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Characterisation of the nanoscale interface formed between minerals

and water is essential to the understanding of natural processes, such

as biomineralization, and to develop new technologies where function

is dominated by the mineral–water interface. Atomic force micros-

copy offers the potential to characterize solid–liquid interfaces in

high-resolution, with several experimental and theoretical studies

offering molecular scale resolution by linking measurements directly

to water density on the surface. However, the theoretical techniques

used to interpret such results are computationally intensive and

development of the approach has been limited by interpretation

challenges. In this work, we develop a deep learning architecture to

learn the solid–liquid interface of polymorphs of calcium carbonate,

allowing for the rapid predictions of density profiles with reasonable

accuracy.
Solid–liquid interfaces are ubiquitous in nanoscale materials'
science.1 At the atomic scale, liquid molecules are differently
adsorbed on the surface, forming complex hydration structures.
These atomic scale interactions largely inuence macroscopic
surface phenomena,2 which in turn drive various natural and
technological processes.3 Atomic force microscopy (AFM)4 is
being developed to image these critical atomic interactions at
high speed—commensurate to the molecular-diffusion time-
scales—and atomic-scale resolution.5–14 However, the interpre-
tation of the AFM images at such resolutions still remains
a massive challenge. The measured force between an AFM tip
and the surface hydration layers in the solution comprises tip–
surface–solvent interactions and entropic effects, and linking
sity, Finland. E-mail: yashasvi.ranawat@
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this to the image-contrast mechanism requires an intensive
modelling approach for reliable understanding.15–18

The demonstration of a direct relationship between experi-
mental AFM force data and water densities opened an easier
route to interpret the images through simulations,19,20 which
were further advanced by inclusion of the inuence of the tip's
hydration structure in the forces21 and an analysis of the role of
tip radius.17 However, these studies still require detailed
molecular dynamics (MD) simulation of water over various
estimates of surface structures to describe the hydration
structure formed at the mineral–liquid interface – this is
computationally expensive and requires complex parameter-
isation of classical force elds. These technical challenges
encumber nanoscale characterisation of solid–liquid interfaces
through AFM and is in stark contrast to the breakthroughs in
molecular characterization offered by low-temperature
functional-tip AFM in ultra-high vacuum.22,23 In an effort to
provide a rapid and reliable interpretation tool, in this work we
develop a machine learning approach that can predict water
densities, and hence AFM images, directly from the atomic
structure.

In order to benchmark our approach, we focus on ideal and
defected surfaces of calcium carbonate (CaCO3) polymorphs25

(see Fig. 1). The calcite (10�14) surface has become a benchmark
surface for AFM studies in liquids.12 Alongside this, a wealth of
computational studies of the calcite–water interface have been
undertaken, providing a critical background of structural
understanding and reliable forces elds necessary for our
approach. These studies extensively delineate the calcite (101�4)
surface and water interactions,26,27 AFM imaging,16,28–31 surface
ion dissolution,32,33 and effects of point defects and step edges
on the hydration layer densities.14,34–37 Alongside calcite, we
further consider the other most common polymorphs of CaCO3,
aragonite and vaterite. Aragonite is the second most stable
polymorph of CaCO3, and plays a vital role in biomineraliza-
tion.38 Surfaces of aragonite show predominantly the (001),
(010) and (110) planes.39 In these surfaces, the carbonate groups
are aligned differently from those in (10�14) calcite, cif. Fig. 1.
Nanoscale Adv., 2021, 3, 3447–3453 | 3447
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Fig. 1 Surface atomic structures of the different polymorphs of
calcium carbonate: calcite (101�4) surface, aragonite (010) surfaces, and
vaterite (010) surface. For each case, the slab and the top view of the
surface are shown. Each surface figure has two translucent layers
added to ease the surface visualisation, the first translucent layer
demarcates the top layer of a slab, while the second translucent layer
demarcates the depths of atoms in the top layer. The atoms of
calcium, oxygen, and carbon are represented by blue, red, and brown
spheres. (The atomic structure is imaged using VESTA24).

Fig. 2 Schematic of the prediction process of water density over
a calcite surface. The surface structure is firstly expressed as a three-
channel density of Gaussian-smeared carbon, oxygen, and calcium
atoms. Then this density is fed into the neural network, shown as
a schematic of the U-net network (see ESI† for more details). The
network predicts a single-channel density of water over the surface.
This is compared with the MD-simulated water density as a target.
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Experimental works40,41 have found clearly distinct patterns in
the hydration layer of aragonite (001) surface in comparison to
calcite (10�14). Secondly, of those commonly considered, vaterite
is the least thermodynamically stable polymorph of CaCO3, and
is possibly related to calcite nucleation and dissolution
processes.42 The vaterite surface structure has been elusive, as
only micro and nano-sized crystals are obtained42 and large
enough areas for reliable experimental characterization are rare
– as yet, there are no experimental results on the interface of
water with vaterite. Current studies indicate two competing/
interspersed structures with space groups P3221 and C121.42,43

We use the P3221 structure with the (010) cleavage plane, since
this was found to have one of the lowest surface energies.44,45

The different morphologies of these polymorphs, as compared
to calcite, and their signicant applications make them suitable
test cases.

Our methodological approach builds upon the general
philosophy of using machine learning to handle data analysis
challenges in Scanning Probe Microscopy (SPM)46–49 and the
specic use of deep learning Convolutional Neural Networks
(CNN)50 to recognize features in high-resolution SPM images.
Recent examples include conditioning of SPM tips,51 identi-
cation of defects with STM52,53 and nanostructures with AFM,54

and making molecular structure predictions from AFM
images.55 However, to the best of our knowledge, no earlier
studies have applied machine learning to SPM at solid–liquid
interfaces. We also note that despite sharing some common
machine learning algorithms, in each case mentioned, the
training data and machine learning architecture are designed
for the system being studied, so that they can be effectively
considered entirely different computational models from the
present applications in SPM.

In this work, we aim to derive a robust computational tool
that could predict the hydration layers over surfaces (see Fig. 2),
and ease the rapid discovery of possible surface structure from
candidate surfaces. This can provide experiments with
3448 | Nanoscale Adv., 2021, 3, 3447–3453
unprecedented on-the-y AFM analysis in liquids over CaCO3

surfaces. Further, we progressively include data frommolecular
dynamics (MD) simulations of water with calcium carbonate
polymorphs into the machine learning training to determine
the general applicability of these deep-learning techniques to
hydration structure prediction. This opens the door to amethod
for rapid and reliable interpretation of any system imaged by
AFM in liquids in the future.

To generate a neural network training set for each surface
considered, we calculated the water density over the surfaces
using the LAMMPS MD code56 (for a more detail discussion see
the ESI†). We utilized the inter-atomic potentials from Raiteri
et al.,33 a well established potential for carbonate minerals in
the context of AFM imaging in liquids14,16,34 that implements the
SPC/Fw exible model for water.57

We trained our models on the (10�14) calcite dataset, and the
combined (101�4) calcite and (010) aragonite dataset, to gauge
the generality of the models trained. To create the large data-
base, which includes a wide variety of local chemical environ-
ments—crucial for an effective learning—we generated a wide
variety of the (10�14) calcite and the (010) aragonite surfaces by
removing permutations of Ca2+ and CO3

2� pairs from the
surface of each mineral, always retaining net charge zero in the
system. We generated 26 784 cases of the calcite dataset and
51 336 cases of the calcite + aragonite dataset. Each data pair, of
input and target, comprises three-channels of the atomic-
density of carbon, oxygen, and calcium from the surface as
input, and water over the surface as the target, as seen in Fig. 2.
These densities are given in a 10 � 10 � 20 Å3 volume (see ESI†
for data extraction method). For training, the dataset was split
into 70% training, 20% validation, and 10% testing cases,
approximately.
© 2021 The Author(s). Published by the Royal Society of Chemistry
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The task of simulating the hydration structures over a given
surface can be categorised as an image-to-image problem58 in
computer vision (see Fig. 2), specically in three dimensions.
Machine learning models tackling such image-to-image prob-
lems have originated from the introduction of encoder–decoder
models in machine translation.59 These models distill the input
into a condensed latent-space feature-vector using an encoder,
that retains only the higher-level semantic information. This
information is then translated by the decoder into the output.
The U-net CNN architecture60 further enhances such encoder–
decoder models with their introduction of skip connections,
connecting layers in the encoder to the decoder. This mitigates
any loss of spacial information during the encoding in image-
to-image applications. Recently, many such image-to-image
deep learning methods have found their applications in
image segmentation,58,60,61 high resolution image synthesis,62

image synthesis from semantic labels,62,63 and style transfer,64,65

among others. Further, the introduction of the attention
mechanism66 in MLmodels has seen improvements in machine
translation. The success is attributed to their ability to draw the
global spacial dependencies in the inputs.66 A transformer
architecture,67 an attention mechanism variant, has also been
successfully extended to image-to-image problems.61,68,69

Here we trained the data with the U-net architecture, with
three pooling scales and their corresponding skip connec-
tions,60 as seen in Fig. 2. We also applied a so self-attention
mechanism61 to the skip connections to derive an attention
variant of the U-net in order to provide more detail on what the
network is actually focusing on (attention U-net – for a more
detailed discussion see ESI†).

The surfaces of calcite with CO3
2� and Ca2+ defects and

pristine surfaces of (010) aragonite, (001) aragonite, and (010)
vaterite are used to test the neural network predictions. These
surfaces are unseen by the networks during training, and thus
they represent reasonable test cases. We use mean absolute
error (MAE)—L1 loss function—to derive a gure-of-merit to
compare the predictions in various cases. We also plot and
qualitatively compare the simulated and predicted densities in
three ways: the 1D mean density along the z direction, the 2D
mean density from in the xz plane, and nally, xy slices corre-
sponding to the peaks in water density along the z direction.
Moreover, we analyse the attention with respect to atom posi-
tions in the (010) aragonite surface case to gain an insight into
the evaluations exercised by the network during the predictions.

The MAE of prediction of the U-net and the attention U-net is
shown in Table 1. In general, these predictions took less than
Table 1 Comparison of U-net and attention U-net, trained on calcite da
networks for the respective test datasets, pristine (010) aragonite, (001
calcite surfaces with CO3

2� and Ca2+ defect is presented

U-net (c) Att U-n

Respective test set 1.1015 � 10�3 1.1433
CO3

2� point defect 2.7288 � 10�3 3.0565
Ca2+ point defect 2.6579 � 10�3 2.6496
(010) aragonite 9.4199 � 10�3 1.0148
(010) CO3

2� vaterite 6.4501 � 10�3 7.4893

© 2021 The Author(s). Published by the Royal Society of Chemistry
a second on a standard desktop computer. It is seen from the
table that both the simple and attention U-net networks show
low errors on their respective test sets. The prediction errors for
simple U-net are lower than the attention variant, albeit with
minor differences. Naturally, the absolute errors by networks
are higher on subsequent test surfaces than that in their test
datasets, including for defected systems (where the errors are
calculated within 3 Å of the defect site). In general, the overall
prediction errors are low, giving us condence in the reliability
of the method. To further generalise the networks, they are also
trained with the calcite + (010) aragonite dataset. With the new
morphologies incorporated in the network training, the errors
of the network are lower on the test dataset. The predictions
over the unseen defects and surfaces are similar to that of the
networks trained with just the calcite dataset, albeit with
slightly higher errors. Only a small change in prediction error
with the additional inclusion of distinct surfaces implies
generality of the trained networks to materials beyond calcium
carbonate in the future. Since there are no signicant benets
to the expanded training set for the examples we consider in
detail, we focus on the network trained on the calcite dataset
alone (using U-net unless otherwise mentioned).

In order to conrm that this quantitative accuracy translates
into a meaningful qualitative description of the water density,
we now consider each system in detail. Firstly, we look at the
case of the CO3

2� vacancy defect in the (10�14) calcite surface
(Ca2+ vacancy is discussed in the ESI†). From Fig. 3, we see that
in the 1D plot the position of the peaks are very well predicted,
with slight differences in the peak magnitudes. The differences
in magnitude can be attributed to the choice of loss function –

a network trained with a L1 loss function has been shown to
predict blurry images in image-to-image models.58 From the 2D
slice, it is seen that the network is able to predict the water
density in the defect region, below the surface. The network is
also able to predict the perturbation in slices further from the
surface. The extent is visible up to z5 Å from the surface. This
corroborates with the previous experimental defect study by
Söngen et al.14 Notwithstanding the stability of the (10�14)
cleavage plane, some extreme neutral defects created in the
training process lead to the Ca2+ and the CO3

2� ions to diffuse
into the second or the third hydration layers. We suspect these
unexpected solvated ions improve the generality of the learning
process and play a role in the high accuracy of prediction over
ionic defects.

In the case of the prediction over the pristine (010) aragonite
surface (the (001) aragonite surface is discussed in ESI†) the
ta (c) and calcite + aragonite data (c + a). MAE of the predictions of the
) aragonite, and (010) CO3

2� terminated vaterite surfaces, and (10�14)

et (c) U-net (c + a) Att U-net (c + a)

� 10�3 8.8640 � 10�4 1.0575 � 10�3

� 10�3 2.8357 � 10�3 3.1721 � 10�3

� 10�3 2.9125 � 10�3 2.8362 � 10�3

� 10�2 In training data In training data
� 10�3 6.6732 � 10�3 7.9105 � 10�3

Nanoscale Adv., 2021, 3, 3447–3453 | 3449
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Fig. 3 Prediction of hydration layers over a calcite surface with CO3
2�

vacancy using the U-net. (a) Comparison of 2D slices in simulated and
predicted water density at z heights corresponding to the peaks in the
simulated data. The density (r) is scaled with the bulk water density (ro)
for the 2D slices. (b) The mean water density in the 2D xz plane, (c) the
1D water density along the z direction.
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errors are larger. We attribute this to the very different
morphology of aragonite as compared to the calcite surfaces in
the training cases. The resulting hydration density prediction,
Fig. 4 Prediction of (010) aragonite (a–c) and vaterite (d–f) surfaces usin
predicted water density at z heights corresponding to the peaks in the sim
the 2D slices. (b and e) Comparison of the mean water density in the 2D

3450 | Nanoscale Adv., 2021, 3, 3447–3453
with simple U-net, over the aragonite surface is compared with
the simulated density in Fig. 4. There we can see that the 2D
predicted slices at the rst and third peak positions, are similar
to the simulated data. The predicted slice at second peak is
unable to capture detailed features in that position, albeit
following the same trends from the simulated data. This is
further visible in the mean density along the z direction, in the
xz plane. In the comparison of 1D mean density along the z
direction, the network predicts all the peak positions remark-
ably well, but with lower magnitudes, just like the prediction in
CO3

2� defect.
The approach is also tested on the vaterite surface (see

Fig. 4). The prediction errors are found to be lower than in the
aragonite case. The hydration density peaks, like the aragonite
and CO3

2� cases, are predicted with lower magnitudes,
although at correct heights, cif. Fig. 4. The 2D slices in predicted
density are visibly similar to that in the simulated case,
although some features are somewhat fainter in comparison.
We note that should molecularly resolved AFM images of water
on vaterite surface be available, our approach could be used to
easily compare possible surface structures without any of the
associated complexity of modelling thermodynamic stability
and/or deriving new force elds.

Finally, in order to try and understand in more detail how
the machine learning makes predictions of the density, we now
consider results using the Att U-net. The attention values
coming from the network prediction over the aragonite surface
g the U-net, trained on calcite data. (a and d) 2D slices in simulated and
ulated data. The density (r) is scaled with the bulk water density (ro) for
xz plane. (c and f) The 1D water density along the z direction.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Comparison of attention output at 0th pooling with the atoms
of C, O and Ca in the surface, during prediction over the (010)
aragonite surface. The first three panels are 2D snapshots of the 3D
attention-density iso-surface corresponding to the C, O, and Ca,
respectively. The fourth panel has 1D mean densities of the attention
output, at different pooling scales.
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are shown in Fig. 5. The 1D attention values are plotted along z
direction at different scales. In the network, these attention
values are extracted from the skip connections at three pooling
scales: 0th (with no scaling), 1st, and 2nd, cif. Fig. 2. It is seen that
the perturbations in the attention values align with the atoms
from the surface, especially with the Ca2+ ions. It is clear that
more attention is given to the z5 Å region above the surface,
where most water density peaks reside. While this applies to the
0th and 1st pooling scales, the attention at the 2nd scale, with the
widest reaching kernel, demarcates the surface with the bulk
water density. This reveals that the layers at each scale play
different roles during prediction. Additionally, the attention at
the 0th pooling scale is weighted with the carbon, oxygen, and
calcium densities and visualised at the same isosurface value in
Fig. 5. The atom-density-weighted attention shows higher
affinity of the network in regions with higher probability of
water around the atom. This apparent correlation of these
attention values with the elements in the space implies some
learning of real-space physics in the network at the layers at
every scale. However, in the weighted-attention isovalues of Ca2+

the attention is positioned on top regardless of the layer-depth
of the atom. This highlights a bias in the network towards
predicting water on top of atomic structures, i.e. surfaces with
surface normal towards z direction. We attribute this to all the
cases in the training data being surfaces and should be noted
when considering generalizing the method to other structures.
In particular, nanoclusters are commonly used to depict an
AFM tip in simulations and would require further development
to be incorporated reliably.

The simple and the attention variant of the U-net CNN are
used to predict the water densities over polymorphs of calcite.
The network is shown to learn the water densities, with
reasonable peak locations, albeit lower magnitudes near the
surface. The generality of the network is established by
comparing the loss over surfaces not seen by the network, when
trained with calcite data and calcite + aragonite data. The
attention mechanism is shown to indicate parallels of the inner
layer mechanism with the physical nature of the interactions.

The network makes it possible to predict hydration densities
over any surface of calcite, and will help expedite surface
© 2021 The Author(s). Published by the Royal Society of Chemistry
characterisation during experiments. Further inclusion of other
surface orientations can extend the network to predict water
densities around, for example, nanoclusters. It also paves the
way for networks that can predict water densities over systems
with wider elemental composition than carbon, oxygen, and
calcium. This will likely require development of the descriptor
used in the training process, taking into account a more
detailed description of the local chemical character than offered
by the elemental name alone.70,71
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