Showcasing research from Professor Raston’s laboratory,
College of Science and Engineering, Flinders University,
South Australia.

Sub-micron moulding topological mass transport regimes
in angled vortex fluidic flow

The vortex fluidic device generates non-equilibrium
conditions but the nature of the high shear fluid flow,
depending on the physical characteristics of the liquid and
rotational speed, tilt angle and diameter of the tube, is not
understood. Specific topological mass transport regimes
have been identified as spinning top flow normal to the
surface of the tube and double-helical flow across the film
and combinations thereof. This has been established from
induced crystallisations and polymerisations providing
moulds of the topologies, with ‘molecular drilling’ providing
the spatial arrangement of double helices.
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Introduction

Controlling organisation and forces in liquids under non-
equilibrium conditions is fundamental for building complex

Sub-micron moulding topological mass transport
regimes in angled vortex fluidic flowT

Thaar M. D. Alharbi, 1 Matt Jellicoe,$* Xuan Luo, & 12 Kasturi Vimalanathan,?
Ibrahim K. Alsulami,? Bediea S. AL Harbi, 2 Aghil Igder, 29 Fayed A. J. Alrashaidi,®
Xianjue Chen, @ Keith A. Stubbs, ©9 Justin M. Chalker, &2 Wei Zhang,*

Ramiz A. Boulos,?" Darryl B. Jones, &2 Jamie S. Quinton &2 and Colin L. Raston @ *?

Shear stress in dynamic thin films, as in vortex fluidics, can be harnessed for generating non-equilibrium
conditions, but the nature of the fluid flow is not understood. A rapidly rotating inclined tube in the
vortex fluidic device (VFD) imparts shear stress (mechanical energy) into a thin film of liquid, depending
on the physical characteristics of the liquid and rotational speed, w, tilt angle, 8, and diameter of the
tube. Through understanding that the fluid exhibits resonance behaviours from the confining boundaries
of the glass surface and the meniscus that determines the liquid film thickness, we have established
specific topological mass transport regimes. These topologies have been established through materials
processing, as spinning top flow normal to the surface of the tube, double-helical flow across the thin
film, and spicular flow, a transitional region where both effects contribute. The manifestation of mass
transport patterns within the film have been observed by monitoring the mixing time, temperature
profile, and film thickness against increasing rotational speed, w. In addition, these flow patterns have
unique signatures that enable the morphology of nanomaterials processed in the VFD to be predicted,
for example in reversible scrolling and crumbling graphene oxide sheets. Shear-stress induced
recrystallisation, crystallisation and polymerisation, at different rotational speeds, provide moulds of high-
shear topologies, as ‘positive’ and 'negative’ spicular flow behaviour. ‘Molecular drilling’ of holes in a thin
film of polysulfone demonstrate spatial arrangement of double-helices. The grand sum of the different
behavioural regimes is a general fluid flow model that accounts for all processing in the VFD at an
optimal tilt angle of 45°, and provides a new concept in the fabrication of novel nanomaterials and
controlling the organisation of matter.

systems and the function of living cells." Shear stress in thin
film vortex microfluidics can generate non-equilibrium condi-
tions*” but the nature of the fluid flow is not understood. In
general, understanding fluid flow is important in microfluidics
where processing has primarily focused on manipulating
liquids through channels.® A less developed area of micro-
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fluidics involves films of liquid = 500 pm thick which are
centrifugally generated by passing liquids over rotating
surfaces, as in spinning disc processors (reactors),>'* horizon-
tally aligned rotating tube processors,'™ and in the vortex
fluidic device (VFD),>” Fig. 1(a-c). The latter is a variant of the
rotating tube processor but where the orientation of the tube, 6,
can be varied*” and is distinctly different to Couette flows where
liquids are periodically forced between two surfaces."” These
processors are also distinctly different to conventional micro-
fluidics and do not suffer from clogging. They are effective in
controlling chemical reactions, probing the structure of self-
organised systems, and in the top down and bottom up
synthesis of nanomaterials.>*'* Control of the flow environment
in the VFD itself has been shown effective in a variety of

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Characteristics of the vortex fluidic device (VFD) and moulded fluid flow. (a) Confined mode of operation of the VFD with the expected
oscillation in film thickness which also prevails in (b) the continuous flow mode where liquids are injected as droplets into the rapidly rotating
tube. (c) Expected fluid flow and film thickness at 90° and 0° degree tilt angles (). (d) (i) Shear stress induced fullerene Cgq crystallisation resulting
in spicules or rods, (ii) anti-solvent crystallisation at the glass—liquid interface, leading to cones, (iii) BSA and glutaraldehyde polymerization in
moulding high shear and low shear flow, (iv) as for (iii) for the nucleation and growth of a metal organic framework (MOF5), (v) shear stress melting
elemental bismuth, and (vi) shear stress ‘molecular drilling’ of holes on polysulfone with their signature retained at the glass—polymer interface
post positional shift of the double-helical fluid flow. (e) Possible representation of the fluid flow behaviour for the spinning top and double-helical
flow from Faraday waves into spicular flow. (f) Double-helical fluid flow with a reduction in helical pitch (P) for increasing rotational speed, w, for
the same thickness of the film, d;, with preservation of wP. (g) Diagrammatic representation of change in film thickness in a type y liquid which is
dominated by double-helical flow across the rotational landscape, and the reduction in film thickness and associated Faraday waves driving the

formation of linear arrays of double-helical flows orientated parallel to the rotation axis of the tube.

applications for which conventional batch processing is not
possible or is of limited practicability, and low in green chem-
istry metrics. Such applications include accelerating enzymatic
reactions,’® folding proteins,* slicing carbon nanotubes,® exfoli-
ating graphene,® and wrapping bacteria in graphene oxide.” For
the standard 20 mm outside diameter (OD) (internal dimeter
(ID) 17.5 mm) quartz or glass tube in the VFD, changing the
fluid flow behaviour with the rotational speed (w) over the range
of 3k to 9k rpm has revealed benefits of the device most effec-
tively at a = 45° tilt angle;> 9k rpm rotational speed is the
upper limit of the VFD housing a 20 mm (or 10 mm) OD tube.

Establishing the nature of the complex fluid dynamics
within the VFD for utility in chemical processing has proved
challenging. A general model for determining the film thickness
and the distance it extends up the tube, depending on # and w,

© 2021 The Author(s). Published by the Royal Society of Chemistry

has been established,*® but there is the realisation that other
factors must be involved, beyond vibrations within the
system.'*** For the accessible range of rotational speeds and
possible solvent substrates, Reynolds numbers (Re) in the range
500 to 10 000 are readily achievable during flow that exhibits
partial turbulence. Experimental attempts to observe the fluid
flow in the VFD have been hampered by unavoidable distor-
tions, estimated to be <100 pm. Direct measurement of fluid
flow at the dimensionality of processing materials (~1 to 5 um),
for example, in scrolling graphene oxide (GO)'® and generating
cones of assembled fullerene Cg,"” is a longstanding issue.
Interestingly, it has been demonstrated that standing waves on
the surface of a liquid provide templates for microscale mate-
rials to assemble into ordered structures, which take on the
shape defined by the standing wave.'® We hypothesised that this

Nanoscale Adv., 2021, 3, 3064-3075 | 3065
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Fig. 2 Mixing and thermal response, and film thickness. (a) and (b) Thermal response and mixing times, and change in average film thickness
versus w for water in a 20 mm OD quartz tube (17.5 mm ID) and 10 mm tube (8.5 mm ID) respectively, with all data points measured in triplicates.
Mixing time (red) corresponds to the time taken for a drop of water containing a small amount of dye added at the bottom of the tube rotating at
a specific speed to uniformly mix in half way up the preformed film generated from 2 mL of water. The temperature (black) was measured midway
along the tube using an IR camera, for residual water present in the tube, being equivalent to the continuous flow mode of operation of the VFD
(water along the complete length of the tube), with the average film thickness (blue) determined at § = 45° for a specific speed from the mass of
residual water also equivalent to the continuous flow mode of operation of the VFD, converted to a volume of liquid spread uniformly on the
inner wall of the tube. (c) Thermal response for water in the tube, retaining the maximum amount of water at each speed, for varying tilt angles, 6,
using a 20 mm OD tube. (d) Mixing time (s) for 2 mL of liquid in the 20 mm OD tube for change in § and w. (e—h) Thermal response (black), mixing
times (red) and film thickness (blue) versus w for toluene (small film thickness at high speed arises from solvent evaporation under high shear in
the liquid), DMF, a 3 : 1 mixture of ethanol and water, and a 1 : 1 mixture of DMF and o-xylene in 20 mm OD tubes, respectively. Temperatures
were recorded at the mid-point along the tube to minimise any heating from the bearings. Recording change in temperature starts at high w
relative to w for recording mixing times, a consequence of requiring extra liquid in the tube when mimicking continuous flow processing, and this
requires higher w to generate a vortex to the bottom of the tube. Three separate thermal response plots are provided for (g) because of fluc-
tuations from one temperature run to another, whereas for all other plots (a—f and h), a single plot of the average of three runs are provided. (i)
Summary of the different fluid flows, and flow regimes characterised by the relative contributions from the spinning top Coriolis (Fc) and Faraday
wave (Frw) induced flows, supported by computational fluid dynamics (CFD) simulations conducted using OpenFoam v1806, as detailed in the
ESI Section 11.1 (j) Images of water in a 10 mm tube at different rotational speeds, captured from 5k frames per s (Movie S27). (k) Photographs of
partitioned mixing of an aqueous dye in water into 2 mL of water in a 10 mm OD tube rotating at 2k rpm where the vortex is not developed to the
bottom of the tube (Movie S1t). Additional information is provided in the ESI filet).

3066 | Nanoscale Adv, 2021, 3, 3064-3075 © 2021 The Author(s). Published by the Royal Society of Chemistry
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relationship could be inverted to provide insight into the spatial
arrangement of mass transport patterns within the VFD at
micron and sub-micron dimensions, depending on the experi-
mental conditions, as moulding or templating materials pro-
cessing outcomes, Fig. 1(d). The range of structures that have
been captured in Fig. 1(d) can be explained by identifying which
fluid flow phenomena dominate in the VFD at an inclination
angle of # = 45°, which is the optimal angle for applications of
the VFD.>” The fluid flow phenomena include rotational speed
dependent Coriolis driven spinning top flow; double-helical
topological flow associated with the onset of Faraday waves,
previously reported as a mechanical response from vibrations,*
that couple with the Coriolis driven spinning top; and the
combined interplay of these giving spicular flow. The latter is
a sub-micro scale tornado type flow along the needle-like or
horn-like shaped surface. The key outcomes are presented in
Fig. 1(d-g), and the experiments leading to these findings are
described in Fig. 2-5.

Faraday waves'*?® are characterised by pressure fluctuations
that induce eddies, much like the pressure system and wind
patterns exhibited in the Earth's atmosphere, but around the
inside surface of a curved cylindrical surface, rather than the
outside of a spherical one. In this situation, the Faraday wave
‘eddies’ are aligned vertically within the thickness of the film,
Fig. 1(e). As the tube rotates in the VFD, any oscillation in film
thickness at 6 < 90°, Fig. 1(a and b), which could also arise from
distortions in the tube, has potential to drive the formation of
Faraday waves. Their presence and other fluid dynamic

View Article Online
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behaviour in the VFD will impact on the movement of the liquid
(mixing), and consequently, the resultant heat and mass
transfer. Variation in the relative strengths of these competing
processes results in overall fluid behaviours that create regimes
of unique processing conditions within the VFD, with each
process introducing a moulding or fabrication capability for
their own unique nanostructures. These findings also reveal
that there are domains of fluid flow in the VFD where any
outcome of processing is not limited by conventional bulk
diffusion control, but rather this is compounded by orientation
effects associated with diffusion or mass transport that appears
within the different topological flow regimes. As will be pre-
sented herein, the shear stress in the thin film of liquid in the
VFD is not uniform but rather it can be uniformly localised.
Shear stress induced aggregation of colloids,” colloidal
breakup,” and nucleation and crystallisation of colloids* are
understood on theoretical grounds, accounting for flow medi-
ated transport of molecules.

Results and discussion

In leading up to the experiments that establish the presence of
spinning top, spicular and double-helical flow, the processing
options for the VFD are highlighted. The confined mode of
operation of the VFD is where a finite volume of liquid is spun
in the tube, whereas the continuous flow mode has liquid
constantly fed into the base of the tube or at positions along the
tube, with the liquid centrifugally driven out of the top of the

)

Fig. 3 Manipulating graphene oxide. Processing GO in a 20 mm OD tube (17.5 cm ID) at 6 45°, 0.2 mg mL™! in DMF, flow rate 0.45 mL min~?,

1

result in (i) scrolls at 4k rpm, (ii) crumbling into globular particles at 5k rpm, and (iii) no perturbation at 8k rpm, with the ability to cycle between the
three forms of GO by changing the rotational speed akin to another form, with transformation of the GO into ca. 100 nm spheroidal particles at
5.5k rpm (transition from spicular to double-helical flow at the dynamic equilibrium).

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Moulding nano-carbon and polymer material. (a) Shear stress induced crystallisation and self-assembly of Cgq in toluene (0.1 mg mL~% 6
45°), affording (i) spicules (flow rate 0.1 mL min~) and (ii) rods (flow rate 1.0 mL min~?), and (iii) mixtures of spicules and rods (flow rate 0.5
mL min™Y), at 4, 7, and 6k rpm, corresponding to spicular flow, transitioning from spicular to double-helical flow and helical flow respectively. (b)
Micromixing a1 : 1 solution of o-xylene solution of Cgo (0.1 mg mL™?, flow rate 0.1 mL min~?) and DMF (0.1 mL min~%) in a VFD, # 45°, 20 mm OD
tube, affording (i) regular and (ii) irregular conesina 20 mm OD tube, and (iii) and (iv) sharper pitch cones with extended arms ina 10 mm OD tube.
(v) Cones attached to the wall of the glass tube in the VFD, post VFD processing in a 10 mm OD tube. (c) (i and ii) Signature of the pattern of the
double-helical flows formed at the interface of the glass tube and a thin film of polysulfone (ca. 5 pm) formed in toluene at 20 °C, § = 45°, 7k rpm

rotational speed, along the length of the tube, with the arrow representing the rotational direction of the axis of the tube.

tube against gravity, Fig. 1(a and b).? Continuous flow process-
ing in the VFD addresses scalability of the experimental pro-
cessing up front, and the effect is essentially the sum of the
confined mode in between drops of liquid entering the tube.>**
This finding is understood herein by the reestablishment of the
process specific fluid flow topologies, Fig. 1(e and f), between
each drop. Importantly, for any processing in the VFD, the bulk
vortex rising up the tube has to be maintained to expose the
base of the tube, otherwise the fluid behaviour is even more
complex with partitioning of fluid flow, Fig. 2(k) (ESI Section 2
and Movie S11).*

3068 | Nanoscale Adv., 2021, 3, 3064-3075

Mixing experiments, whereby the time taken for a drop of
dye added to a finite volume of liquid in the tube to visibly form
a uniformly mixed solution half way up the film, were per-
formed across a range of rotational speed w values at § = 45°,
along with changes in temperature and film thickness at this
unique tilt angle. Collectively, these data provide a signature for
each liquid, as depicted for water at ~20 °C in a 20 mm and
10 mm OD tube (17.5 mm and 8.5 mm ID, respectively), Fig. 2(a
and b), for use in predicting rotational speed processing
outcomes. The temperature of the tube was also measured mid-
way along its length using an IR thermal imaging camera, for

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Moulding elemental bismuth. (a) SEM image of an as received
particle of elemental bismuth, with (b—f) as SEM images of material
formed after confined mode processing of the material in (a) in 1 mL
isopropyl alcohol (IPA) with the 20 mm diameter quartz tube tilted at 6
= 45° and spun at 8k rpm for 20 min under nitrogen, at room
temperature; the image in (f) appears to be the reverse side of the
crater (that was attached to the surface of the tube), and shows rods
mattered together. (g) One possible mechanism for the formation of
the resulting craters and rods.

a range of values of w and 6, for a 20 mm OD tube, revealing
a significant rise in temperature at 4.5k rpm for water,
approximately 2 °C, around a tilt angle of 45°, Fig. 2(c). The
general trend in change in film thickness and its shape for
increasing o follows a mathematical model,*® but it does not
account for regimes of near constant film thickness. The mixing
profiles across different tilt angles for 20 mm and 10 mm
diameter tubes have also been determined, Fig. 2(d) and ESI
Section 3, respectively. While mixing times vary dramatically,
at # = 45°, they provide insight into the fluid structure and
resultant behaviour within the VFD.

Mixing time profiles, change in temperatures at § = 45° and
change in film thickness are unique for each liquid, highlighted
for toluene, DMF, a 3 : 1 ethanol/water, and 1 : 1 o-xylene/DMF
mixtures, Fig. 2(e-h). This behaviour describes how the physical
properties of a liquid (such as viscosity, density, surface
tension) drive the signature flow characteristics for the liquid
within the VFD environment. For water, as the speed increases,
the time for mixing dramatically drops at 3k rpm, where spin-
ning top flow prevails (see below regarding scrolling of gra-
phene oxide, GO), then increases above ~3.8k rpm as spicular
flow dominates (see below regarding shear stress induced
crystallisation of fullerene Cq,). We propose that this flow arises
from the interplay of Faraday wave double-helical flow and
spinning top flow, Fig. 1(e), which arises from the Coriolis from
the hemispherical base of the tube. At speeds above 4.5k rpm,
the spinning top component of flow diminishes and only the
double-helical flow remains. For water at 4.5k rpm, there is
a sharp rise in temperature, Fig. 2(a), which we ascribe as
a transition from spicular to double-helical flow (see below
regarding shear stress induced crystallisation of Cg, within the
confines of the double-helical flow), and is associated with
a reduction in average film thickness. The large change in film
thickness (determined from ~50% volume changes at this

© 2021 The Author(s). Published by the Royal Society of Chemistry
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speed) indicate that this is along the length of the film rather
than being localised to specific places along the tube. To
simplify the description of the three distinct flow regimes
studied, we define this first type of signature as corresponding
to an o-liquid. Toluene behaves in a similar manner with the
onset of rapid mixing above 3k rpm, now with a rapid change in
temperature at 6k rpm, Fig. 2(e), and is likewise classified as an
a-liquid, as is the classification of the fluid response, Fig. 2(f). A
mixture of ethanol and water (3:1) has distinctly different
mixing and temperature profiles, as shown in Fig. 2(g), and is
classified as a B-liquid, having spicular flow for increasing
rotational speed w values, which matches the moulding of high
shear regimes in forming BSA-glutaraldehyde porous spheres
(see below).

A sudden increase in temperature is observed as conditions
transition from (i) spicular to double-helical flow (i.e. decou-
pling of spinning top and double-helical flow) with a reduction
in film thickness, or (ii) from double-helical flow to a smaller
pitch double-helical flow (i.e. where opposing up and down
directional transport in the double-helical flow are too close to
be maintained), Fig. 1(f and g). The presence of double helices
in the film is illustrated below for the case of ‘drilling holes’ in
thin film of polymers attached to the inside of the tube, where
preferential etching occurs due to increased localised mass
transport regimes, and amplified where the film thickness
change is dramatic and readily measurable.

The 1 : 1 mixture of DMF and o-xylene has a distinct series of
step increases in temperature, with double-helical flow across
the rotational landscape, Fig. 2(h), and this liquid is classified
a v-liquid. An alternative explanation of concentric double
helices being formed, with the flow down and up the thin film,
of opposite chirality as in the spinning top topological fluid
flow, is expected to give cylinders of self-assembled fullerene Cgo
rather than the observed rods (see above). Any sudden increase
in temperature (A7) with increasing « does not arise from
vibrations induced from the motor or the two bearings at either
end of the tube. This conclusion is based on the notion that
different rotational speeds are needed for a sudden increase in
temperature for a number of liquids, and for different diame-
ters of the tube (20 versus 10 mm OD), along with the
phenomenon being associated with a tilt angle of 45° and that
this is independent on the choice of motor driving the rotation
of the tube. If it were simply an artefact of the drive system, the
behaviour would always appear for every liquid at some fixed
rotational speed. Moreover, the position for rapid change in
temperature of the liquid is independent of the volume of liquid
in the tube, and with minimal change from one tube to another
of the same diameter (ESI Section 27). These results rule out
instrumental contributions being responsible for generating
the observed effect. The volume independence of the position of
AT suggests a characteristic film profile for a particular rota-
tional speed, for all volumes up to the equivalence of contin-
uous flow (liquid at the maximum height up the tube). Less than
this will have fingering instability of the liquid beyond the edge
where the film thickness is constant.” Identifying positions of
AT and change in volume/film thickness at § = 45° provides
a powerful method to rapidly establish the rotational speed for
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transitioning from spicular-like fluid flow to double-helical
flow, and for double-helical flow of one diameter to a double-
helical flow of a smaller diameter tube, as in a 1 : 1 mixture of
DMF and o-xylene, for any liquid, without the need for prior
knowledge of the properties of the liquid. High speed photog-
raphy of water in a 10 mm OD tube reveals that as the speed
increases, helical waves appear along the tube (distinctly
different to the above double-helical flow) (ESI Section 4 and
Movie S21). However, they disappear at ~5.6k rpm, where
beyond this speed there is a plateau region of constant average
film thickness, Fig. 2(k). This approximates to  for a sudden
drop in volume of liquid in the film (and drop in film thickness),
Fig. 2(a) (and ESI Section 5f). A constant thickness for
increasing rotational speed is consistent with double-helical
flow being maintained but with a reduction in pitch of the
double-helix as the rotational speed increases, Fig. 1(f),
presumably preserving wP (P = pitch of the double-helix in the
fluid flow). As the pitch decreases for increasing speed,
a threshold will be reached where the distance between oppo-
site flow up and down the helix cannot be maintained, where
the length scales of the Faraday wave and spinning top Coriolis
flows are comparable, Fpw ~ Fc, Fig. 1(e), creating a dynamic
equilibrium state through the combination of the two flow
patterns. Increasing « further results in a thinner film and
double-helical flow starting with a larger pitch prevailing over
the spinning top flow (Frw > Fc), Fig. 1(g), with moulding
experiments consistent with a reduction in effective diameter of
the double helix, in accordance with reduction in the diameter
of self-assembled cones of Cgg."”

To further understand the fluid dynamic response in the
VFD, we subjected single graphene oxide (GO) sheets (that have
been dispersed in DMF) to different rotational speeds, Fig. 3
(and ESI Section 7). At speeds aligned with a minimum mixing
time in this solvent (4k rpm, Fig. 2(f)), GO is forced into
a morphology of scrolls, Fig. 3(i), corresponding to spinning top
flow, whereas at 5k rpm the GO sheets collapse into globular
shapes that are approximately 1-2 pm in diameter, Fig. 3(ii),
corresponding to spicular flow, and at 8k rpm (the shortest
mixing times), the GO sheets appear to be unaffected. However,
at this speed preformed GO scrolls become disrupted and
unravel if they are introduced or in the starting fluid, Fig. 3(iii),
and preformed globular GO sheets unravel into flat sheets. In
the same way, preformed globular GO at 4k rpm alter their
morphology into scrolls. These results are consistent with GO
being confined during the processing in DMF in a spheroidal
environment at 5k rpm, as in spicular topological fluid flow,
and experiencing a spinning top Coriolis flow dominated
regime at 4k rpm. At 5.5k rpm, the rapid interconversion
between the proposed spicular and double-helical flow results
in shredding of the GO sheets into ca. 100 nm particles,
Fig. 3(iv).

Un-scrolling GO requires another force at play with smaller
dimensionality to the diameter of the scrolls, and this is
ascribed as coming from the resonant vibrational eddy currents
associated with Faraday waves taking on a double-helix
arrangement, Fig. 1(e and f). We have previously established
the ability to wrap bacteria with GO in water within a 10 mm
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diameter tube at 5k and 8k rpm,” and this is now explained as
coming from spinning top flow. We found that recording
changes in temperature in the smaller diameter 10 mm tube are
unreliable (Fig. 2(b)), presumably because of more rapid heat
flow from a thinner film and thinner glass wall of the tube. The
change in film thickness can be used instead to identify the
threshold rotational speed w where different topological mass
transfer patterns prevail as w increases. The Coriolis forces arise
from inertial forces and will therefore be more pronounced for
the smaller diameter tubes, which is demonstrated herein, with
ca. 30% reduction in the dimensionality of the topological flow
for a 10 mm dimeter tube relative to a 20 mm diameter tube (see
below regarding the formation of Cg, cones). The order of the
type of fluid flow in the tube for increasing w is spinning top
flow followed by spicular flow, then double-helical flow, for the
9k rpm rotational speed limit of the VFD housing a 20 mm (or
10 mm) OD tube, as an archetypal o-liquid.

The mixing of a toluene solution of fullerene Cq, with water
in the VFD results in the crystallisation of tubules.>* We have
now established that subjecting a toluene solution of the
fullerene (< saturation level) to shear stress in the VFD, in the
absence of water, results in the formation of self-assembled
fullerene particles as a new form of crystallisation, adding to
the limited number of ways of inducing crystallisation, namely
sublimation, cooling, evaporating, and heating to strip away
surfactants.' Fullerene Cgq, only slowly dissolves in toluene, so
that any particles generated by the induced shear stress do not
rapidly dissolve, with ample time for collecting them by
centrifugation and washing post VFD processing, before
dissolution in reaching the thermodynamically controlled state.
At w values below 6k rpm, spicules are generated uniformly in
size and number of spicules, Fig. 4(a(i)). These are comprised of
~6.5 nm particles of self-assembled Cg, (ESI Section 77). Spic-
ules and the rods formed at rotational speeds above 6k rpm,
Fig. 4(a(ii)) and S7f(c),t can only form and grow under condi-
tions of high mass transfer in the liquid, otherwise they would
re-dissolve under thermodynamic control. Thus, spicules are
a mould of the fluid flow corresponding to a combination of
spinning top flow and double-helical flow, Fig. 1(e and f), with
the edges of the spicules slightly curved, Fig. 4(a(i)). Close
inspection of the rods also reveals slightly curved surfaces,
Fig. 4(a(ii)), and this is consistent with them being formed
under shear within the double-helical liquid flow, rather than
the formation of well-defined crystallographic controlled facets.
Outside of these conditions they would re-dissolve, noting that
the spinning top flow from Coriolis forces no longer dominates
the flow behaviour at high rotational speeds (ca. >6000 rpm)
when the film gets thinner. In addition, the diameter of the rods
(~0.5 pm) is consistent with the overall diameter of the double-
helix (see below). At the transitioning speed for toluene, 6k rpm
(Fig. 2(e), a mixture of spicules and rods are formed, Fig. 4(-
a(iii)). An alternative strategy for fluid flow moulding is the
crystallisation of Cg, using an anti-solvent approach. Delivering
a solution of Cgp in 0-xylene into the base of the rotating tube in
the VFD with another jet feed simultaneously delivering DMF
within which the fullerene is only sparingly soluble (as periodic
drops), results in the formation of cones ~0.5-2.5 pum in

© 2021 The Author(s). Published by the Royal Society of Chemistry
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diameter which are comprised of ~6.5 nm particles of fcc
fullerene Cgo, Fig. 4(b(i and ii)).>® Cones formed in the 20 mm
OD tube have small whiskers running parallel to the symmetry
axis of the cones, and these are more pronounced for cones
generated in the 10 mm OD tube, with the diameter of the cones
reduced by ca. 30% relative to those generated in the 20 mm OD
tube, Fig. 4(b(iii and iv)). The formation of cones is consistent
with the small first formed ca. 6.5 nm particles of Cg, assem-
bling at points of high mass transfer on the surface of the tube,
where the double-helical flow strikes the surface of the tube.
Thermal imaging reveals increasing temperatures for a 1:1
mixture of the two solvents as w increases, Fig. 2(h), which
correspond to ongoing fluctuations in pitch (decreasing then
increasing), Fig. 1(e and g), and consequential change in film
thickness, Fig. 2(h). In the absence of shear on mixing the two
liquids (no VFD), the small nano-particles of the fullerene
aggregate randomly,” whereas in the VFD the ca. 6.5 nm
particles assemble only at the interface of high mass transfer in
the liquid and the surface of the tube, effectively ‘writing’ cones
at the end of the double-helix which itself is likely to be rotating
along the axis of the helix, with all the cavities facing in the
same direction. Given that the cones are formed under
continuous flow whereby the product primarily exits the top of
the VFD tube, any attachment to the tube through their apex
must be weak and at the nm dimensions. Indeed, breaking
a tube post-VFD processing revealed some cones attached to the
surface of the tube through their apical positions, Fig. 4(b(v))
(and ESI Section 7). Clearly the residence time of such struc-
tures near the surface of the tube is maximised and sufficient
for them to adhere. Within the liquid, the combination of
Faraday waves, Coriolis flow and resonant eddy currents, each
of which tends to dominate in each of the operating regimes,
could have transition points of ‘dynamic equilibrium’ within
the liquid where they effectively oppose each other as the
operating conditions transition between the different regimes
of dominant flow. In such places, mass transport of larger
structures will be relatively slower than at other places within
the liquid, and residence times for interaction with other
smaller species will be longer.

Given the frailty of the point of attachment of the cones to
the surface of the tube through their apex, the formation of
cones does not provide information on the spatial arrangement
of the associated double-helical flow. For this, we explored the
possibility of double-helical flow generating holes in a thin layer
of polymer attached to the inner surface of the tube, with pol-
ysulfone as the polymer of choice. Surprisingly the arrangement
of holes that potentially arise from double-helices was deter-
mined from the surface of the polymer attached to the glass
tube rather than the surface in contact with the liquid. Peeling
the polymer from the glass surface revealed lines of regularly
arranged holes several pm in diameter, Fig. 4(c) (and ESI
Section 8%), which have the dimensionality of the moulding of
the cones, although the solvent here was toluene with the tube
rotating at 7k rpm, where double-helical flow prevails, Fig. 2(e).
The holes are arranged in lines co-parallel to the rotational axis
of the glass tube. This arrangement demonstrates points of
localisation where the diffusion of material is highest, and can

© 2021 The Author(s). Published by the Royal Society of Chemistry
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explain the ability of double-helical flow to exfoliate graphene
from graphite® and the unscrolling of GO into flat sheets, Fig. 3,
between rows of vertically arranged double-helices that are the
liquid analogy of adjacent rollers used to produce flat sheet
products. The original proposed mechanism involved exfolia-
tion at the interface of the graphite flakes and the surface of the
tube, and/or at the interface of the liquid and graphite held
parallel to the surface of the tube.® The mechanism of formation
of these holes, Fig. 1(d), is potentially understood by the notion
of double-helical ‘molecular drills’ piercing the polymer film,
and when they move to other locations, the centrifugal force
results in collapse of the holes, trapping liquid at the base, with
smoothing of the upper surface. The ability for the fluid flow to
pierce the polymer layer is consistent with the friction associ-
ated with the double-helical flow striking the surface of the tube
thereby increasing the temperature of the liquid, and the
melting the polymer which has an onset of glass transition
>120 °C.* In addition, the pattern of holes is commensurate
with the presence of arrays of Faraday waves on larger length
scales.

Determining the spinning top topological flow as a Coriolis
from the hemispherical base of the tube involved melting and
crystallising elemental bismuth (mp 271.4 °C). As received
bismuth particles, typically 10-20 pm in diameter, Fig. 5(a),
were dispersed in isopropyl alcohol (IPA) in a 20 mm OD quart
tube rotating at 8k rpm for 20 min with § = 45°, at room
temperature and under a nitrogen atmosphere to avoid any
oxidation. This afforded crater shaped bismuth metal, Fig. 5(b-
e) with the SEM image in Fig. 5(f) appearing to be the back of
a crater that was attached to the surface of the tube. Thus the
metal has undergone in situ melting followed by rapid crystal-
lisation with the diameter of the craters ca. 10 to 30 um, which
represents the outside diameter of the spinning top topological
fluid flow, Fig. 5(g). We note that the proposed flow model
represents one possible flow pattern for the spinning top flow,
with an alternative model being similar to that in Fig. 5(g) with
the flow direction being reversed, with the central helical flow of
the spinning top directed onto the surface of the tube. The
exfoliation of graphene in a mixture of toluene and water results
in the spinning of long fibres of graphene scrolls.>” They arise
from multiple sheets being sequentially exfoliated from a single
block of graphite held centrifugally against the surface of the
tube and this is also possible for either direction of flow.

The heat generated as the solvent molecules strike the
bismuth when held to the internal tube surface is sufficient to
melt bismuth, which then rapidly crystallises outside the
craters. Beyond the edge of the craters, rods ca. 10 pm in length
and ca. 200 nm in diameter are present. The origin of these rods
is from the liquid metal being drawn up into the helical flow of
the spinning top which then crystallises under high heat
transfer, with the rods exiting the spinning top and collecting
under centrifugal force on the outside of the crater. The rods
close to the crater are mattered together, ruling out a self-
assembly of the rods associated with drop casting in
preparing the sample for SEM. This implies that there is a flow
pattern near the centre of the spinning top which provides
sufficient updraft to extract material from the bismuth metal
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(density at its melt point 10.022 g cm ™) as the bulk material is
being centrifugally held against the surface of the tube. This lift
coupled with torsional shear stress accounts for the ability of
the VFD to readily exfoliate 2D materials such as graphite and
boron nitride.® Also important here is that the localised heating
of the surface of a 2D starting material is likely to create a lattice
mismatch relative to the cooler layers below, further facilitating
the exfoliation process. We note though that the signature of
IPA is not informative for predicting the optimal rotational
speed for the spinning top Coriolis flow, Fig. S1,} unlike many
of the other solvents studied herein.

The reaction of BSA with glutaraldehyde in the VFDina3: 1
mixture of ethanol and water as PBS, a B-liquid with spicular
flow, Fig. 2(g), results in the formation of porous polymeric
hollow spheres with other ratios of the two solvents ineffective
in forming uniform sized hollow spheres,*® and having different
signatures (ESI Section 27). Higher rates of polymerisation are
expected where there is high mass transfer,” i.e. within the
spicules, with the polymer then building up at the closest
proximity with low shear, on the surface of a sphere with holes
representing where the spicules protruded, Fig. 6(a and b). The
formation of the holes on the surface of the spheres is also likely
to depend on the ability to organise anisotropic shaped BSA into
3D structures. This material then represents a ‘negative’ mould
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of spicular flow, with the formation of the Cg, spicules as the
‘positive’ mould. The size of the porous spheres is ca. 10-38%
smaller for the 10 mm tube relative to the 20 mm tube, Fig. 6(b)
(and ESI Section 97), as for the formation of Cg, cones in the
smaller tube. The number of holes in each sphere (=number of
spicules of fluid flow) varies for each sample preparation for
different operational parameters of the VFD, as is the case for
the formation of spicules of Cg, Fig. 4(a).

Terephthalate/Zn MOF5 formed using batch processing,> as
cuboid particles varying from sub-micron to micron dimen-
sions, is commonly synthesised in coordinating solvent such as
DMF. Confined mode synthesis in DMF in the VFD at 110 °C
also produces cuboids of the same structure (Fig. 7 (a-d)) (and
ESI Section 10t), except for processing below 5.5k rpm, where
spicular flow prevails, Fig. 2(f), which generates cuboids with
irregular shaped cavities on each face. The cavities are then the
‘negative’ moulds of high shear at the spicules, with any crys-
tallisation in the cavities likely to lead to shear stress dissolu-
tion, and regrowth on the faces, away from the high shear. Thus,
nucleation and growth of MOF5 provides a partial mould of
spicular flow, with the position of spicular flow in DMF at 110 °C
at ca. 4k rpm, which is 1.5k rpm lower than such flow at room
temperature, Fig. 2(f).

II |Ill--
o © © © ©

288
S OO0 oS oo
M T HOR o6

Diameter (nm)

-
=3
=1
I

o o oo o
22233

8888

S S o

~ © S
=1

® F 1 ©
Diameter (nm)

300 =

2888888
S o oo o
h e RN o & O
-

m

200 1

=]
=]
<

Diameter (n

Fig. 6 Moulding polymer growth. (a) Schematic of the formation of porous spheroidal particles of cross linked BSA with glutaraldehyde formed
in the VFD under confined mode BSA in aqueous 10 mM PBS of pH 7.4 (1 mg mL™) to ethanol ratio 1: 3 (300 : 900 pL) and 15 pL of glutar-
aldehyde, using (b) 0.5 mL of combined solution in a 10 mm OD tube for 1 min at 3k, 5k and 7k rpm (i—iii) respectively, and 1 mL of combined
solution for a 20 mm OD tube, for 1 min at 3k, 5k and 7k rpm (iv—vi) respectively, reporting SEM images and derived particle size distributions from

100 randomly chosen spheres.
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Fig. 7 Moulding metal organic frameworks. (a) Schematic of the synthesis of MOF5 where terephthalic acid (63.3 mg) and triethylamine (106.3
pl) were dissolved in 4.9 mL of DMF and Zn(OAc),-2H,0 (169.9 mg) was dissolved in 5 mL of DMF. For a typical VFD experiment, 556 pL of zinc
solution was added to 444 L terephthalic acid solution followed by 20 mm VFD processing for 30 min at 110 °C. (b and ¢) SEM and AFM images
respectively for MOF5 formed at 110 °C for 30 min at 4k rpm. (d) Variation in morphology of the particles formed under the same processing as
a function of rotational speed (i—vi), 3k, 4k, 5k, 5.5k, 6k and 7k rpm, respectively, for the confined mode of operation of the VFD for 30 min,
showing SEM images and particle size plots, determined by randomly counting 100 particles.

The above results provide a model of fluid flow within the
VFD that can empirically describe the behaviour that is thought
to occur to produce the very real nanostructures observed. At the
minimum mixing time, the high shear spinning top flow, at
most a few pm in diameter, is thought to prevail. Beyond this
rotational speed, the model considers Faraday waves combining
with Coriolis spinning top flow, with the lines of high shear
fluid flow on the surface of a spicule. At greater rotational
speeds as the mixing times peak, Faraday waves dominate,
where double-helical eddies associated with them are normal to
the thin film. For other liquids, double-helical flow dominates
across values of rotational speed. Eddies associated with
Faraday waves are twisted into double-helices by the spinning
top flow, with flow up one strand of each helix, and down the
other. Superimposing the associated vectors of flow with those
of the spinning top flow, the length scales of the flows are
comparable (FC ~ Fgy), which necessarily creates a flow of
liquid around a sphere. Here a full turn of the double-helix
being the diameter of the double-helical Faraday waves eddies
corresponds to the diameter of the spinning top flow, Fig. 1(e).
The spicular flow sphere of influence is approximately 1-2 pm
for the 20 mm diameter tube, and ca. 30% smaller for the
10 mm OD tube. For spicular flow, the diameter of the double-
helix is defined by the diameter of the fullerene Cg, spicules,
and thus the diameter of the associated double-helix, dpy,
Fig. 1(e). For dpy ca. 2 pm, and assuming that for one rotation of

© 2021 The Author(s). Published by the Royal Society of Chemistry

the VFD tube, that eddies complete a full turn of the double-
helix, ca. 5 pm, then at 6k rpm (100 Hz), the velocity of the
molecules in the double-helical flow is ca. 0.5 mm s~ . This is
consistent with the shear stress in the VFD increasing the
average velocity of the molecules, without external heating, and
that the system has regimes which are not limited to diffusion
control processes. Moreover, for increasing rotational speeds,
with Faraday wave dominated flow patterns (Fgw > Fc), the path
length of fluid flow induced by each rotation of the tube will
decrease, and this explains why the enhancement effects of the
VFD diminish above ca. 8k rpm in a 20 mm OD tube.? Overall,
the established fluid flow model, while speculative, explains all
of the processing that has been observed in the VFD, including
protein folding and enzymatic rate enhancements, with double-
helical flow and associated pressure fluctuations from the
Faraday waves themselves effective in accelerating enzymatic
reactions.’ It also accounts for the unique rotational depen-
dence for an enzyme, which relates to their different sizes and
shapes.?

Conclusions

We have established the topological features of high shear
fluid flow in the vortex fluidic device (VFD) at sub-micron
dimensions, at a tilt angle of 45°, which corresponds to the
optimal angle for a myriad of applications of the device.>” The
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rotational speeds for high shear spinning top flow (F¢ > Fgw),
spicular flow (F¢ ~ Fgw) and double-helical flow (F¢ < Fgw) can
be determined by measuring changes in temperature and
mixing times, and average film thickness as a unique signature
for any liquid. Sudden increases in temperature of the liquid
correspond to discontinuities in fluid flow, with a sudden
reduction in film thickness for increasing rotational speed
rather than continuously changing film thickness, as a new
phenomenon in thin films. The proposed flow patterns in the
VFD provide insights that allow us to predict and control the
formation of nanostructures in the VFD, but these models still
require real-time tracking of fluids at sub-micron dimensions
for verification. The flow patterns also provide an under-
standing of the advantages of VFD processing relative to using
other methods, and indeed where the VFD processing is
without precedent. Also noteworthy is that the unique signa-
ture for a liquid in the VFD provides insight into how
increasing the concentration of reagents in precursor solu-
tions, which can potential alter such a signature, can result in
different processing outcomes.*®*’

The present work also established that the VFD is effective in
creating systems in non-equilibrium states, in establishing a new
form of crystallization induced by shear stress, adding to the
ubiquitous methods of sublimation, cooling and evaporating, and
also stripping away surfactants.” Also of note is the ability to create
novel spicule structures which map out the high mass topologies in
a liquid, or the ‘negative’ of these structures where material formed
in the spicular fluid flow under high shear assemble at the closest
points of low shears, in between the spicules.

With the VFD and an understanding of its operating
regimes, structures are moulded with predictable shapes by the
mechanical force of fluid flow and diffusion of species within
the liquid. Fundamentally, the vast differences in the
morphology of the resultant structures between the three
topological fluid flow regimes must result from unique diffu-
sion behaviour within the liquid. Thus, the VFD demonstrates
the ability to mediate or control both the forces exerted by the
liquid on nanostructures and the diffusion of species supplied
to their surface. The findings also have implications on using
shear stress driven boundary mediated control of fluid flow for
controlling self-assembly and chemical reactions under non-
equilibrium conditions, and manipulating cells under tune-
able stress regimes, which are areas we are -currently
investigating.

As an example of the ability now to predict the processing
requirements and application of the VFD, we recently estab-
lished that spicules of fullerene Cqo can be generated on the
surface of polystyrene beads.* This is for beads of a specific
diameter suspended in a non-saturated toluene solution of Cg,
using a quartz tube of a specific diameter spun at the rotational
speed corresponding to spicular flow present at the ubiquitous
tilt angle of 45°. Such coating of polystyrene beads is not
possible using conventional batch processing. In the same way
we envisage the ability to access other composite nanomaterials
using the VFD, along with the ability to control their size, shape
and morphology, as well as crystallinity.
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