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ons in a two-dimensional Dirac
nodal-line Lieb lattice†

Chao Ding,‡ Han Gao,‡ Wenhui Geng and Mingwen Zhao *

Plasmons in two-dimensional (2D) Dirac materials feature an interesting regime with a tunable frequency,

and long propagating length and lifetime, but are rarely achieved in the visible light regime. Using a tight-

binding (TB) model in combination with first-principles calculations, we investigated plasmonmodes in a 2D

Lieb lattice with a Dirac nodal-line electronic structure. In contrast to conventional 2D plasmons,

anomalous plasmons in the Lieb lattice exhibit the unique features of a carrier-density-independent

frequency, being Landau-damping free in a wide-range of wave vectors, a high frequency, and high

subwavelength confinement. Remarkably, by using first-principles calculations, we proposed a candidate

material, 2D Be2C monolayer, to achieve these interesting plasmon properties. The plasmons in the Be2C

monolayer can survive up to the visible frequency region and propagate to large momentum transfer

that has rarely been reported. The anomalous plasmons revealed in the Lieb lattice offer a promising

platform for the study of 2D plasmons as well as the design of 2D plasmonic materials.
Introduction

Plasmons, as collective excitations of electrons, enable coupling
between electromagnetic radiation and electrons in materials at
subwavelength scales, and a wide-range of applications, such as
photodetection, biosensing and nanophotonics.1–7 The dimen-
sionality of materials offers additional freedom to regulate
plasmonic properties,8–12 among which two-dimensional (2D)
materials are of particular interest, due to their unique elec-
tronic structures and quantum-connement effects.13–22 For
example, plasmons in graphene have been demonstrated to
possess high tunability, large subwavelength connement and
a longer propagating length and lifetime both theoretically and
experimentally.2,18,19 These plasmonic properties are closely
related to the unique linear energy–momentum dispersion
relation in graphene, namely Dirac cones. Additionally, the
exotic electronic structures of topological materials, such as
topological insulators (TI)23 and topological semimetal (TSM)
states,24 offer a new platform for creating plasmons, revealing
a series of interesting scenarios. Recently, a novel undamped
gapless plasmon mode was predicted in a type-II Dirac semi-
metal, benetting from the presence of both electron and hole
pockets at the Fermi surface due to the titled Dirac cone.25 The
plasmon properties of three-dimensional (3D) Dirac nodal line
(DNL) semimetals with a nodal line Fermi ring formed by band
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touching points have also been investigated. In the long-
wavelength limit, the plasmon frequency (up) shows a special
dependence on the carrier density (n), up f n1/4,26,27 which
differs signicantly from the up f n1/2 law in 3D metals, 2D
electron gas28 and bilayer graphene,29 but similar to that of
graphene.18 The carrier-density-dependent plasmon frequency
offers a simple strategy to regulate the plasmon properties, e.g.
by doping or the gate voltage. However, it is unsuitable for
applications where stable plasmons against environment
perturbation are required. It is also disadvantageous for
improving the plasmon density at a low frequency and the
lifetime at high carrier density.30 Very recently, anomalous
plasmons with a density-independent frequency, intensity and
damping were predicted in one-dimensional topological elec-
trides with Dirac nodal-surface states,30 paving a way for the
design of plasmonic materials.

Another key parameter of plasmons is the maximal
frequency of undamped plasmon modes, which is determined
by the edges of single-particle excitation (SPE) continuum. As
the collective mode enters the SPE continuum, it will be dam-
ped and decay into electron–hole pairs. Typically, plasmons in
gate-doped graphene emerge only in the infrared to terahertz
range,31–33 due to the connement of SPE continuum. To date,
very few plasmons with the frequency in the visible range have
been predicted in 2D materials.21

Here, we investigated the plasmon excitation spectrum in
a 2D DNL semimetal by using a tight-binding model in
combination with rst-principles calculations. We demon-
strated that the 2D DNL states in the Lieb lattice can lead to
anomalous plasmons with a stable frequency independent of
the carrier density n, in sharp contrast to normal plasmons in
Nanoscale Adv., 2021, 3, 1127–1135 | 1127
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2D materials, such as graphene.2,18,19 Moreover, anomalous 2D
plasmons are Landau-damping free in a wide-range of wave
vectors, and have a high frequency, and high subwavelength
connement. We proposed a simple two-band model to inter-
pret the density-independent frequency of plasmons. More
interestingly, the SPE continuum can be effectively regulated by
controlling the carrier density, to yield long-lived plasmons.
Using rst-principles calculations, we proposed a candidate
material, 2D Be2C monolayer,34 to realize these interesting
plasmons. Our calculations showed that the plasmons in the
Be2C monolayer can survive up to the visible frequency region
and propagate to large momentum transfer that has rarely been
reported. Additionally, acoustic plasmon (AP) modes, charac-
terized by linear dispersion in small momentum transfer,
emerge in the electron-doped Be2C monolayer. The intensity
and momentum transfer of these AP modes are much higher
than those predicted in doped graphene19,35 and other 2D
materials36,37 and thus likely detectable in experiments. Anom-
alous plasmons in the Lieb lattice hold great promise for the
design of plasmonic devices.
Methods and computational details
A. Random-phase approximation

Under the random-phase approximation (RPA) approach, the
polarization function reads38,39

Pðq;uÞ ¼ gs

V

X
kll

0

f ðEk;lÞ � f
�
Ekþq;l

0
�

Ek;l � Ekþq;l
0 þ ħuþ ih

|hkþ q; l0|k; li|2: (1)

here gs ¼ 2 is the spin degeneracy, V is the area of the two-
dimensional system, the broadening parameter is taken to be
h, and the Fermi distribution function denoted by f(E) acts as
a step function at T ¼ 0. Ekl and |k,li are respectively the
eigenvalues and eigenstates of the Hamiltonian matrix, where l
represents the band indice. The dielectric function 3(q,u) was
determined from the polarization function using the equation:

3(q,u) ¼ 1 � VqP(q,u), (2)

where Vq is the Fourier transform of the Coulomb potential and
can be written for a 2D system as

Vq ¼ 2pe2

3rq
: (3)

Notably, Vq is highly dependent on the dimensionality of the
materials and becomes Vq ¼ 4pe2/(3rq

2) for 3D materials, and

Vq ¼ e2=3reb
2q2

ÐN
b2q2 e

�x=xdx for 1D materials,40 where 3r is the

background dielectric constant, and b is the width of the 1D
materials. The dynamical loss function, which is related to the
momentum-resolved electron energy loss spectrum (EELS), can
be expressed as

3loss(q,u) ¼ �Im[1/3(q,u)]. (4)

The plasmon is characterized by the peak of the dynamical loss
function.
1128 | Nanoscale Adv., 2021, 3, 1127–1135
B. First-principles calculations

Our rst-principles calculations were performed using density
functional theory, as implemented in the Vienna ab initio simu-
lation package (VASP)41 and GPAW codes,42 which both employ
the projector augmented-wave method43 to model interactions
between electrons and ions with an energy cutoff of 500 eV. The
generalized gradient approximation44 in the form of Perdew–
Burke–Ernzerhof45 was adopted for the exchange–correlation
functional. A vacuum space of 20�A was used along the z-direction
to exclude the interaction between neighbouring images. Struc-
ture relaxation and electronic properties were calculated using
VASP on the 13 � 13 � 1 k-point mesh. The lattice constants and
the atomic positions were fully relaxed until the atomic forces on
the atoms were less than 0.01 eV�A�1 and the total energy change
was less than 10�5 eV. The electron doping effect was simulated
by adding or extracting extra electrons to the lattices in a homo-
geneous background charge of opposite sign. The band struc-
tures on the basis of maximally localized Wannier functions
(MLWFs) were determined using WANNIER90 package.46

The dynamic dielectric function and loss function were
performed using linear response calculations47 as implemented
in the GPAW code. A denser k-point grid of 61 � 61 � 1 was
used to include and accurate description of intra-band transi-
tions. The dielectric matrix for in-plane wave vector q was
calculated in random phase approximation (RPA) as:47

3RPA
G;G0 ðq;uÞ ¼ dG;G0 � 4p

|qþG|2
c0
G;G0 ðq;uÞ: (5)

We consider up to 40 empty bands to describe the response
function. A cut-off of 50 eV for reciprocal lattice vectors and
a broadening parameter h ¼ 0.05 eV were used to account for
local eld effects. In order to avoid the interaction between the
periodic replicas, a 2D truncated Coulomb kernel was taken.48
Results and discussion
A. Two-band model of a 2D DNL

We started from a simple model for the DNL in 2D materials to
demonstrate the possibility of carrier-density-independent
plasmons. We supposed that the DNL is formed from two
crossing bands described by parabolic dispersion relations as
follows:

Ek;1 ¼ ħ2

2m*
1

k2; (6)

Ek;2 ¼ � ħ2

2m*
2

k2 þ E0; (7)

with the effective massesm*
1 . 0; m*

2 . 0 and E0 > 0, as shown in
Fig. 1. Assuming that the electron wavefunctions of the two
bands are orthogonal (e.g. they arise from pz and pxy orbitals,
respectively), the inter-band transition of electrons is
prohibited.

The intra-band contribution of band n to the polarization
functions reads:
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 (a) Schematic representation of the two-band model of the 2D
DNL formed from the cross of two parabolic bands. (b) The profiles of
the 2D DNL in the reciprocal space.

Fig. 2 Tight-bindingmodel of the 2D p-orbital Lieb lattice with a Dirac
nodal-line electronic structure. (a) Lieb lattice of pz and px,y orbitals. (b)
The lower two bands of the TBmodel, Ek,1 and Ek,2, with t¼ 0.5 eV, t0 ¼
2.7 eV,D¼ 10.84 eV. (c and d) The Brillouin zone of the Lieb lattice. The
shaded areas in (c) and (d) represent the momentum regions of Ek,1 <
Ef0 and Ek,2 < Ef0, respectively.
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Pnðq;uÞ ¼ gs

ð2pÞ2
ð
f ðEk;nÞ

�
1

Ek;n � Ekþq;n þ ħuþ ih

� 1

Ekþq;n � Ek;n þ ħuþ ih

�
d2k: (8)

Under the long-wavelength limit, it can be reduced to:

Pnðq;uÞ ¼ 1

p2ħ2u2

ð
Ek;n\Ef

�
Ekþq;n � Ek;n

�
d2k; (9)

as the Fermi level Ef varies from 0 to E0. From eqn (9), we got
the polarization function (see Sec. S2 of the ESI for more
details†):

Pðq;uÞ ¼ P1ðq;uÞ þP2ðq;uÞz gs

2pu2

E0

ħ2
q2; (10)

and the dispersion of the plasmon mode of this system:

ħuz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gse

2E0

3r

s ffiffiffi
q

p
: (11)

Notably, the plasmon spectrum is independent of the Fermi
level (carrier density) and the effect masses of electrons.
B. Tight-binding model for 2D plasmons in a Lieb lattice

We then considered the DNL in the 2D Lieb lattice proposed in
our previous work,34 as shown in Fig. 2(a). The Lieb lattice is
composed of two square sublattices of pz and px,y orbitals,
respectively. Electron hopping between adjacent sites is pro-
hibited due to the orthogonal feature between pz and px,y
orbitals. Therefore, only electron hopping within the sublattices
characterized by �t and �t0 (t > 0, t0 > 0) was taken into account
in our tight-binding (TB) Hamiltonian:

H ¼

0
BBB@

�2t�cos kx þ cos ky
�

0 0

D �4t0 sin
�
kx

2

�
sin

�
ky

2

�
D

1
CCCA: (12)

Here, D represents the on-site energy difference between two
sublattices. Spin–orbit coupling (SOC) was not taken in
account.
© 2021 The Author(s). Published by the Royal Society of Chemistry
The lower two bands, Ek,1 and Ek,2 of the TB Hamiltonian,

Ek,1 ¼ �2t(cos kx + cos ky), (13)

Ek;2 ¼ D� 4t
0
����sin kx2 sin

ky

2

����; (14)

cross and form a Dirac nodal-line (DNL) centered at the K point,
as (t + t0) > D/4. Assuming that there are two residual electrons
per unit cell, the Fermi level Ef0 is right at the band touching
points, as shown in Fig. 2(b). The eigenvectors of the two bands
are contributed respectively from the pz and px,y orbitals and
thus orthogonal to each other. The inter-band excitation of
electrons between the two bands is forbidden and thus the
contribution of inter-band transition to the polarization func-
tion can be omitted, similar to the case of the above two-band
model.

In the long-wavelength limit, the polarization function can
be evaluated as follows:

Pðq;uÞ ¼ 1

p2ħ2u2

�ð
U1

�
Ekþq;1 � Ek;1

�
d2kþ

ð
U2

�
Ekþq;2

� Ek;2

�
d2k

�
: (15)

Here U1 and U2 represent the momentum regions of Ek,1 < Ef
and Ek,2 < Ef, as shown by the shaded areas in Fig. 2(c and d),
respectively. The plasmon dispersion identied as the roots of
3(q,u) ¼ 0 can be reduced approximated to

ħuzg
ffiffiffi
q

p
(16)

with g ¼
ffiffiffiffiffiffiffi
2e2

3rp

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�m2 � 2m
p þ 2tF1ðmÞ þ 8t0F2ðnÞ

p
;

m ¼ �Ef =2t; n ¼ ðD� EfÞ=4t0; and F1ðxÞ ¼
ð2p�arccosðxþ1Þ

arccosðxþ1Þ
Nanoscale Adv., 2021, 3, 1127–1135 | 1129
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cos h arccosðx� cos hÞdh, F2ðxÞ ¼
ðp
2
� arcsin x

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2 � sin2 h

p
dh (see Sec. S3 of the ESI for more details†).

The plasmon modes are isotropic and satises u f q1/2 in the
long-wavelength limit, similar to that of 2D electron gas.28

We also calculated the plasmon spectra using eqn (8) via
numerical integration without long-wavelength approximation.
The plasmon spectra along the G–M direction of the Lieb lattice
with different Fermi energy (Ef) are plotted in Fig. 3(a–c).
Obviously, the data obtained directly from eqn (16) agree well
with those from numerical calculations in the long wavelength
region. Notably, both m and n are dependent on the Fermi level
Ef. The dependence of g on the Fermi level was plotted in
Fig. 3(d). As the Fermi level is pushed from the bottom of Ek,2
(0.04 eV) to the top of Ek,1 (2.0 eV), g changes slightly from 4.93
to 6.0 eV �A1/2. This scenario differs signicantly from that of
traditional 2D systems,18,28,29 whose frequency strongly depends
on carrier density, and reects the unique characteristics of the
2D DNL. This TB model is also consistent with the two-band
model, in which the energy difference between the bottom of
Ek,2 and the top of Ek,1 is E0 ¼ 1.96 eV. According to eqn (11), we
have g ¼ 6.13 eV �A1/2, which is very close to the values (4.93–
6.0 eV �A1/2) obtained from the TB model.

In order to reveal the relation between g and Ef, we divided g

as g2 ¼ g1
2 + g2

2, with g1
2 ¼ 4e2t

3rp

�
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2 � 2m

p
þ F1ðmÞ

	
and
Fig. 3 (a–c) The energy spectra of plasmons along the G–M direction fo
numerical calculations of eqn (8) without the long-wavelength limit (blu
level Ef as the Fermi level was pushed from the bottom of Ek,2 (0.04 eV) t
ESI.†

1130 | Nanoscale Adv., 2021, 3, 1127–1135
g2
2 ¼ 16e2t0

3rp
F2ðnÞ. Here, g1 and g2 represent the contributions

of Ek,1 and Ek,2, respectively. The variation of g1 and g2 as
a function of Fermi energy is plotted in Fig. 3(d). As Ef increases
from the bottom of the band Ek,2 to the top of the band Ek,1, g1

gradually decreases and nally becomes zero when Ef reaches
the top of the band Ek,1, while g2 shows an opposite trend. As
a result, g becomes insensitive to the Fermi energy (or carrier
density).
C. 2D plasmons in the Be2C monolayer

To achieve anomalous plasmons in realistic materials, we
considered a 2D Be2C monolayer proposed in our previous
work.34 The Be2C monolayer possesses a line-centered square
(Lieb) lattice with a lattice constant of 3.276�A, where Be and C
reside at the line-center and vertex sites, respectively, as shown
in Fig. 4(a). The stability and plausibility of the Be2C monolayer
have been veried from rst-principles calculations.34 From the
orbital-resolved electronic band structure plotted in Fig. 4(b),
one can see clearly that the two bands cross along the M–K and
G–K directions right at the Fermi level, forming a nodal ring
centered at the K point. The two bands near the Fermi level are
contributed mainly by the px,y orbitals of Be atoms and the pz
orbital of C atoms, respectively, meeting the requirement of the
above models. Therefore, the 2D Be2C monolayer may serve as
r three different Fermi levels obtained by eqn (16) (solid red lines) and
e dots). (d) The relationship between the coefficient g(g1,g2) and Fermi
o the top of Ek,1 (2.0 eV). The TB parameters are listed in Sec. S4 of the

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 (a) The Lieb lattice of the Be2C monolayer. (b) The orbital-
resolved band structure of the Be2Cmonolayer. The 3D band structure
near the K point is shown in the inset. (c) Comparison of the band
structure obtained from DFT methods (solid red lines) and MLWFs
(dash-dotted black lines). Green dotted lines show the position of the
Fermi level at different doping levels. (d) Imaginary part of the dielectric
function of the pristine and doped Be2C monolayer. Black dotted lines
show an approximate linear fit used to estimate the threshold energy
of inter-band transitions.
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a promising candidate material to realize anomalous plasmons
predicted by the two-band model and TB model.

We also plotted the band structure of the Be2C monolayer on
the basis of maximally localized Wannier functions (MLWFs),
which matches well with the DFT results in the energy range of
[�5, 2] eV, as shown in Fig. 4(c). To mimic the effect of regu-
lating the Fermi level, we doped holes (or electrons) into the
Be2C monolayer with a concentration of 4.66 � 1014 cm�2.
Compared with pristine Be2C, the Fermi level is pushed down-
ward (or upward) by 0.75 eV (or 0.38 eV). The Dirac nodal-line
states are still robust against doping (see Fig. S2 of the ESI†).

Notably, the two bands that form the DNL states near the
Fermi level originate from different atomic orbitals: the px,y
orbitals of Be atoms and the pz orbital of C atoms. Electron
excitation between the two bands (inter-band excitation) is not
allowed due to the different symmetries of the two orbitals. This
feature can be veried from the imaginary part of the dielectric
function (Im 3) which describes the optical adsorption spectra
of materials. Our rst-principles calculations showed that the
adsorption spectrum of pristine of Be2C has a threshold energy
of about 3.13 eV, below which the inter-band excitation of
electrons is prohibited, as shown in Fig. 4(d). For the hole- (or
electron-) doped Be2C monolayer, the threshold energy
becomes 2.62 eV (or 3.42 eV) at the doping concentration of 4.66
� 1014 cm�2. The threshold energy in the optical adsorption
spectra of the DNL semimetallic Be2C monolayer is consistent
with the theoretical models proposed in the previous sections
and responsible for the anomalous plasmons.
© 2021 The Author(s). Published by the Royal Society of Chemistry
The plasmon dispersion curves of the Be2C monolayer along
the G–M direction in the energy range of 0–4 eV are shown in
Fig. 5, which were extracted from the peaks of EELS. The plas-
mon mode indicated by the red circles was named Dirac Plas-
mon (DP), because it originates from the collective electronic
excitations of the Dirac nodal-line. For the small momentum
transfer up to around 0.06 �A�1, the plasmon spectrum of the
Be2C monolayer obtained from DFT calculations is in good
agreement with the results of the TB model, which follows the
universal long wavelength g

ffiffiffi
q

p
behavior of 2D electron gas.49

But for large momentum transfer q, it deviates gradually from
the g

ffiffiffi
q

p
rule. We ascribed it to the origins of the plasmons in

the Be2C monolayer. In the small momentum region, the plas-
mons are mainly dominated by the intra-band transition of the
two DNL bands. With the increase of momentum, however, the
inter-band transition comes to occur and contributes to the
polarization function. The consequent screening effect results
in the redshi of the plasmon energy and deviation from the TB
model.22 From the plasmon spectra under these three different
doping conditions in Fig. 5(a), we can see that g is nearly
insensitive to the Fermi level. For further verication, we tted
the plasmon spectra of the Be2C monolayers in the low energy

region by eqn (16) and got g ¼ 5.63�A1/2 and 5.74 eV�A1/2 for the
hole- and electron-doped Be2Cmonolayers with a concentration
of 4.66 � 1014 cm�2, respectively, which are very close to that of

the pristine Be2C monolayer, 5.76 eV �A1/2, in good agreement
with the TB model.

To further include the contribution of other atomic orbitals,
we also adopted a more complicated TB model by involving s-
and p-orbitals in each site of the Lieb lattice to describe the
electronic band structure and plasmonic properties of the Be2C
monolayer. The parameters of the TB model can be obtained
from the MLWF strategy by reproducing the band structure of
the Be2C monolayer, as shown in Fig. 4(c). The plasmon modes
calculated from the TB model agree well with the results of DFT
calculations in the whole momentum region, as shown in
Fig. 5(b–d).

Single-particle excitations (SPEs), due to intra-band and
inter-band excitation (also known as Landau damping) domi-
nate the plasmon damping processes. The SPE continuum is
dened by the nonzero value of the imaginary part of the
polarizability function, Im P(q,u).18 In our system, the borders
of intra-band and inter-band SPE continuum can be determined
approximately by ħ2q2/2m + ħvFq and ħ2q2/2m + ħuSPE � ħvF2q,
respectively, in which ħ2q2/2m is negligible compared with other
terms as q/ 0.18,50,51 vF represents themaximal electron velocity
of the band across the Fermi level, which was set to 1.13 �
106 m s�1, 0.85 � 106 m s�1 and 1.14 � 106 m s�1 for the
pristine, hole-doped and electron-doped Be2C monolayer,
respectively, according to our DFT calculations. vF2 is the elec-
tron velocity of the nearly at band at around �3.5 eV in
Fig. 4(c), which is responsible for the start of inter-band exci-
tation. Our calculations showed that vF2 is insensitive to elec-
tron- or hole-doping and the maximum value of vF2 is about 1.9
� 105 m s�1. The inter-band threshold frequency uSPE was
identied as 3.13 eV, 2.62 eV, and 3.42 eV for pristine, hole-
Nanoscale Adv., 2021, 3, 1127–1135 | 1131
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Fig. 5 (a) Comparation of plasmon energy at different doping. Plasmon dispersion of the (b) pristine, (c) hole-doped and (d) electron-doped
Be2C monolayer along the G–M direction. Red circles are results from DFT methods and the diameter of the circles is proportional to ln{Im[3]},
indicating the strength of the plasmonmode. The results from MLWFs (blue dots) and analytical g

ffiffiffi
q

p
dispersion (solid black lines) are also shown

for comparison. The shaded areas indicate the SPE regions due to inter-band (yellow) and intra-band (green) transitions, respectively.
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doped and electron-doped Be2C, respectively. Remarkably, the
carrier-density-dependent uSPE is quite crucial for regulating
the SPE continuum to achieve high-frequency plasmons. The
shaded regions in Fig. 5(b–d) depict the SPE regions. When the
plasmon mode hits the SPE continuum, it becomes damped
and decays into electron–hole pairs. For pristine Be2C in
Fig. 5(b), the plasmons are undamped up to 2.88 eV (q < 0.33
�A�1). In the hole-doped Be2C monolayer, the SPE continuum
moves downward, as shown in Fig. 5(c), and the maximal
frequency of the undamped plasmons decreases to 2.14 eV (q <
0.25 �A�1). In contrast, in the electron-doped Be2C monolayer,
the improved uSPE raises the boundary of the inter-band SPE
region, making the plasmons extend up to 3.10 eV (q < 0.37�A�1),
as shown in Fig. 5(d). Notably, the 2D plasmons in the visible
frequency range remain challenging. Anomalous plasmons
predicted in the Be2C monolayer offer a promising approach to
reach this goal.

Another interesting scenario worth noting is that, for the
electron-doped Be2C monolayer, a new type of plasmon mode
emerges, which has a linear dispersion and coincides with the
intra-band SPE boundary in small momentum transfer, as
indicated by blue circles in Fig. 5(d). A similar plasmon mode
dened as acoustic plasmon (AP) has been predicted in doped-
graphene,19,35 but the intensity is too low. For the AP mode in
the Be2C monolayer, however, the intensity is greatly enhanced
in the high q region, and even exceeds the intensity of the DP.
1132 | Nanoscale Adv., 2021, 3, 1127–1135
Although the AP mode enters into the electron–hole excitation
area at seemingly small q (�0.1 �A�1), the high intensity and
relatively larger momentum transfer than other 2D materials
like doped-graphene make it detectable in experiments.

To verify the collective excitation features (rather than single-
particle resonances) of the two-types of plasmonmodes (DP and
AP), we plotted the dielectric functions and loss functions of the
Be2C monolayer at q ¼ 0.063�A�1 in Fig. 6. Collective excitation
should fulll Re3¼ 0 with Im 3/vuRe3 > 0 at the energy where the
peak of loss function occurs. If the Im 3 presents a vanishing
small value in the same energy region, the plasmon is
undamped and lies out of the SPE regions.25,52,53 From Fig. 6 we
can clearly see that, all conditions are fullled in the DP case,
conrming the plasmonic nature of the DP mode. For the
electron-doped Be2Cmonolayer, Im 3 deviates slightly from zero
at the energy where AP occurs. We attribute it to the articial
broadening effect of the two peaks in the Im 3 spectrum in our
DFT calculations.

We nally evaluate the wave localization (or wave shrinkage)
of the DP in the Be2C monolayer from the connement of the
wavelength of a plasmonmode. Wave localization is qualied as
lair/lp, in which lp ¼ 2p/q is the wavelength of a plasmon wave
and lair ¼ 2pc/u is the corresponding wavelength in air. The
maximum wave localization of the undamped plasmons was
determined to be 228, 231 and 213 for the pristine, hole-doped
and electron-doped Be2C monolayer, respectively, as illustrated
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 (a–c) Dielectric function and loss function of pristine, hole-doped and electron-doped Be2C monolayers at q ¼ 0.063 �A�1. The upper
panel is the real (blue solid lines) and imaginary part (red dashed lines) of the dielectric function, and the blue circles denote the zeros of Re3(q,u)
corresponding to collective excitations. The lower panel is the corresponding loss function, in which the DP and AP modes are marked near the
peaks. (d–f) Wave localization of the DP mode in pristine, hole-doped and electron-doped Be2C monolayers, respectively. The shaded areas
correspond to SPE damping regions.
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in Fig. 6(d–f). These values are larger than those predicted in
doped-graphene (100–200)54 and bulked triangular 2D boron
(�150),21 demonstrating the subwavelength connement of the
plasmons in the Be2C monolayer which would be benecial for
miniaturization of plasmonic devices and savings of the oper-
ational power.55

We should mention that achieving visible-range plasmons in
2D materials remains challenging in experiments.56 For gate-
doped graphene, plasmons can emerge in the terahertz to
infrared range, which has been proved both theoretically and
experimentally.2,18,19,31–33 Electron-doping was predicted to
extend the frequency of 2D plasmons to the infrared region in
MoS2 monolayers.57 Through electrochemically intercalating
lithium into MoS2 nanoakes, plasmon resonances in the
visible and near UV wavelength ranges were realized in recent
experiments.58 In present work, we predicted that the plasmon
mode in the Be2C monolayer can extend to the visible range,
even without doping, offering an alternative approach to ach-
ieve visible-range plasmons in 2D materials.
© 2021 The Author(s). Published by the Royal Society of Chemistry
Conclusions

In summary, we revealed anomalous plasmons inherited in the
Lieb lattice with DNL electronic structures using a TB model in
combination with rst-principles calculations. Our study
showed that the plasmons exhibit the unique features of
a density-independent frequency, being Landau-damping free
in a wide-range of wave vectors, a high frequency, and high
subwavelength connement, which can be attributed to the
DNL states and symmetry-restricted inter-band excitation. The
SPE continuum can be effectively regulated by controlling the
carrier density, yielding long-lived plasmons. These interesting
plasmonic properties can be realized in a 2D Be2C monolayer.
More interestingly, acoustic plasmon (AP) modes, characterized
by linear dispersion in small momentum transfer, emerge in
the electron-doped Be2C monolayer. The intensity and
momentum transfer of these AP modes is comparable to that of
the DP modes and thus has high possibility to be detected in
experiments. Our work is expected to offer a promising strategy
for achieving stable plasmons in the visible light regime.
Nanoscale Adv., 2021, 3, 1127–1135 | 1133
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