poor and good
each. Typically, in the process of rating liquid compatibility, the
extreme case (best and worst) liquids are relatively easy to
identify. Here, we see that by knowing which two liquids are
good and poor can cut down possible permutations by over
90%. At the same time, it is important to pay attention to the
fact that if we score the rest of the eight liquids in any particular
way (e.g., forced ranking order), it is merely going to be one of
256 possibilities.

An advantage of this framework is the possibility of relying
on as much ‘knowledge’ about the dispersions from as many
sources as possible. Outcomes from different measurement
methods, expert knowledge, clear visual inspection results, etc.

© 2021 The Author(s). Published by the Royal Society of Chemistry

- can all be pooled together to clearly ascertain which of the N
liquids are good and/or poor. Hence, in Step 4, basically Steps 2
and 3 can be repeated with the aim to reduce the possible
number of permutations. Here, even though the aim is to
reduce the permutations, it is important to do so in a logical
manner and with sufficient data to back up the conclusive
classification of good or poor. In the case where the remaining
number of permutations is still very large (e.g., 256 permuta-
tions after only knowing two good and two poor, out of twelve
liquids in total), it is okay to then report calculated HSP with
a fewer number of permutations (say ten). The combinations of
scoring 0 or 1 for these ten permutations can be random or
based on clearly theorized assumptions. But in the end, the
reported HSP value must clearly state that only ten out of 256
permutations were considered. This provides the user a clear
indication of the quality and reliability of the reported HSP
values. We identify this aspect to be an important benefit of the
proposed method.

5.3 Brief discussion on implications

Thus far, the discussion of the combinatorics approach leads us
to identify its three important advantages. First, “sufficient”
evidence to make an unequivocal decision of good and poor is
not always available. The beauty of the method is that, when we
cannot bucketize the liquids as 1 or 0, then we are made aware
of exactly how many possible scoring permutations and thus
how much uncertainty needs to be considered - in a determin-
istic way. Second, in considering these different combinations
we automatically embrace the variation in HSP values. We are
not left to chance that the numerical method will yield pla-
teauing HSP values or not. On the contrary, we get an indication
of the reliability of the obtained HSP value. Third, unlike other
published literature, this approach described here does not
propose ways to obtain the (best) ranking order, either through
intelligent guesswork or automated procedures. As we have
observed, these can fail when applied to new particle systems or
with a different set of PLs. Our approach makes the user aware
that their theorized ranking and scoring order is only one
permutation out of the many possible ones. In case of the

Nanoscale Adv., 2021, 3, 4400-4410 | 4405
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previously described method of successively scoring N liquids
as good, we are only looking at HSP values calculated from (N —
2) permutations of scoring. The problem is not the fact that only
few permutations are considered but rather the fact that the
permutations considered only form a subset of all possible ways
of scoring.

6. Case example using the proposed
combinatorics-based procedure

Returning to our case example, we describe how the combina-
torics procedure can be applied. In Step 1, we know from eqn (4)
and Table 2 that a total of 4082 permutations of scoring 1 and
0 are possible with twelve liquids. Now proceeding to Step 2, i.e.,
perform experiments to study dispersion characteristics, we use
AC. In order to obtain the time-resolved dispersion stability
characteristics, the so-called stability trajectory was obtained by
plotting S scores over time.** In brief, the S score is a metric
which captures the variation in the attenuated transmission
across the sample cell. It is based on the calculation of median
absolute deviation which is a robust measure of variance in
statistics. Here, a lower S score over time means a more
homogeneous state of the sample as a result of the even
distribution of the dispersed phase along the measurement cell.
Likewise, a higher S score means the heterogeneous distribu-
tion of the relative motion of particles across the cell. The
evolution of the heterogeneity of the dispersed phase during the
AC measurement is indicated by the stability trajectory, the
shape of which is unique to the overall settling behavior of the
sample and thus the stability of the system. A detailed
description of the calculation procedure of S scores has been
described elsewhere in our previous work.**

S scores were evaluated for all the twelve SiN, dispersion
systems, and Fig. 3 plots the resulting trajectories. It is directly
seen that the stability trajectories capture the dispersion
behavior in a variety of ways. An uphill trajectory indicates how
quickly the migration of the dispersed phase takes place. The
cause of this can be aggregation or agglomeration (as seen in
Fig. 3, denoted with up-triangles on the different trajectories).
By contrast, a downhill trajectory indicates how soon the end
state of a clear continuous phase is reached (as denoted by
down-triangles in Fig. 3). Wavy trajectories indicate multiple
sequential settling fronts as in the case of SiN, dispersed in PC
and NMP. And a flat trace in the low S score range indicates the
absence of a dispersed phase due to complete sedimentation (as
denoted by crosses in Fig. 3).

Altogether, the stability trajectories allow us to (i) track
individual settling fronts, (ii) reveal the degree of heterogeneity
in the samples through peaks and troughs, (iii) find if complete
settling was achieved, and at what time. Based on these char-
acteristics, one can easily deduce the dispersion traits of
liquids. Moreover, observations from stability trajectories can
help to clearly designate some liquids as poor which can then
help to shrink down the possible scoring permutations
considerably. As mentioned earlier, in case of inorganic (nano)
particles, PLs can act as a ligand interacting with the surface.****
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In this regard, stability trajectories will be suitable for identi-
fying such effects in an early stage of dispersion studies.
However, we made sure by testing solvent mixtures (data not
shown) that no ligand effects were observed for the chosen PLs
in this study.

Looking at the stability trajectories for Tol and Hex (see
Fig. 3), what is striking is that they are flat right from the start of
the experiment. This means the dispersions are quite unstable
making them unsuitable, i.e. poor liquids.* This observation is
consistent across three independent repeats (see ESI Fig. S57)
corroborating visual inspection. With this information of two
poor liquids, we already reduce the number of possible
permutations by 75%.

Furthermore, trajectories for Ace, MeOH, EtOH, EA, water,
and THF reveal that complete settling has been achieved in the
time range of 500 to 1000 s (~8-16 min). Rapid settling at
a given centrifugal acceleration is an undesirable trait for our
use-case. Thus, six more liquids can be designated as poor.
Again, these observations were made over three independent
repeats.

Now with the updated information of eight poor liquids in
all, using eqn (5), we are down to eleven possible permutations
for scoring the remaining four liquids. HSP calculations can
now be reasonably performed using an automated script or even
manually, to provide a set of eleven different HSP. These eleven
HSP are summarized in Table 3A. The table also describes the
eleven scoring permutations for the remaining four liquids -
IPA, DAA, PC, NMP. Besides, Hansen sphere outliers, ie.,
incorrect inclusion of poor liquids within the sphere and
incorrect exclusion of good liquids outside the sphere are also
listed. We revisit the aspects around reporting of HSP results
later in this letter below.

At this juncture, we have found a total of eleven reasonable
estimates for the HSP. However, to highlight the procedural
merits, we take a step forward and explore our options to further
reduce the possible number of permutations by inferring
particle-liquid behavior from stability trajectories. It is impor-
tant to note that the following discussions are not to ‘force-fit’
the arguments in favor of a particular desirable outcome. They
highlight how some permutations can be excluded in light of
new information as proposed in the decision chart (Fig. 2), and
in this case, what are the resulting implications (i.e., how the
variation in the HSP value can be reduced).

Observing the trajectories for NMP obtained across three
different experiments, it can be said that they have the highest S
scores among all the investigated liquids. Also, the data
corroborates that complete settling is achieved after 2000 s (~30
min). Compared to complete settling times of previously dis-
cussed liquids (~8-16 min), this is relatively long, but it
remains an undesired trait that indicates unfavorable disper-
sion conditions. As a result, we can consider one more liquid as
poor, updating our list to a total of nine poor liquids. Again,
using eqn (5), we calculate the possible permutations which are
left equal to 4 (Table 3B).

Lastly, we can include our expert knowledge. “If” we combine
observations from visual inspection of the dispersions showing
highly homogeneous samples after dispersion without settling

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Stability trajectories of SiN, in the chosen PLs. Centrifugation was performed at 1500 rpm corresponding to a relative centrifugal
acceleration of 327 for 50 mins. S scores were evaluated using transmission data from AC for all twelve SiN, dispersion systems and plotted
against time to obtain stability trajectories. The ascending zone signifies how quickly the dispersed phase migrates and is indicated by black up-
triangles (A). The descending zone signifies how soon the dispersion clarifies and is denoted by down-triangles (¥). The absence of a dispersed
phase in the continuous phase due to completed sedimentation is marked by crosses (%).

and trajectory data measured by AC, we can conclude that
dispersions in IPA and DAA remain stable throughout the
experiment. In line with this expert knowledge, the undulatory
nature of trajectories, in the low S score range, until the end of
the experiment suggests that these two liquids are good. Basi-
cally, we once again update our information, this time
amounting to a total of two good and nine poor liquids.
According to eqn (7), only two scoring permutations are left.
Noting that no clear evidence was available for PC, the corre-
sponding HSP values for the two permutations involve IPA, DAA
and PC and are reported in Table 3C. At this point it should be
mentioned that the finally assigned two good PLs result in a very
small sphere. In future works that also include liquid mixtures
and additional PLs, it would be interesting to challenge its
edges and validate them. However, the selection of the liquid
list is another important aspect that must be carefully differ-
entiated from the assignment into good and poor liquids and
the combinatorics approach discussed here. It is also worth

© 2021 The Author(s). Published by the Royal Society of Chemistry

mentioning that reducing the scoring permutation down to one
or two (best) is not “always” the aim but should be done when
there is enough data available to support the claims. Note-
worthy here is that the designation of poor or good liquids can
be done on the basis of different dispersion traits, or
measurement techniques. This is an important benefit in
contrast to methods which rank using only one particular
parameter (for e.g., RST using IE as input, or RN using NMR
relaxation).

Remarkably, the final HSP outcomes as outlined in Table 3A-
C for eleven, four and two combinations respectively, highlight
yet another purposeful function of the described approach. It
can be observed that Table 3C is a subset of Table 3B, and Table
3A. Additionally Table 3B is a subset of 3A. Hence, it is safe to
say that even if it is not possible to bring all known possible
combinations down to a handful, after HSP calculations we can
further make informed judgments about the most appropriate
value. We strongly recommend that if some liquids are even

Nanoscale Adv., 2021, 3, 4400-4410 | 4407
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Table 3 HSP reporting with all possible scenarios. Note that (B) and (C) are subsets of (A), highlighting how the number of available permuations

are reduced from 11 (in A) to 4 (in B) and to 2 (in C)

DAA IPA PC NMP d3D/MPa’? d3P/MPa’?

SH/MPa’?

R Poor liquids inside sphere Good liquids outside sphere

[A] HSP reporting summary for eleven remaining permutations after having evidence for eight out of twelve liquids to be poor. Hence, remaining
1

iquids to permute are DAA, IPA, PC and NMP

1 1 1 0 22.26 10.85 15.12
0 1 1 0 24.00 11.20 16.94
1 1 0 0 15.83 7.15 13.6
1 0 1 0 15.89 21.57 13.46
1 1 1 1 19.94 12.65 13.56
0 1 1 1 23.44 9.99 13.64
1 1 0 1 16.91 10.1 12.43
1 0 1 1 19.17 12.61 9.88
0 1 0 1 19.28 10.6 15.00
0 0 1 1 19.15 15.01 5.68
1 0 0 1 16.98 10.13 9.08

14.0 2 0
16.6 1 1
3 0 0
12.9 1 2
10.8 0 2
13.8 0 2
6.1 0 0
8.1 0 0
8.4 0 0
3.9 0 0
3.6 0 0

[B] HSP reporting summary for four remaining permutations after having evidence for nine out of twelve liquids to be poor. Hence, remaining

liquids to permute are DAA, IPA and PC

1 1 1 0 22.26 10.85 15.12
0 1 1 0 24.00 11.20 16.94
1 1 0 0 15.83 7.15 13.6

1 0 1 0 15.89 21.57 13.46

14.0 2 0
16.6 1 1
3 0 0
12.9 1 2

[C] HSP reporting summary for two remaining permutations after having evidence for nine out of twelve liquids to be poor and two out of twelve
liquids to be good. Here DAA and IPA are considered good liquids, while EtOH, MeOH, NMP, water, Ace, Tol, Hex, THF, EA are considered poor. PC
cannot be determined umambiguously. Hence, the remaining two permutations involve PC as good or poor

1 1 1 0
1 1 0 0

22.26
15.83

10.85
7.15

15.12
13.6

slightly ambiguous, there is absolutely no harm in considering
them into the list of all possible scoring combinations. The HSP
values will ergo include the necessary variation. Just like bio-
logical systems measurements accommodate and report exist-
ing variation, we believe that this perspective of embracing the
variation for real world particulate dispersions is beneficial to
the formulator and the end user.

Thus far, we have demonstrated the stepwise workflow for
HSP evaluation of SiN, using our newly proposed method. Here
we highlight the general basis of this method. Considering
certain liquids as good or poor does not discount the fact that
other liquids may also be (partially) good or poor like it is the
case for PC, which also shows undulatory trajectories. Such
liquids are automatically included in the different scoring
permutations as seen in Table 3, reiterating our claims for the
merit of our method.

7. Reporting package for particle HSP

In this section, envisioning standard procedures, we propose an
HSP reporting package. Using the described method, any
ranking strategy or measurement method can be performed.
After the process of eliminating permutations, if only one
permutation is left, then the calculated HSP can be reported as
is. On the other hand, if there exists a finite small number of
permutations, then HSP must be reported as an interval. When
multiple permutations are tried, then instead of reporting
a single value for the HSP, it is recommended to report the
interval (min:max) along with a robust estimator such as

4408 | Nanoscale Adv, 2021, 3, 4400-4410

14.0 2 0
3 0 0

a median. A very large number of permutations means that
there is inconclusive evidence for goodness and poorness of
liquids for a majority of liquids which is a valuable piece of
information on its own. In this case, a different set of PLs
should be investigated. Towards building a database of particle
HSP, the following aspects should be considered:

e The number of PLs with which the HSP study was con-
ducted. This has been also pointed out previously.*

e In all cases, HSP reporting must be accompanied by
reporting of the number of outliers. Outliers are the number of
poor PLs inside the sphere, and the number of good PLs outside
the sphere. If the number of outliers is high (>50%), it will
indicate the reader to interpret the HSP with care.

e In any case, the number of tried permutations must be
reported. HSP for all permutations should be reported when-
ever possible.

All the above aspects lead to better reporting of the HSP, with
exact indication of the underlying uncertainty. The quality of
the obtained HSP values has been addressed by Hansen® and
Vebber et al.,”* but these aspects are often left out in most
reports on HSP values.

8. In case of uninformative HSP space
to study particle-liquid interactions

In the last section of this letter, we bring to forefront cases in
which the study of particle-liquid interactions through the HSP
space is limited. This can happen in several scenarios such as,

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Principal component analysis (PCA) biplot of SiN, dispersions.
The first two principal components (PCs) are plotted. PCA was per-
formed using stability trajectories data of all twelve PLs.

(but not limited to) when - (a) HSP calculation is not possible at
all due to convergence issues, (b) the reported HSP has a large
dispersion due to a large number of plausible permutations, (c)
the functionality of the particles under consideration is split,
where the particles have a high affinity to multiple groups of
liquids far apart in the HSP space, (d) the sample compatibility
to a mixture of liquids is dissimilar compared to its constituent
components (i.e., a mixture of two poor liquids can be good, or
vice versa), (e) the range of available and workable PLs is very
low. Consequently, the relative positioning of the components
in the HSP space may be of limited use. In such circumstances,
we believe that the rich information from AC, manifested in the
form of stability trajectories directly provides compatibility
information. The trajectories can be reduced to a 2D scatter
using dimensionality reduction techniques such as principal
components analysis (PCA) (see Fig. 4). Here, we can see how
similarly behaving liquids cluster close to each other (e.g., IPA
and DAA). Interestingly, poor liquids do not form one cluster
but are spread out in the PCA space. This is indicative of the fact
that even if a liquid is deemed poor, the underlying mechanism
governing it can be very different. For example, water and NMP
have very different behaviors. A decision boundary can be
established based on the relative positions of the points in the
scatter plot.

9. Conclusions

Several studies report the use of HSP for the quantitative eval-
uation of the compatibility of (nano)particles in a selected set of
probe liquids (PLs). In absence of a general, standard frame-
work, HSP reporting is affected by the limitations of the

© 2021 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Nanoscale Advances

measurement method with which the dispersions were char-
acterized. For real-world formulations at technical concentra-
tion, decisive classification of good and poor is not always
possible. Furthermore, a single decisive ranking list is seldom
possible. Given these aspects, it is hard to rely on a value ob-
tained from the convergence of an optimization algorithm. This
letter describes a general framework to determine HSP in
a technology-agnostic way. We feel this being especially needed
for particulates where dispersity and pronounced surface
heterogeneity pose severe challenges in their determination.
Lastly, we show how AC is of particular advantage in revealing
characteristics through trajectories, even without singling out
one time point.
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