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CdTe-2.4 eV quantum dots (QDs) show excellent efficacy due to their
tunability and photo-potentiation for sterilizing drug-resistant plank-
tonic cultures without harming mammalian cells but this QD fabri-
cation has not been tested against biofilms. While the QD attack
mechanism—production of superoxide radicals—is known to stimu-
late biofilm formation, here we demonstrate that CdTe-2.4 eV QD-
antibiotic combination therapy can nearly eradicate Escherichia coli,
methicillin-resistant Staphylococcus aureus, and Pseudomonas aeru-
ginosa biofilms. CdTe-2.4 eV QD versatility, safety, and ability to
potentiate antibiotics makes them a potential treatment strategy for
biofilm-associated infections.

Antimicrobial resistance already threatens our ability to treat
infections, perform surgery, and manage immunocompromis-
ing conditions, effects which are compounded by improper use
of existing antibiotics and insufficient research into new treat-
ments for multi-drug resistant (MDR) bacteria.'™ Many treat-
ment options are tested against planktonic bacterial cultures
but at least 60% of clinical infections involve biofilms,
a common bacterial growth form contributing to increased
resistance to immune and antibiotic attack.>” Current strate-
gies for biofilm-associated infections include antibiotic
combinations or elevated doses, perpetuating the development
of MDR bacteria while risking increased toxicity and secondary
infections for the patient.*® These challenges underscore the
need for alternative, dynamic therapies for MDR bacteria which
are also capable of clearing bacterial biofilm-associated
infections.*

Superoxide-generating light-activated quantum dots (QDs)
can potentiate antibiotic treatments in vitro without harming
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mammalian cells."**> Upon QD absorption of a photon,
a generated electron-hole pair collapses via an oxidation-
reduction reaction, generating intracellular superoxide.** Like
macrophage oxidative burst, concomitant reactive oxygen
species (ROS) damage cellular DNA and metabolic pathways.**
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Fig. 1 Method & experimental design. (A) Biofilms were grown for 48
hours from 1:1 x 10° dilutions of each bacterial strain. Antibiotics
(ABX) and CdTe-2.4 eV quantum dot (QD) treatments in growth
medium were added for 8 hours with white LED light to activate the
QDs. (B) Post-treatment wells were rinsed 3 times with phosphate-
buffered saline (PBS) to remove planktonic cells and waste. Biofilms
were measured via 1 of 3 methods: (1) crystal violet (CV) staining, (2)
Resazurin metabolic assay, or (3) counting colony forming units (CFU).
CV stains were solubilized in 70% ethanol and absorbance (abs)
measured at 595 nm. Biofilms metabolized Resazurin for 2 hours
before being measured at excitation (ex) 530-570 nm and emission
(em) 580-620 nm. Absorbance and fluorescence was measured with
a TECAN GENios Microplate reader. Biofilms were manually scraped
off of each well using a pipette tip, then diluted in PBS and plated for
CFU.
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QD fabrication also allows for selection of materials, oxidation
and reduction potentials, size, and surface chemistry, making
QDs modifiable as needed to address a variety of infectious
agents.” Their small size and tunable properties facilitate
diffusion through tissues and cellular uptake enabling unpar-
alleled control over localized treatment.**> While various QD
fabrications have been used as nanotherapeutics for eradica-
tion of bacterial biofilms, they are predominantly carbon-based
and cannot be localized in the host to the site of infection.">**
The cadmium telluride (CdTe) QDs characterized by Courtney
et al. and used in these experiments are approximately 2-4 nm
in diameter with a 2.4 eV bandgap and conduction band aligned
with the reduction potential of dissolved oxygen.''>** These
features make CdTe-2.4 eV QDs excitable by =517 nm light to
produce only localized superoxide which specifically targets
bacteria."»***' Only nanomolar concentration of CdTe-2.4 eV
QDs are necessary to kill bacteria, making them safe and non-
toxic to mammalian cells.*>***>?* The flexibility and safety of
CdTe-2.4 eV QDs make them particularly well-suited for anti-
microbial applications.

Despite the promise of CdTe-2.4 eV QDs, biofilms present
unusual challenges. Resident bacteria diversify their gene
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stressors such as antibiotic treatment through horizontal gene
transfer of resistance genes—and surround themselves with an
extracellular polymeric matrix, which may impede diffu-
sion.*”?* The CdTe-2.4 eV QD killing mechanism (superoxide
generation) also may encourage biofilm formation rather than
eradication.”*?® Here, we explore the QD-biofilm interaction to
reveal an alternative option for treating clinically-relevant
bacterial infections that form biofilms.

We demonstrate synergy between 2.4 eV CdTe QDs and sub-
Clinical & Laboratory Standards Institute (CLSI) breakpoint
antibiotic treatments to early-stage, static Escherichia coli (E.
coli) MG1655, methicillin-resistant Staphylococcus aureus
(MRSA), and Pseudomonas aeruginosa (PAO1) biofilms. Used
separately, effective concentrations of CdTe-2.4 eV QDs and
antibiotics enhanced biofilm growth in clinical isolate strains
compared to no treatment controls. Each strain, however,
showed susceptibility to at least one CdTe-2.4 eV QD-antibiotic
combination treatment (QD-ABX).

Biofilms were grown from 1: 1 x 10> overnight cultures for
48 hours in 96-well U-bottom plates as described by O'Toole* in
conditions ideal for each strain (ESI Table S1}), summarized in
Fig. 1a. The biofilms were incubated with treatment brought to
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Fig.2 CdTe-2.4eV QD treatment of E. coli MG1655 biofilm. Normalized 2 hour RFU and CFU were determined from the ratio of fluorescence of
treatment conditions relative to the no treatment control. (A) Normalized CFU and RFU data of 48 hour biofilms post-treatment show corre-
lation, indicating Resazurin is a viable measurement of biofilm viability. (B) CV staining shows a similar trend to normalized RFU, however, CV is
not as sensitive due to its staining of extracellular material. (C) Heatmap shows biofilm viability post-treatment, where darker maroon indicates
lower cell viability. Synergy S-values (calculated by subtracting RFU of the combination therapy from the product of RFU of its component
monotherapies) are indicated within the white, bottom, right corners of each combination respectively. Full bar plots corresponding to each
combination are shown in ESI Fig. S1, S2 and Table S2.1 (D) Comparison of normalized RFU of the combination therapy and component
monotherapies corresponding to the most statistically significant S-value (highlighted in (C) with a gray box). Treatment p-values were calculated
with respect to the no treatment controls and synergy p-values were calculated with respect to the product of component monotherapies.
These p-values are indicated by asterisks (1 asterisk = p = 0.02, 2 asterisks = p = 0.001). Data shown is an average of five biological replicates and
error bars represent standard deviation. [Abbreviations: Relative Fluorescence Units (RFU), Colony Forming Units (CFU), Crystal Violet (CV), CdTe-
2.4 eV quantum dots (@D), Kanamycin (Kan)].
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white LED-light for 8 hours to activate the CdTe-2.4 eV QDs.
Post-treatment wells were screened for viability via (1) crystal
violet (CV) staining, (2) 2 hour incubation with Resazurin
metabolic assay, or (3) counting colony forming units (CFU)
(Fig. 1b). Normalized Relative Fluorescence Units (RFU), CFU,
and CV absorbances were calculated relative to untreated
controls for each strain, respectively.

We used E. coli MG1655—a well-established model strain—
to inspect correlation among the 3 biofilm viability assays. A
significant correlation (R = 0.88993, p = 0.01751) between
normalized RFU and CFU measurements for increasing CdTe-
2.4 eV QD doses, provides evidence for the use of Resazurin as
an accurate, high-throughput assay of biofilm viability (Fig. 2a).
While CV-stained post-treatment biofilms show a trend
consistent with that captured by Resazurin, CV stains any
organic matter, resulting in artificially elevated measurements
that did not represent viable cells. We analyzed QD-ABX synergy
with S-values, which were calculated using the Bliss indepen-
dence model by subtracting normalized RFU of QD-ABX
measurements from the product of their component mono-
therapies (S > 0 indicates synergy, S < 0 indicates
antagonism).**3*

CdTe-2.4 eV QD-monotherapies were effective for E. coli
MG1655 showing dose-dependent effects (Fig. 2a—c). An 800 nM
CdTe-2.4 eV QD dose cleared biofilms nearly to the same degree
as 16 pg mL~ ' kanamycin. Though low doses of CdTe-2.4 eV QD
(100-200 nM) and antibiotic (4-8 ug mL ™" ampicillin, 2-4 pg
mL~' gentamicin) monotherapies achieved little Kkilling
(Fig. 2c), in combination their effects were amplified, signifi-
cantly killing 48 hour biofilms with high synergy. Overall, E. coli
MG1655 S-values were small since biofilms responded well to
monotherapies (Fig. 2c). Fig. 2d shows that QD-ABX can negate
the biofilm stimulation of sub-breakpoint ampicillin mono-
therapy. Though E. coli MG1655 already responded to CdTe-
2.4 eV QD and antibiotic monotherapies, we achieved more
robust killing with lower QD-ABX combination. We confirmed
that the QD-ABX treatments were killing resident bacteria rather
than triggering dispersal by testing the viability of media post-
treatment (Fig. S2-S51).

After demonstrating experimental proof-of-concept with E.
coli MG1655, we tested QD-ABX on clinical isolates MRSA (for its
relevance in dermal infections) and PAO1 (for its prevalence in
lung infections).>*** Bacteria establish biofilms in response to
environmental stressors, including ROS. MRSA established
significantly larger biofilms with CdTe-2.4 eV QD or sub-
breakpoint gentamicin treatments compared to the untreated
control (Fig. 3a). In combination, however, CdTe-2.4 eV QDs
with 2 ug mL ™" gentamicin significantly reduced MRSA biofilm
mass with high synergy (S = 2.46 in Fig. 3b).

CdTe-2.4 eV QD-monotherapy showed no significant varia-
tion in PAO1 biofilms (Fig. 3c). Furthermore, sub-breakpoint
doses of gentamicin (2 pg mL™") showed dramatic variation
(visualized in Fig. 3d by the large error associated with 2 pg
mL~! gentamicin monotherapy), suggesting that effects of
antibiotic monotherapy may vary with the bacterial population,
making their efficacy difficult to predict. QD-ABX showed far
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more consistent results, even at mild concentrations, with
reasonably high S-values.

As tested antibiotic concentrations increased, S-values
decreased as antibiotic monotherapies were sufficient for bio-
film clearance. For both clinical isolates, CdTe-2.4 eV QDs
potentiated lower concentrations of antibiotics to eradicate
established biofilms. Similar to E. coli MG1655, we confirmed
killing rather than dispersal of biofilm bacteria by measuring
the viability of post-treatment media (MRSA in Fig. S7-S9, PAO1
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Fig. 3 CdTe-2.4 eV QD treatment of MRSA and PAQOLl biofilms.
Normalized RFU (ratio of fluorescence of treatment conditions relative
to no treatment for each strain, respectively) shows post-treatment
biofilm viability for (A) MRSA and (C) PAOL, where darker maroon
indicates lower viability. Synergy S-values (calculated by subtracting
RFU of the combination therapy from the product of RFU of its
component monotherapies) are indicated within the white, bottom,
right corners of each combination respectively. Full bar plots corre-
sponding to each combination are shown in ESI Fig. S6 and Table S3}
for MRSA and ESI Fig. S10 and Table S4f for PAOLl. Comparisons of
normalized RFU of the combination therapies and component mon-
otherapies corresponding to the most statistically significant S-values
(highlighted in (A) and (C) with a gray box) are shown for (B) MRSA and
(D) PAOL. Note that component monotherapies induce significant
biofilm growth for MRSA biofilms rather than eradication. The large
error bar associated with 2 ng mL™ gentamicin monotherapy in panel
(D) shows the unpredictable efficacy of low antibiotic dosages against
PAOL1 biofilms, which is resolved by combination therapy. Treatment
p-values were calculated with respect to the no treatment controls
and synergy p-values were calculated with respect to the product of
component monotherapies. These p-values are indicated by asterisks
(1 asterisk = p = 0.02, 2 asterisks = p = 0.001). Data shown is an
average of five biological replicates and error bars represent standard
deviation. [Abbreviations: Relative Fluorescence Units (RFU), CdTe-
2.4 eV quantum dots (QD)].
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in Fig. S11-S13}). CdTe-2.4 eV QD and sub-breakpoint mono-
therapies risk inadvertent biofilm stimulation, but CdTe-2.4 eV
QD-antibiotic potentiation eliminates this concern, with
synergy suggesting enhancement or reversal of CdTe-2.4 eV QD
or sub-breakpoint antibiotic monotherapies.

CdTe-2.4 eV QDs show potential not only for alternative
therapies but also sterilization of surfaces prone to biofilm
growth (such as faucets and implanted medical devices). This
research lays a foundation for future work in treating late-stage
biofilms with flow (to more accurately model clinical and
industrial conditions). CdTe-2.4 eV QDs are activated by visible
light, which limits their application to surface infections.
Future work will explore the application of near-infrared light-
activated indium phosphide quantum dots to establish
similar foundational work for the treatment of deep-tissue
biofilm-associated infections.’” QD-ABX eradicate biofilms
with milder dosages (protecting patient microbiomes) and
holistic disruption of cellular function (slowing MDR develop-
ment). The versatility, safety, and ability to potentiate antibi-
otics makes CdTe-2.4 eV QDs a prime therapeutic candidate for
persistent bacterial biofilm-associated infections.
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