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1. Introduction

Biological sensing and imaging are becoming increasingly
for
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Gold nanomaterials for optical biosensing and
bioimaging
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Gold nanoparticles (AuNPs) are highly compelling nanomaterials for biomedical studies due to their unique
optical properties. By leveraging the versatile optical properties of different gold nanostructures, the
performance of biosensing and biomedical imaging can be dramatically improved in terms of their
sensitivity, specificity, speed, contrast, resolution and penetration depth. Here we review recent advances
of optical biosensing and bioimaging techniques based on three major optical properties of AuNPs:
surface plasmon resonance, surface enhanced Raman scattering and luminescence. We summarize the
fabrication methods and optical properties of different types of AuNPs, highlight the emerging
applications of these AuNPs for novel optical biosensors and biomedical imaging innovations, and
discuss the future trends of AuNP-based optical biosensors and bioimaging as well as the challenges of
implementing these techniques in preclinical and clinical investigations.

management due to their non-invasiveness, near real time
feedback, high accuracy and reliability. Optical biosensing
enables continuous monitoring of key health metabolites
using wearable and hygienic devices. Optical imaging provides
high-resolution images and does not require the use of
radioactive contrast agents. These two techniques are further
empowered by the development of nanotechnology, which
significantly enhances their sensitivity, contrast, specificity
and multiplexibility. Gold nanoparticles (AuNPs) are some of
the most investigated nanotechnological tools for optical
biosensing and bioimaging due to their easy fabrication,
chemical stability, outstanding biocompatibility and versatile
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optical properties. By engineering the shape and size of
AuNPs, one can tune many optical properties of AuNPs
including localized surface plasmon resonance (LSPR), ratio
between light absorption and scattering coefficients, surface
enhanced Raman scattering (SERS), fluorescence, etc. To date,
researchers have fabricated dozens of Au nanostructures,
including nanospheres (AuNS)," nanorods (AuNR),>* nano-
shells (AuNSh),>™* nanoprisms (AuNPr),"*** nanopyramids
(AuNPy),"*  nanobipyramids  (AuNBP),"”"  nanocages
(AuNC),>*>* nanorings (AuNRg),*>° nanodisks (AuND),?>3°
nanostars (AuNSt),**** nanorice,* nanobowls,* nanocrescents
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(AuNCr),**?* etc. (Fig. 1), each of which offers unique optical
properties. In this article, we provide an overview of recent
advances in optical biosensing and bioimaging techniques,
which are enabled or enhanced by the unique optical proper-
ties of Au nanostructures. We focus on discussion of emerging
biosensors and biomedical imaging which leverage the unique
LSPR, SERS and luminescence properties of various gold
nanomaterials (Fig. 2).
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Fig. 1 Au nanostructures of different shapes and sizes with potential applications in optical biosensing and bioimaging: (A) 16 nm AuNS;* (B)
AuNR;® (C) Au nanorice;®*® (D) AuNSh;* (E) AuNC;® (F) tipless AuNPy;* (G) AuNRg;?® (H) AuNSt;*2 (1) AuNPr;* (J) AuNBP;* (K) AuND;?? and (L)
AuNCr 3* Figures are adapted from references with permission. Copyright (2003, 2006, 2007, 2011, 2017) American Chemical Society. Copyright

(2009) Elsevier Ltd.

2. Optical imaging and sensing based
on the LSPR of AuNPs

2.1 Optical biosensing based on LSPR shift

Compared to other metal nanoparticles exhibiting LSPR, AuNPs
have been found to be the most suitable due to their non-
reactive nature and cost-effectiveness. AuNP-based biosensors
designed by utilizing this property can be categorized into two
different types: one relates to analysis of target analytes based
on colorimetric methods developing color due to the aggrega-
tion of nanoparticles, and the other utilizes the change in the
refractive index of AuNPs for detection.’”” The former assay
requires a colloidal solution of AuNPs, whereas the latter
method is based on a single AuNP which is usually mounted on
a substrate.

AuNP-based colorimetric bioassays are some of the most
successful optical biosensors as they involve fewer steps for
detection and have also been commercialized. They are based
on the wavelength shift caused by changes in interparticle
distance.*®*** The most common example is the pregnancy test

© 2021 The Author(s). Published by the Royal Society of Chemistry

kit in which specific antibody-coated nanoparticles show pink
color on aggregation upon mixing with a solution containing
the particular hormone.* Improved sensitivity and selectivity
have been achieved by modifying AuNPs with other nano-
materials to make composites because the key objective in these
assays is to control the inter-particle forces to manage aggre-
gation. These types of assays are very simple and do not require
any sophisticated instrumentation, and thus can be conve-
niently merged with smartphone imaging to make digital
monitoring suitable for near-patient testing platforms.*>** A
microfluidic colorimetric biosensor for E. coli detection based
on AuNP aggregation was demonstrated by Zheng et al.** It was
based on HRP + H,0, + tyramine (Fig. 3). The device consisted
of two mixing channels, one separation channel and a detection
channel. Magnetic nanoparticle-modified E. coli capture anti-
bodies, detection antibodies, catalase and a sample containing
E. coli were first introduced into mixing channel 1. The
magnetic nanoparticle-tagged bacterial conjugates containing
the catalase enzyme were separated in the separation chamber.
These bacterial conjugates were then mixed with hydrogen
peroxide solution and then mixed with AuNP solution and

Nanoscale Adv., 2021, 3, 2679-2698 | 2681
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Fig. 2 Various optical biosensing and bioimaging techniques based on AuNPs.

crosslinking agents in the second mixing channel. The phenolic
hydroxyl moieties resulted in the aggregation of AuNPs and
color change from blue to red (Fig. 3B). Dynamic light scattering
studies showed that the size of AuNPs changed from ~13 nm
before aggregation to ~670 nm after aggregation and UV-visible
studies showed that the aggregated AuNPs showed an absorp-
tion peak at 630 nm. This color change was detected using an
app on a smart phone. Similarly, in another attempt to exploit
the color changing property of AuNPs upon aggregation,
a cysteine detection biosensor was designed in which the
cysteine functionalized AuNPs did not form aggregates and thus
no change in color occurred (Fig. 3C and D).*

Recent successes in the field of biosensors influenced by
other fields have led to improved investment in colorimetric
assays for point-of-care diagnostics.** Still, there remains the
major challenge of avoiding non-specific aggregation triggering
a color change in high ionic strength samples, including serum
and urine. Other issues of concern include sample pretreatment
requirements and lack of integration with other platforms.
These limitations must be resolved and new strategies need to
be developed to investigate different designs of AuNP-based
biosensors.*® Assembly-induced or aggregation-based colori-
metric assays were developed and widely used for nucleic acid
detection by the Mirkin research group.**** They used AuNPs of
size ~13 nm with an absorption band from 519-524 nm to tag
single stranded DNA fragments and upon hybridization the
decrease in distance between the AuNPs resulted in a color
change. For example, the color of the solution containing

2682 | Nanoscale Adv, 2021, 3, 2679-2698

unhybridized DNA was red and upon hybridization the color
changed to blue due to the aggregation of AuNPs.” In another
attempt, two different DNA sequences were identified on
a single glass slide array.*®* Two different DNA fragments func-
tionalized with ~50 nm and ~100 nm AuNPs were made for
hybridization with probe DNA immobilized on the designed
array and the color change occurring due to the aggregation of
AuNPs was observed. The DNA fragments tagged with 50 nm
AuNPs showed green color at a maximum absorption wave-
length of 542 nm on the array after the hybridization event and
the other tagged with 100 nm AuNPs showed orange color with
a maximum absorption wavelength of 583 nm. Thus, the single
array was able to differentiate between two different DNA frag-
ments. In addition to nucleic acid detection, colorimetric
sensors are among the most popular and the simplest methods
designed for microbial detection. Bui and coworkers* reported
a highly sensitive colorimetric immunoassay (without enzyme)
based on plasmonic AuNPs of size 15 + 2 nm conjugated to
cysteine-loaded liposomes. A chemical cascade reaction due to
the presence of a pathogen in the sample caused a visible color
shift from red with an absorption peak at 520 nm to dark blue
with two bands at 520 nm and 650 nm. The breakdown of
cysteine-loaded nanoliposomes due to the presence of the
microbes in the sample caused the aggregation of gold nano-
particles, resulting in a visible color change and pathogen
detection. The fabricated sensing system was capable of visually
detecting single cells of Listeria, E. coli 0157 and salmonella. In
another study, Li and colleagues® proposed a visible

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 AuNP-based optical biosensors. (A—E) A smartphone-based biosensor for colorimetric detection of E. coli O157:H7. (A) General sche-
matic of the functioning of the biosensor; (B) results of mixing AUNPs with different combinations of cross-linking agents; (C) hue of the mixtures
of the AuNPs with different combinations of cross-linking agents; (D) TEM image of the AuNPs before aggregation; (E) TEM image of the AuNPs
after aggregation. Figures have been adapted from ref. 42 with permission from Elsevier, copyright 2019. (F and G) A AuNP-based Cys detection
biosensor; (F) working principle of the biosensor and (G) SPR band intensity changes for B-CD AuNPs in the presence of incremental addition of
Cys (the inset shows the digital images of B-CD AuNPs in the absence (i) and presence (ii) of Cys). Figures have been adapted from ref. 43 with

permission from the Royal Society of Chemistry, copyright 2020.

colorimetric sensor using AuNPs with various surface charges
allowing fast and differential response to 15 pathogens with
different surface electronic properties in five seconds. A specific
color shift pattern due to the interaction of gold nanoparticles
and microorganisms was obtained for each of the microor-
ganisms. The advantages of the proposed sensor are its
simplicity, rapidness, and visual and label free detection. In
addition, the proposed sensor is applicable in environmental
monitoring and clinical diagnostics. Recently You et al*
fabricated a visual colorimetric nitrocellulose membrane strip-
based sensing assay for Gram positive bacteria by using
vancomycin-modified gold nanoparticles and one-pot reaction.
They took advantage of the broad spectrum inhibiting activity
against Gram-positive bacteria of the vancomycin antibiotic and
9.5 nm spherical AuNPs. The assay could differentiate between
Gram-negative and Gram-positive bacteria. The obtained
detection limits with the naked eye for all Gram-positive S.
aureus, M. luteus, and B. subtilis were 1 x 10° cells per mL, and
there was no interaction of the synthesized complex with Gram-
negative bacteria such as E. coli. The proposed sensing array was
able to detect S. aureus in tap water and orange juice.
Refractive index-based biosensors utilize the fact that the
LSPR of AuNPs is sensitive to the changes near their surface,
enabling them to monitor the biomolecular interactions with

© 2021 The Author(s). Published by the Royal Society of Chemistry

ultrahigh sensitivity. This is a label-free technique compared to
the colorimetric assays. It has the advantage of preserving the
structures of biomolecules and has been utilized to study the
complete reaction kinetics and protein interactions. The plas-
mon resonances of different Au nanostructures have been eval-
uated to improve the performance and sensitivity of SPR assays.
Even the amplification of SPR signals has been demonstrated by
utilizing the coupling of LSPR of AuNPs with the propagating SPR
signal of Au films leading to enhanced incident angle shift and
higher sensitivity.>> Active research is being conducted by
different research groups to bring this technology to the market.
However, challenges such as improvement in sensitivity, selec-
tivity, detection limit, detection time and multiplexing capabil-
ities need to be addressed. Using dark field microspectroscopy,
Nusz and coworkers demonstrated that gold nanorods of
dimensions 74 + 9 nm (length) and 33 + 6 nm (diameter)
conjugated with biotin can detect streptavidin molecules at
a sensitivity of 1 nM.* It is also possible for the system to detect
serum proteins with nanomolar sensitivity.** The wavelengths
studied in both the cases range from 700 to 800 nm. The readers
can refer to the review article published by Hafner et al.>® for more
details regarding LSPR refractive index sensors. Here we focus on
applications of this technique for bacteria detection. LSPR-based
refractive index sensors have been used as a real time and rapid

Nanoscale Adv., 2021, 3, 2679-2698 | 2683
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methodology for bacteria detection by using different types of
bioreceptors. However, in some measurements, interference of
bacteria size can affect the detection limit, and in some cases,
large size, high cost, complexity of the method and false result
due to the effect of the composition of the sample or tempera-
ture, which causes refractive index fluctuations, are the disad-
vantages of SPR. Vaisocherova-Lisalova and coworkers
constructed a rapid, sensitive and simultaneous SPR-based
biosensor using streptavidin-coated gold nanoparticles and
based on ultralow fouling and functionalizable poly(-
carboxybetaine acrylamide) (pCBAA) brushes for multi-step
detection of microorganisms in complex food samples. The
proposed assay was composed of the following three steps: (i)
crude food samples for sensor incubation, (ii) binding of
secondary biotinylated antibodies, and (iii) binding of
streptavidin-coated gold nanoparticles to the biotinylated anti-
bodies. Limits of detection of 7.4 x 10> CFU per mL and 11.7 x
10® CFU per mL for Salmonella sp. and 57 CFU per mL and 17
CFU per mL for E. coli in cucumber and hamburger extracts were
achieved.”® Zhou et al. recently reported a biosensor based on
nanogold enhanced surface plasmon resonance and colloidal
gold test strips (ICTS) for Vibrio parahaemolyticus detection.”” The
response for the pathogen was improved dramatically after
immunomagnetic separation.

2.2 Optical imaging based on LSPR-enhanced scattering

The scattered light intensity of AuNPs is about 10> to 10° times
stronger than that of a fluorescein molecule and 100-1000 times
stronger than that of a polymer bead.*®** Larger AuNPs show
stronger scattering efficiencies than smaller AuNPs.* In

HaCaT nonmalignant cells

Au nanospheres

Au nanorods

HSC malignant cells

View Article Online
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contrast to fluorophores, light-scattering AuNPs are not photo-
bleachable which makes them very attractive contrast agents
for bioimaging. In this section, we focus on two imaging
modalities which detect the backscattering of AuNPs: dark field
confocal imaging (DFCI) and optical coherence tomography
(OCT). DFCI is often used for in vitro imaging of cells and
biomolecules and OCT is commonly used for in vivo imaging.

DFCI can detect AuNPs that are as small as 10 nm in diam-
eter. Using a dark field microscope with a high NA lens, light
scattered from AuNPs can be imaged as bright spots even
though the dimensions of AuNPs are smaller than the diffrac-
tion limit of the lens. A major advantage of DFCI is that it allows
high-contrast, true-color and multiplexed detection of gold
nanoparticles with different sizes and shapes. Various types of
AuNPs including AuNS, AuNR, AuNC and AuNSh have been
implemented as DF optical contrast agents for cancer cell
imaging by functionalizing their surface with ligand binding to
cell surface receptors (Fig. 4).°"*° AuNPs are also extensively
utilized as DF probes to image a variety of intracellular biolog-
ical processes such as cell division, endocytosis, virus infection,
DNA damage, etc. For example, Qian et al. applied bio-
conjugated AuNS and DF imaging to track cell division in real
time.*® Wan and co-workers were able to label AuNPs on respi-
ratory syncytial virus and visualize its infection of HEp-2 cells.”’
These studies have provided many new insights into intracel-
lular events.

OCT is an interferometry-based imaging technique which
illuminates samples with near-infrared (NIR) low-coherence
light and detects the back-scattered light from samples. Intui-
tively, AuNPs are attractive OCT contrast agents because they

HOC malignant cells

10 un

Fig. 4 Dark-field microscopy images of normal and two different types of cancer cells after incubating with AUNS/AuNR conjugated with anti-
EGFR antibodies. AUNS show green to yellow color in the dark-field image (upper panel), indicating that their light scattering is mostly in the
visible region. AUNR show orange to red color in the dark-field image (lower panel), indicating that their light scattering is mostly in the NIR
region. Modified and reprinted with permission from ref. 156. Copyright (2006) American Chemical Society.
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Table 1 Optical properties and optical imaging applications of different types of gold nanoparticles®

LSPR (visible: 400-700 nm,

NIR-I: 700-1000 nm, NIR-II: 1000-

Optical imaging modalities/

Au nanostructure Fabrication method 1700 nm) applications
Nanoshell Overgrowth of core-bound NIR-I-NIR-II ocr>
particles"” PA'L!?
Nanorod Seeded growth with CTAB™® Visible-NIR-II ocT>*0874
PA99—104
TP fluorescence'*”**®
Nanostar Seeded growth with CTAB or PVP; Visible-NIR-I oCT”®
one-pot synthesis">® PA'®
SERSSI,32,118
TP fluorescence'****°
Nanocage PVP-stabilized polyol, galvanic Visible-NIR- oCcT*2?
displacement®° PAZ324
Nanodisk Nanoimprint lithography®* Visible-NIR-I ocr?h??
Nanoring Lithography using colloidal NIR-I-NIR-II oCT>%?8
polystyrene nanoparticles as the
template®”*®
Nanobipyramid Seeded growth with CTAB and Visible-NIR-II ocT'®"?
CTAC17 SERSlZ4,125
Nanoprism Seeded growth with CTAB"? NIR-I-NIR-II ocT'7716t
Nanopyramid Lithography with patterned Visible to NIR-I SERS'®
photoresist posts as the
template®*%?
Nanocrescent Lithography with a nanosphere Visible to NIR-II SERS?¢120
template and vapor-phase
deposition®*3°
Nanoclusters Alkanethiol/phosphine-stabilized Visible to NIR-I Fluorescence'*>7'4°
reduction'®®

“ CTC: circulating tumor cells, OCT: optical coherence tomography, SERS: surface enhanced Raman scattering, TP: two-photon, NIR: near infrared,
CTAB: cetyltrimethylammonium bromide, CTAC: cetyltrimethylammonium chloride; PVP: poly(vinylpyrrolidone).

can enhance the backscattering of light at a specific wavelength
due to LSPR. LSPR also generates drastic difference in the
intensity of backscattered light at different wavelengths, allow-
ing different AuNPs to have unique spectral signatures. Due to
their highly tunable plasmonic resonances and scattering
coefficient, AuNPs of different shapes and dimensions have
been extensively investigated as OCT contrast agents in recent
years. AuNSh,>*® AuNR,>***7* AuNSt,” AuNC,****> AuNRg,’**?*
AuND,*"**> AuNPr'***7¢”7 and AuNBP'®" have been demon-
strated to be promising contrast agents to improve OCT signals
in tissue and blood vessels (Table 1). Among them, AuNSt,
AuNC and AuND have plasmonic resonance peaks mainly in the
first near infrared window (NIR-I, 700-1000 nm) so they are
used as contrast agents for OCT with a light source in the NIR-I
region; while AuNR, AuNSh, AuNRg, AuNPr and AuNBP can be
employed as OCT contrast agents in both NIR-I and NIR-II
windows. There are two commonly used methods to synthe-
size AuNPs as OCT contrast agents: nanolithography methods
are used to fabricate gold nanodisks and nanorings, whereas
seed-mediated growth is used to fabricate AuNPs of other
geometries. The advantage of the nanolithography method is
that it can fabricate AuNPs with precise dimensions with small
variation in size, but it is expensive, time consuming and
difficult to scale up the fabrication. In contrast, wet chemistry
methods are low-cost, efficient and easy to scale up, but may
have higher dimension variation and impurity.

© 2021 The Author(s). Published by the Royal Society of Chemistry

AuNR are some of the most heavily investigated AuNPs as
OCT contrast agents due to their highly tunable size and aspect
ratio and facile preparation method. Their plasmonic reso-
nance can be tuned from 600 to 1300 nm by adjusting their
aspect ratio, and the scattering to absorption cross-section ratio
can be changed by adjusting their size.*®”® SoRelle et al.**
showed that AuNR with larger dimensions (90 x 30 nm) exhibit
30-fold greater backscattering or OCT intensity than AuNR with
a smaller size (50 x 15 nm). In addition, they show that two
types of AuNR with different plasmonic resonances, 815 nm and
925 nm, can be used as spectral contrast agents and detected
multiplexably by OCT. The AuNR spectral OCT contrast agents
were then implemented for retinal imaging,” tracking of brain
tumor-associated macrophages”™ and detecting circulating
tumor cells.*® Ratheesh et al.”* demonstrated that AuNR with
a higher aspect ratio of 8.8 and a plasmon-resonance peak at
1320 can be used as contrast agents to enhance OCT imaging in
the 1300 nm range. Lippok and co-workers” demonstrated for
the first time that AuNR can depolarize the backscattered OCT
light and the depolarization signature of AuNR can be well
detected in biological tissue.

AuNPr have been increasingly investigated as OCT contrast
agents in recent years. Si et al. synthesized AuNPr with high
scattering cross-section and LSPR in the NIR-II window, and
demonstrated that intravenous injection of AuNPr can
dramatically enhance the contrast of OCT vascular imaging,
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Fig.5 AuNPras OCT contrast agents for contrast enhanced vascular imaging and ozone sensing. (A and B) TEM image and extinction spectrum
of AuNPr which have strong plasmonic scattering in the NIR-II region. (C and D) The OCT angiograms of a melanoma tumor implanted on
a mouse ear before and after systematically injecting the NIR-II AuNPr. Reprinted with permission from ref. 14. Copyright (2018) American
Chemical Society. (E-G) Geometric and plasmonic evolution of AUNPr upon exposure to ozone (Oz). Upon exposure to Oz, the corners of AuUNPr
are gradually rounded and the LSPR of AuNPr exhibits a blue shift accordingly. (H) OCT images of a AuNPr-infiltrated crucian carp eye before and
at 172 min post exposure of 75 ppm Os. Reprinted with permission from ref. 15. Copyright (2017) American Chemical Society.

especially for tumors (Fig. 5A-D).** Zhou and co-workers
demonstrated that AuNPr can be used for three-dimensional
(3D) ozone imaging in the anterior chamber of an isolated
crucian carp eye." Upon exposure to Oz, AuNPr transform their
shape gradually into circular nanodiscs, resulting in a blue shift
of their plasmon-resonance peak from 1050 nm to 830 nm
(Fig. 5E-G). Using an OCT system with the center beam wave-
length at 830 nm, O; can be sensitively detected due to the
strong OCT intensity signals from gold nanodiscs (Fig. 5H). In
another study, Zhou et al. synthesized a nanohybrid AuNPr@-
polyaniline core-shell structure, which can reversibly change its
extinction and scattering properties at 830 nm under different
acidic and basic conditions.”” The AuNPr@polyaniline was
employed as an OCT contrast agent to dynamically image the
pH distribution in the anterior chamber of a fish's eye.

2.3 Optical imaging based on LSPR-enhanced absorption

Both photothermal (PT) and photoacoustic (PA) imaging take
advantage of AuNPs' strong light absorption at their plasmon
resonance peak. AuNPs produce heat upon absorbing laser light
at their plasmon-resonance wavelength, which results in
refractive index change of the surrounding medium and elastic
expansion in the surrounding air. PT imaging relies on the
detection of phase shift of the transmitted light beam caused by
refractive index change, while PA imaging is based on detecting
the acoustic waves generated by air expansion. In contrast to
AuNP contrast agents, which usually have sizes above 30-40 nm,
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used for scattering-based imaging techniques, AuNPs suited for
PT and PA imaging are much smaller in dimension, and have
higher absorption-to-scattering cross-section.

PT imaging was first reported by Boyer and coworkers,* who
used a green laser to focus on the sample where AuNPs absorb
the light and produce heat. Another red laser beam is split into
two orthogonally polarized beams, one of which focuses on the
same point as the green laser. The red laser beams reflected
from the sample are then recombined and the relative phase
change is identified using a detector. They show that such
a technique can sensitively image gold nanospheres as small as
10 nm in diameter. Berciaud et al. further demonstrated that PT
imaging can detect even 1.4 nm AuNPs consisting of just 67
atoms, and measure the absorption spectra of individual AuNPs
with diameter down to 5 nm.** Zharov et al. applied AuNPs**>
as PT imaging contrast
agents to visualize adherent and circulating cancer cells,
circulating stem cells and lymphatic vessels. Further, these
researchers demonstrated super-resolution PT microscopy
based on non-linear dependence of signals on laser energy, with
a 50 nm spatial resolution.®®

Photothermal OCT (PT-OCT) combines PT-imaging and
OCT to allow high-sensitivity and high-contrast in vivo
imaging. The PT laser source is coupled to the sample arm of
the OCT system, exciting the contrast agents that are within
the optical path length of the OCT beam. Upon excitation, the
photothermal effect of the contrast agents changes the

and Au-coated carbon nanotubes®*®”

© 2021 The Author(s). Published by the Royal Society of Chemistry
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temperature of their surrounding environment and causes
a variation of the local refractive index, which leads to an
alteration of the optical path length which changes the phase
of the backscattered OCT beam. The phase change is then
detected by phase-sensitive OCT.* Many types of gold nano-
structures, including AuNS,*® AuNSh,”* and AuNR,*>®” have
been investigated as PT-OCT contrast agents due to their
strong absorption cross-section and the resulting photo-
thermal effect. Among them, AuNR are most promising
because they are highly efficient in absorbing light and
releasing heat. Tucker-Schwartz et al.”® showed that they could
image AuNR accumulated in mouse tumor tissue using PT-
OCT with very high signal-to-noise ratio. These AuNR were
subcutaneously injected and then they accumulated in tumors
through the leaky vasculature. Jung et al. demonstrated that
they can image the concentration and time-dependent uptake
of AuNR in sentinel lymph nodes using PT-OCT.?” Recently,
Lapierre-Landry et al.®* and Gordon et al.®® have demonstrated
AuNR as PT-OCT contrast agents that can be specifically
detected in the retina of laser-induced choroidal neo-
vascularization (LCNV) mouse models after systematic injec-
tions. The former study shows that the PT-OCT signals in the
LCNV lesion are associated with non-targeted AuNR passively
accumulated in the eye, whereas the latter study applies PT-
OCT to detect antibody-conjugated AuNR targeting the LCNV
lesion. The latter study also investigated the effect of anti-
angiogenic treatment in the retina of a LCNV mouse model
using targeted AuNR as PT-OCT contrast agents. Notable
reduction of PT-OCT signals is detected in the LCNV lesion
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after intravitreal delivery of neutralizing monoclonal anti-
vascular endothelial growth factor (anti-VEGF) antibodies.

PA imaging takes advantage of the high resolution of optical
imaging and the deeper tissue penetration of ultrasound
imaging. It permits tissue penetration up to 5 cm and spatial
resolution up to tens of micrometers. AuNPs that are strong
absorbers of NIR light are ideal PA contrast agents as NIR light
penetrates deeper in animal tissues. AuNP-based PA contrast
agents have been intensively investigated in the past decade for
a wide range of preclinical applications, including cancer
detection, atherosclerotic plaque imaging, brain function
measurements, image-guided therapy, etc. Because both PT and
PA contrast agents are strong absorbers of NIR light, many
AuNPs that are used for PT and PT-OCT imaging can be used for
PA imaging, including AuNS,”® AuNSh,'"** AuNR,*** AuNC>***
and AuNSt.'* Although AuNR have been utilized as PA contrast
agents for a variety of applications including multiplexed cell
tracking,'® cardiovascular imaging,'® stem cell imaging'® and
cancer cell detection,* regular AuNR have suboptimal thermal
stability under a high-intensity pulsed laser used for PA irradi-
ation, leading to plasmonic resonance shift and decay of PA
signals over time. In a recent study, Chen et al.” report that
miniature AuNR that are 5-11 times smaller than regular-sized
AuNR, are 3-fold more thermally stable and produce 3.5-fold
stronger PA signal intensity than their absorption-matched
larger counterparts in the NIR-II window (Fig. 6A and B).
Upon IV injection of these small targeted AuNR in a tumor-
bearing mouse model, they improved the tumor delivery effi-
ciency by 30% and PA contrast by 4.5 times (Fig. 6C and D).

Normalized photoacoustic
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Fig. 6 Small AuNRs enhanced PA imaging. (A) TEM images of small and large AuNRs. (B) PA signal intensities of small and large AuNRs upon

illumination with 200 laser pulses at 18.2 mJ cm™2

. (Cand D) PA images of tumor-bearing mice after administration of prostate cancer targeting

GRPR peptide-functionalized large and small AuNRs. Reprinted with permission from ref. 2. Copyright (2019) Springer Nature.
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3. Optical sensing and imaging based
on SERS

Though the Raman scattering effect is a very weak phenom-
enon, a drastic increase in the scattering intensity has been
observed when it takes place in the vicinity of AuNPs,
a phenomenon called SERS. SERS offers several advantages
such as being non-destructive, having potential for multi-
component analysis, yielding compound-specific information,
and can be performed in the presence of water, making it
suitable to study processes in vivo.'®

3.1 SERS-based optical sensing

Raman scattering is gaining increased research attention in the
field of biosensing because of its single-molecule sensitivity,
intrinsically sharp fingerprints, and the availability of a wide
range of photo-stable labels. To achieve high sensitivity the
SERS signal has to be enhanced by either modifying the surface
properties or by increasing the number of molecules generating
Raman signal. Monolayer films of AuNPs have discrete physical
and chemical properties due to quantum confinement and
interparticle coupling.’” These properties are highly useful in
SERS applications. AuNP monolayers with nanogaps have
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shown an increase in the SERS signal but their surface unifor-
mity hinders the performance.'® Thus, numerous attempts
have been made to fabricate AuNP monolayers with desired
density and precisely controlled nanogaps.'*™'* For example,
Shao et al. fabricated a multiple signal amplification sandwich
type SERS biosensor for the detection of miRNA with a detection
limit of 3 fM. A triple signal amplification was achieved by using
AuNPs of selective morphology, hybridization chain reaction
amplification and using silver nanoparticles in combination
with AuNPs."*®

Wang and co-workers'? developed an interesting SERS-
based biosensing platform that is able to differentiate
between two different DNA targets simultaneously (Fig. 7). A
lateral flow assay was able to detect DNA associated with Kaposi
sarcoma-associated herpesvirus (KSHV) and bacillary angio-
matosis (BA) (Fig. 7C). The Raman peak intensity centered at
1617 cm ™' was monitored, and its variation was used for the
quantitative evaluation of KSHV and BA (Fig. 7D).

Currently, there are no SERS-based diagnostic devices in the
market, but efforts are being made to reduce the complexity of
software and instrumentation to commercialize the products.
SERS is very promising for pathogen detection owing to its high
sensitivity and selectivity.'** Some of the commonly used plat-
forms for SERS are nanomaterials such as gold nanostructured
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Fig. 7 SERS-based LFA for KSHV detection. (A) Scheme of the LFA biosensor for the simultaneous detection of two nucleic acids. The strip
consists of two test lines and one control line. (B) (i) KSHY DNA-Au NP complexes were captured by the probe KSHV DNA on the first test line; (ii)
BA DNA-Au NP complexes were captured by the probe BA DNA on the second test line, and (iii) excess KSHV and BA detection DNA attached to
AuNPs were captured by control DNA through T20-A20 hybridization on the third control line. (C) Digital photographic images and (D) cor-
responding SERS spectra of the SERS-based LFA biosensor in the presence of (i) KSHV, 0 pM; BA, 0 pM; (ii) KSHV, 100 pM; BA, 0 pM; (iii) KSHV,
0 pM; BA, 100 pM; (iv) KSHV, 100 pM; BA, 100 pM. Assay time: 20 min. Reprinted with permission from ref. 112. Copyright (2017) American
Chemical Society.
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surfaces and gold colloidal particles. The Raman scattering
from molecules in the vicinity of a gold nanomaterial surface
due to the coupling effect of surface plasmon through the
oscillating electric field can be described as electromagnetic
enhancement. An enhancement factor of 10° to 10"* is enough
to allow the detection of a single target molecule, which makes
them highly suitable approaches for the detection of patho-
gens."™'* Mevold and coworkers*® have conducted a SERS-
based study for sensitive bacteria detection by using a gra-
phene-gold nanoparticle nanohybrid. Cationic  poly(-
diallyldimethylammonium chloride) (PDDA) functionalized
graphene nanosheets were prepared. The traditional citrate
thermal reduction method was applied to synthesize gold
nanoparticles which were electrostatically immobilized onto
graphene-PDDA nanohybrid sheets. The result of transmission
electron microscopy (TEM) showed that the particle size was 15-
20 nm. The zeta potential value of the nanohybrid ratio was 7.7-
38.4 mV. The methodology was applied for the detection of S.
aureus confirming its application in label-free and rapid bio-
sensing of microorganisms and target biomolecules. In
another study, Ma and colleagues™” proposed a rapid and
simple SERS-based biosensor for sensitive and selective
Salmonella typhimurium (S. typhimurium) detection using spiny
AuNPs functionalized with 4-mercaptobenzoic acid and specific
thiolated S. typhimurium aptamers as SERS nanoprobes. Under
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optimal conditions, a low limit of detection of 4 CFU per mL was
obtained for the detection of S. typhimurium.

3.2 SERS-based optical imaging

Compared with other optical imaging modalities, SERS has the
advantage of high sensitivity, which allows contrast agents to be
detected at a concentration as low as 1.5 fM."® In recent
decades, SERS imaging agents have been increasingly studied
by conjugating Raman active molecules on AuNPs with various
structures. These AuNPs can dramatically enhance the Raman
signals of dyes conjugated on them by an order of 10'°. AuNPs
with rough geometrical features such as sharp tips and edges,
commonly known as ‘Raman hot spots’, can even improve the
Raman signals to the order of up to 10" fold,"* because the
spatial confinement of the surface plasmons at these ‘hot spots’
produces a highly concentrated local secondary electromagnetic
field. AuNPs with quite a few different morphologies can
provide such ‘Raman hot spots’, including AuNSt?"3>'8
AuNPy,'* AuNCr,***** nanourchins,**** AuNBP,"**"** efc. For
example, Harmsen et al. demonstrated that an AuNSt-based
SERS agent can be used to precisely detect macroscopic malig-
nant lesions and microscopic tumor invasion with high sensi-
tivity in animal models of pancreatic cancer, breast cancer,
prostate cancer, and sarcoma, and in one human sarcoma
xenograft model.”*® In recent studies, Bardhan and coworkers
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Fig. 8 Multiplexed SERS immunoimaging using AuNSt. (A) TEM images of AuNSt used for SERS. (B) Scheme of AuNSt functionalized with two
different Raman-active tag/targeting antibody pairs. The Raman tag pMAB is paired with anti-EGFR, and DTNB is paired with anti-PD-L1. (C)
Schematic illustration of the SERS setup for multiplexed tumor immunoimaging. (D) The SERS signals of both DTNB (1325 cm™) and pMBA
(1580 cm™) in ex vivo mouse breast cancer tissue. Subsection (i) shows a region of interest (ROI) with little AUNSt accumulation, whereas
subsection (ii) shows a ROI with rich AuNSt accumulation. (E) The corresponding Raman spectra of ROl (1)—(4) in (D), where (1) shows no AuNSt
binding, (2) shows high PD-L1 expression, (3) shows high EGRF expression and (4) shows high expressions of both PD-L1 and EGFR. Reprinted
with permission from ref. 32. Copyright (2018) the Royal Society of Chemistry.
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reported multiplexed imaging of immuno-biomarkers using
AuNSt-based SERS imaging (Fig. 8).>"**

4. Optical sensing and imaging based
on AuNP-induced luminescence
4.1 Optical biosensors based on AuNP luminescence

Luminescence-based optical biosensors, in which the detection
is carried out via either fluorescence or chemiluminescence,
offer a variety of advantages such as high selectivity, excellent
sensitivity and flexibility."*® Fluorescence-based biosensors can
be of colorimetric type giving visual results using AuNPs' indi-
vidual fluorescence or fluorescence resonance energy transfer
(FRET). Elahi and coworkers proposed a fluorescence biosensor
for Shigella sp. detection by employing AuNPs."” As a signal
reporter two DNA probes were immobilized on gold nano-
particles. A third DNA probe was immobilized on SMCC (sul-
fosuccinimidyl 4-N-maleimidomethyl cyclohexane-1-
carboxylate) modified iron nanoparticles (MNPs). The DNA
probe-AuNP-fluorescence DNA probe and the MNP-DNA probe
were added to target DNA. By using a magnet, the MNP-DNA
probe-target DNA-DNA probe-AuNP-fluorescence complex was
isolated. Fluorescence intensity was studied by fluorescence
spectrophotometry after the signal generation when a fluores-
cence DNA probe was released on the surface of AuNPs. By
increasing the target DNA concentration, the fluorescence
intensity was increased accordingly. A low detection limit of 102
CFU per mL for Shigella sp. was successfully achieved.
Plasmonic AuNPs can interact with different fluorophores
resulting in either fluorophore quenching or enhancement also
known as FRET. Quantum dots (QDs) and AuNPs are the most
commonly used FRET pairs in fluorescence-based optical
biosensors due to the overlapping of AuNPs' absorption spec-
trum with QDs’ emission spectrum.****° But the applicability of
QD-based FRET biosensors is limited by their high cost, toxicity,
the strong dependence of performance on surface states and
chemical instability."** Metal nanoparticles or metal-doped
nanoparticles are emerging as new alternatives of QDs in
FRET-based biosensors.”*>**> Zhang et al. used amino capped
silicon nanoparticles (SiNPs) and citrate capped AuNPs as FRET
pairs to design an r-Csyteine (1-Cys) biosensor.*** In the fabri-
cated biosensor, fluorescence quenching of SiNPs with AuNPs
and the restoration of fluorescence by the addition of t-Cys due
to the release of AuNPs from the SINP-AuNP complex have been
demonstrated. The intensity of fluorescence restored is directly
proportional to the concentration of 1-Cys added. FRET-based
biosensors possess many advantages such as real-time moni-
toring, visual monitoring, being capable of multiple analyte
detection etc. Despite various merits, there are some demerits
such as the cost of FRET reagents, selection of fluorophores,
stability of functionalized nanoscale materials, low fluorescence
resolution and low signal-to-noise ratio.
Electrochemiluminescence (ECL) or electron generated
chemiluminescence based biosensors are emerging and less
explored categories of biosensors which are gaining increasing
attention. These are based on the phenomenon in which the
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luminescent species absorb energy from the electrochemical
reaction occurring near their surface. AuNPs have been exten-
sively used in ECL-based biosensors for signal amplifica-
tion.”****  An ultrasensitive ECL biosensor for exosome
detection was developed using recently discovered two-
dimensional nanomaterials MXenes and AuNPs.” In this
work, a glassy carbon electrode was modified with exosome
specific aptamers and then attached to the target exosomes
derived from HeLa cells. Then aptamer conjugated MXenes
were attached to the modified electrode, followed by immersion
in HAuCl, for in situ synthesis of AuNPs. The MXenes acted both
as stabilizers and reductants, and the in situ formed AuNP-
MXene hybrid not only demonstrated highly efficient recogni-
tion of exosomes but also provided a large catalytic surface with
AuNPs. A 1000 times lower detection limit (i.e. 30 particles per
pL) than that of the conventional ELISA was achieved. These
ECL biosensors are highly advantageous in terms of specificity
as the signal is due to the biorecognition reaction.

4.2 Optical imaging based on AuNP luminescence

AuNPs can significantly enhance the excitation of fluorescent
dyes when the SPR of AuNPs overlaps with the absorption and
emission spectra of fluorophores.**® This phenomenon is called
‘plasmon-enhanced fluorescence (PEF)’, which was discovered
shortly after the emergence of SERS."” The key to PEF is the
distance between the AuNPs and fluorophores. AuNPs can
enhance the fluorescence intensity of dyes only if the separation
distance is appropriate (~5 nm). The fluorescence is unchanged
if the separation distance is too large (>20 nm), whereas the
fluorescence is quenched if the separation distance is very short
(<2 nm)."*® PEF allows us to study weak fluorescence emission,
even at the single molecule level. For example, Moerner et al.
reported that the single-molecule fluorescence could be
enhanced by gold bowtie nanoantennas by 1340-fold.*** Khatua
and coworkers used AuNR to achieve single-molecule fluores-
cence enhancement of a weak emitter, crystal violet, by a factor
of 1000."° These findings are especially helpful to advance
super-resolution fluorescence imaging. Jeynes et al. demon-
strated AuNP-based DNA point accumulation for imaging in
nanoscale topography (DNA-PAINT) to measure the nanoscale
dimensions of individual telomeres in human cells."*' The
technique utilized an imaging probe composed of AuNPs and
fluorescence capabilities, in combination with direct stochastic
optical reconstruction microscopy (dASTORM) imaging and X-ray
fluorescence microscopy, achieving an unprecedented spatial
resolution of 5 nm.

Gold nanoclusters (AuNCls) were recently discovered to
exhibit strong intrinsic fluorescence (in the visible and NIR
region) that is highly photostable. AuNCls are AuNPs with
diameters that are smaller than 2-3 nm, composed of several to
hundreds of gold atoms. Because of their small sizes, AuNCls do
not support the SPR effect. The intrinsic fluorescence of AuNCls
can be directly used for both in vitro and in vivo imaging studies.
Venkatesh and coworkers visualized the accumulation of 8-
mercapto-9-propyladenine capped green AuNCls (emission at
510 nm) in cell nuclei.'** Similarly, Wang et al. demonstrated

© 2021 The Author(s). Published by the Royal Society of Chemistry
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nuclear staining with tripeptide (Lys-Cys--Lys) stabilized red
AuNCls (emission at 680 nm).*** Further, the intracellular
accumulation and immune responses of AuNCls with different
ligands were studied by Fernandez and coworkers.*** Chandir-
asekar et al.'** and Zhang et al.**® have employed AuNCls for in
vivo fluorescent imaging of zebrafish embryos and implanted
tumor in a mouse model, respectively. Their studies show that
AuNCls have no toxicity on developing embryos but have
remarkable penetration and retention in tumors.

In addition to PEF and intrinsic fluorescence, AuNPs can be
directly used for two-photon (TP) and multi-photon (MP)
imaging, which allow for greater tissue penetration and are
suitable for in vivo imaging. The excitation light sources of TP
and MP imaging are usually high intensity lasers, and therefore
AuNPs are advantageous than organic fluorophores due to their
high photostability. In addition, the two-photon absorption
coefficient of AuNPs can be as high as 100-fold greater than that
of organic fluorophores.**” In vivo imaging study found that the
two-photon fluorescent signal produced by a single AuNR in
mouse ear blood vessels is 58 times stronger than that from
a single rhodamine molecule."*® Another study shows that
AuNR-labeled cancer cells exhibit three orders of magnitude
higher TP fluorescence intensity than the autofluorescence
intensity from unlabeled cancer cells.” Besides AuNR, AuNSt
also show strong TP fluorescent signals both in vitro and in vivo,
due to their SPR in the NIR region."® Gao compared the TP
signals of five different types of AuNPs with similar sizes:
nanospheres, nanocubes, nanotriangles, AuNR, and AuNSt and
found that the TP signal intensity increases in the order of
nanospheres, nanocubes, nanotriangles, AUNR and AuNSt. The
TP fluorescence intensity of AuNSt is 50 000-fold greater than
that of gold nanospheres.*

5. Conclusions and perspectives

The unique and highly tunable optical properties of AuNPs have
shown enormous potential in the development of state-of-the-
art biosensing and bioimaging techniques. AuNP-based
optical biosensors have great potential to be used as point-of-
care devices due to their non-invasiveness, high sensitivity
and highly reliable analytical results. Various Au nanostructure-
based contrast agents have emerged for many optical imaging
techniques including DFIC, OCT, PA, PT, Raman spectroscopy
and fluorescence microscopy (Table 1). These novel imaging
techniques allow precise imaging of cellular and molecular
biomarkers with high resolution. Although proof-of-concept
research papers of AuNP-based optical biosensors and bio-
imaging are increasing every year, these techniques still have
a long way to go towards commercial and clinical applications.
For biosensing, efforts should be made for high throughput and
multiplexed identification of biomarkers. Multi-technology
combination is another approach that can be adopted to
improve the performance of sensing devices. The integration of
AuNP-based optical sensing platforms with smartphones,
portable, wearable and implantable devices is a future trend of
exploration. More research is needed in manufacturing AuNPs
with large scale and long-term stability under various
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environmental conditions. In addition to this, full attention is
required in improving the analytical performance of biosensors
by preventing non-specific adsorption of biomolecules onto
AuNPs and shortening the analysis time. For biomedical
imaging, more thorough research needs to be conducted to
study the biodistribution, clearance pathways and long-term
toxicity of AuNPs with different geometries and dimensions.
In addition, better targeting agents and targeting strategies are
needed to improve the molecular imaging specificity. The
development of AuNP composites/hybrids with other nano-
materials is an exciting area that needs to be further explored as
it may open new avenues of research and applications. For
instance, composites of AuNPs with graphene, metal oxide
nanoparticles and other two-dimensional nanomaterials have
been explored to enhance optical biosensing perfor-
mances.'”**** A nanoparticle with a gold core, Raman active
layer, silica shell and Gd coating was developed to achieve
triple-modality imaging, which combines MRI, PA and Raman
imaging.*® In the near future, we envision that there will be
tremendous growth in developing multifunctional AuNPs and
AuNP-based nanohybrids for multi-analyte sensing and multi-
modality imaging.
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