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Multi-walled carbon nanotubes (MWCNTSs) are made of multiple single-walled carbon nanotubes (SWCNTs)
which are nested inside one another forming concentric cylinders. These nanomaterials are widely used in
industrial and biomedical applications, due to their unique physicochemical characteristics. However,
previous studies have shown that exposure to MWCNTs may lead to toxicity and some of the
physicochemical properties of MWCNTSs can influence their toxicological profiles. In silico modelling can
be applied as a faster and less costly alternative to experimental (in vivo and in vitro) testing for the
hazard characterization of MWCNTs. This study aims at developing a fully validated predictive
nanoinformatics model based on statistical and machine learning approaches for the accurate prediction
of genotoxicity of different types of MWCNTs. Towards this goal, a number of different computational
workflows were designed, combining unsupervised (Principal Component Analysis, PCA) and supervised
classification techniques (Support Vectors Machine, "SVM", Random Forest, "RF", Logistic Regression, “LR"
and Naive Bayes, “NB") and Bayesian optimization. The Recursive Feature Elimination (RFE) method was
applied for selecting the most important variables. An RF model using only three features was selected
as the most efficient for predicting the genotoxicity of MWCNTSs, exhibiting 80% accuracy on external
validation and high classification probabilities. The most informative features selected by the model were
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Introduction

Multi-walled carbon nanotubes (MWCNTSs) are long, hollow
cylindrical tubes with outer diameters in the range 3-30 nm and
lengths that can reach the order of cm. MWCNTs have large
length-to-diameter ratio, varying between 10 and ten million,
while their wall thickness is quite constant along the axis, thus
the inner channel is straight."

MWCNTs were discovered by Sumio Iijima in 1991,> as soot-
like products in the Kratschmer-Huffman arc discharge
synthesis reactor used for the formation of fullerene (Csgp).
Later, single-walled carbon nanotubes (SWCNTs) were discov-
ered.* SWCNTs are assembled into coaxial Russian-doll struc-
tures, forming MWCNTs with walls corresponding to each
single-walled nanotube. The intertubular distance in
MWCNTs is 0.340 nm. The main difference between SWCNTSs
and MWCNTSs is that the former are flexible, while the latter are
tough and rigid, rod-shaped structures. SWCNTs are also of
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“Length”, “Zeta average” and “Purity”.

smaller widths, with diameters typically in the range 1-2 nm,
with curved structures rather than straight.®

Due to unique tubular structures and perfect covalent C-C
bonding, MWCNTs exhibit fascinating physical and chemical
properties, such as ultra-high mechanical strength, very good
electrical and thermal conductivity (~3000 W m™' K,
comparable to diamond), large aspect ratios, high surface area
(SA), desirable chemical and environmental stability and
distinct optical characteristics.® MWCNTs are the strongest
materials ever discovered. A MWCNT's highest measured
tensile strength was up to 63 GPa, which is around 50 times
higher than steel.>”

The aforementioned MWCNTSs' superb (and unique) char-
acteristics give them great potential in various emerging
applications in areas from biotechnology (imaging, tissue
engineering, sensors and targeted drug delivery) to electronics
(energy production and storage, transistors) and other fields of
materials science (photonics, multi-functional coatings/films
and nanocomposites).® In the biomedical area, a number of
applications of MWCNTs have been proposed including drug
delivery, diagnosis and imaging, cancer diagnosis, gene
therapy, photothermal therapy, etc. For instance, MWCNTSs are
efficiently used as carrier to deliver quantum dots (QDs) and
proteins into cancer cells because QDs have photoluminescent
properties, which are beneficial in bioimaging. MWCNTSs may
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also be used for the treatment of HIV/AIDS and Neurodegen-
erative Diseases like Alzheimer Syndrome, while carboxylated-
nanotubes may have potential as antioxidants in anti-ageing
cosmetics and food preservation. Moreover, they have
emerged as potential biosensors and nanorobots in diagnostics
and as nanoprobes in scanning probe microscopy.’

Although MWCNTs have exceptional physicochemical
properties, concerns have been raised about their safety, which
are due to their small sizes and fibrous structures. MWCNTSs
may pose hazards, similar to asbestos.’® A number of physico-
chemical properties and characteristics of MWCNTSs have been
associated with their toxicological profiles: tube length and
diameter, specific surface area, surface reactivity, metal
impurities/catalysts, agglomeration state/dispersion, surface
functionalization and rigidity/flexibility.'* As Poland et al. re-
ported,” longer MWCNTs exhibited stronger inflammation
activity to mouse in the intraperitoneal administration route.
Lam et al.,** also pointed out that the content of metal used as
a catalyst is very important. They concluded that the impure
metals may enhance the pulmonary toxicity of carbon nano-
forms. In other studies, it has been shown that contamination
of amorphous carbon in the MWCNTSs may affect strongly their
biological activity, compared to purer MWCNTs.**** Addition-
ally, it was reported that the agglomeration state of carbon
nanomaterials also affected toxicity. Exposure to well-dispersed
MWCNTs led to fewer granulomatous lesions in the lung, while
non-dispersed produced granulomatous
inflammation.®

The investigation and study of potential hazards resulting
from exposure to engineered MWCNTS is of particular interest
in the nanotoxicology area. In silico predictive modelling is
a computational data-driven approach that can be applied for
the prediction of adverse effects of MWCNTSs, in the effort to
reduce animal testing. This aligns with Annex XI'® of Registra-
tion, Evaluation, Authorisation and Restriction of Chemicals
(REACH) regulation (European Parliament and Council 2006),
which describes alternative (non-animal) approaches such as
grouping and read-across,” Quantitative Structure-Activity
Relationship (QSAR),*® in vitro methods and weight of evidence,
which can be used instead of in vivo tests to examine and
evaluate the risks of exposure to chemicals.

Read-across methods are based on the hypothesis that
similar chemical substances, follow a regular pattern, based on
their chemical composition and/or physicochemical (PC)
properties and may also have comparable toxicological prop-
erties. Thus, the toxicological profile of one target substance can
be predicted by using data for the same endpoint from other
reference substances. Grouping of MWCNTs types to read-
across data for toxicological endpoints has been efficiently
evaluated by Aschberger et al,” following the workflow
proposed by the European Chemical Agency (ECHA) for
grouping and reading across nanomaterials.”

Nano-QSARs, are mathematical models, which are based on
the idea that the structure of a substance affects its activity and
thus similar structures exhibit similar activities. Molecular
descriptors (which are the physicochemical properties of
MWCNTs in our case) play a fundamental role in QSAR and

nanostructures
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other in silico models, since they formally are the numerical
representation of a molecular structure. For instance, Kotza-
basaki et al.*® developed a robust QSAR model for predicting the
nanotoxicity of superparamagnetic iron oxide nanoparticles
(SPIONs) in stem-cell monitoring applications, using as
molecular descriptors only the “overall particle size” and the
“magnetic core chemical composition” of SPIONs. Kim** and
co-workers have successfully proposed a nano-QSAR model
based on Quasi-SMILES to predict the cytotoxicity of MWCNTs
to human lung cells.

In this study, we have developed a fully validated QSAR
model for the prediction of genotoxicity of MWCNTSs. Firstly, we
selected 15 different types of MWCNTSs and constructed a data-
set that includes both physicochemical and toxicological data.
Genotoxicity was selected as the hazard endpoint. According to
REACH, genotoxicity testing is required, even at the lowest
tonnage level (above 1 tonne per year per manufacturer/
importer) for all substances manufactured in the EU.>> Next,
we developed and fully validated a nanotoxicity classification
QSAR model for predicting genotoxicity of MWCNTSs using
physicochemical characteristics as input features. A number of
cheminformatics workflows based on machine learning algo-
rithms, were constructed and implemented in order to produce
the best performing model. The modelling workflows were
designed to include the selection of the most important vari-
ables affecting the toxicity of MWCNTs and the definition of the
domain of applicability (DOA)* of the predictive model. The
model was finally implemented as a ready-to-use web applica-
tion in the Jaqpot computational platform (https://
app.jaqpot.org/) and is available to the community through
the BIORIMA virtual organisation.

Computational methodology
Predictive modeling workflow

This particular case study follows a workflow shown below in
algorithm of Fig. 1.

Step 1. The Data collection step consisted of a systematic
search through the literature for collecting physicochemical
properties and information about genotoxicity of MWCNTs and
organizing the data in a ready for modelling dataset, containing
15 analogues and 34 features.

Step 2. During the Data Pre-processing step, we performed
gap filling, data scaling and data reduction via the Principal
Component Analysis (PCA)** algorithm.

Step 3. In the Train-Test Split step, the dataset was parti-
tioned into two subsets. 10 analogues were used for training the
models and the remaining analogues were used as external
validation set to test the model performances.

Step 4. During the Model Optimization and Train step the
hyperparameters of each model were optimized and a number
of predictive nano-QSAR models were developed.

Step 5. The Performance Test step was used for testing the
performance of the models using various statistical metrics,
including the accuracy score and the Matthews correlation
coefficient (MCC) and validating the robustness by calculating
cross validation® scores.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Algorithm 1. Predictive Modelling Workflow

Step 1. Data Collection

- Literature Research

- Dataset construction
Step 2. Data Pre-Processing

- Filling gaps

- Data scaling

- Unsupervised Learning
Step 3. Train — Test Split

- Split the dataset into one for training the model and
one for testing it, using the Kennard-Stone algorithm

for model in Supervised Techniques do
Step 4. Model Optimization and Train
- Calculation of the optimum hyperparameters

- Training of the model

Step 5. Performance Test

- Calculation of performance testing metrics such
as the accuracy score and the Matthews
correlation coefficient Robustness testing

Step 6. Feature Selection

- Selection of features with the highest predictive
performance

end for

Step 7. Select the best performing model
- Define the Domain of Applicability
- Deploy the model on Jagpot

Fig. 1 Workflow of data collection, pre-processing, model develop-
ment, validation and analysis.

Step 6. In the Feature Selection step, the features with the
higher predictive importance were selected and steps 4 and 5
were repeated using only the selected features as input
information.

In the final step of this study, the model with the best
performance was chosen and was implemented as a user-
friendly web application in the Jagpot platform.

Data collection and treatment

Fifteen high purity MWCNTSs were selected, based on the rich-
ness and quality of the available physicochemical and toxico-
logical data. Information on these MWCNTs was gathered from
relevant MWCNT dossiers and from peer reviewed litera-
ture."***>* According to previous studies, ten out of the fifteen
MWCNTs (NRCWE040s - NRCWE-049)***° can be organized
into three groups with respect to their physicochemical prop-
erties (thin, thick and short, group I-III, respectively). Each
group included three functionalized MWCNTs which differed in
the type of functionalization: a pristine, an -OH and a -COOH
type. Group III also included a -NH, type functionalized
MWCNT.” The five remaining analogues were taken from the

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Table 1 The characteristics (features) of MWCNTs used in QSAR
modelling

Features

Carbon purity (%)""
Minimum length (nm
Maximum length (nm)*®

Average length (nm)*®

Minimum diameter (nm)*

Maximum diameter (nm)>’

Average diameter (nm)?°

Specific surface area (SSA) measured by BET (m* g~*
% Impurities (Fe,03, CoO, NiO, MgO, MnO)*°
Concentration of endotoxins (Eu ml~")**
Combustion elemental analysis (CEA), C, H, N, O (wt%)?”

Surface coatings OH, COOH, NH,, (mmol g~ *)*’

Zeta average (Za,c) batch and zeta average at 12.5 and 200 pg ml™* (nm
Polydispersity index (PdI) batch and PdI at 12.5 and 200 pg ml ™" (ref. 27)
Reactive oxygen species (ROS) and respective peak concentrations (pug
m171)27

)29

)29

)27

OECD Working Party on Manufactured Nanomaterials
(WPMN)* (NM-400 - NM-403 & NRCWE-006 ‘a different batch of
NM-400’). These MWCNTs were not functionalized and are
called standard materials in the literature.>® Additional samples
were found in the literature, but due to incomplete information,
they were not included in our analysis. The full list of available
characteristics (features) of MWCNTs are presented in Table 1.
The “Genotoxicity” endpoint was measured in both in vivo
studies for DNA strand breaks (Comet assay) and in vitro studies
in mammalian cells for gene mutation (micro nucleus)."
Despite the different sources of the data, data integrity was
secured since all studies were performed on the same
MWCNTs. 27,29

The information available for each MWCNT was structured
in a ready-for-modelling dataset including both physicochem-
ical and toxicological information (Table S1 in the ESIf). The 15
MWCNTs with their partitioning into groups, the genotoxicity
end-points and some key physicochemical features are pre-
sented in Table 2.

Data pre-processing

The data that were used in this study were mainly selected from
three literature studies and are extensively presented in Table
S1 of the ESI.1***”*° First step of the data pre-processing section
was to fill the missing values of the physicochemical properties.
In more details, “impurity” values, collected from the Poulsen
et al. work,” contained percentages of impurities (Wt%) in
different metal oxides, resulting to a dataset with many missing
values. In order to bypass this issue, a new feature was created
(“Impurity”), as the summation of the different types of impu-
rities. In addition, the “Endotoxins” values of NRWCE-041 and
NM-400 analogues were missing, and were filled with the mean
of the “Endotoxins” values of the rest of the materials in the
same group.

Next step was the augmentation of the dataset. The standard
deviations of “Diameter” values were used to create two new

features: “Minimum Diameter” and “Maximum Diameter”.

Nanoscale Adv., 2021, 3, 3167-3176 | 3169
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Pristine

-OH

0.19
0.01
0.03
0.05
0.24
0.42
0.01
0.01
0.51

96.00
97.00
96.00

97.0

98.70
98.70
98.80
98.80
90.00

99.19

0.783

223
216
185

29.1

717.2
532.5

NRCWE-046

Group III

0.781

22.6

NRCWE-047
NRCWE-048

0.721

1604.0 17.9

731.4

-COOH
-NH

0.738

199
254
18

14.9

NRCWE-049
NM-400

88.00
98.00
92.00
97.00
98.00

0.368

11.0

847.0

Pristine

Standard
Materials

0.065

67.0

4048.0

Pristine

NM-401

Pristine

92.97
90.00
99.00

1.313

226
227
26

11.0

1372.0

NM-402

Pristine

5.313

13.0

1373.0

NM-403
NRCWE-006

Pristine

0.680

65.0

5700.0

View Article Online

Paper

Feature “Type” indicates the type of the functional group of an
observation and was originally a categorical field. This feature
was encoded via the “One-Hot Encode” method resulting to 4
new binary features: “Type_Pristine”, “Type_OH”, “Type_-
COOH” and “Type_NH2”. For each analogue, these columns
contained the value “0”, except from the column that repre-
sented the specific type of the analogue, e.g. for analogue
NRCWE-041 “Type_Pristine”, “Type_COOH” and “Type_NH2”
values were “0”, whereas the “Type_OH” column had the value
“1”. The original “Type” column was then discarded.

The endpoint “genotoxicity” of this study was a binary column
with values “1”, indicating an analogue as genotoxic, and “0”
indicating an analogue as non-genotoxic. The endpoint values
were taken from the Aschberger et al. study.™ Hence, according to
the results of the in vitro chromosome aberration (micronucleus)
analogues, NM-400, NM-402, NM-403 and NRCWE-006 were
considered as toxic. In addition, results of in vivo DNA damage-
comet assay indicated that NRCWE-044 and NRCWE-045 in
different concentrations could result to DNA strand breaks, and
these NMs were also considered as genotoxic.'

Finally, all features were scaled between values “0” and “1”
(Table S27). Scaling was performed by subtracting from each
feature the lowest value and dividing it with the difference
between highest and lowest values (min-max scaling).

Train-Test Split

Instead of a random split, we preferred to use the Kennard-Stone
(KS) algorithm® for partitioning the available dataset into training
and test sets. The KS method provides a uniform coverage over
the available data and selects analogues for the training set, which
are on the boundaries of the data set, so that the produced models
cover a wide DOA* in the multi-dimensional input space. The
basic idea behind the KS algorithm is that Euclidean inter-sample
distances are calculated first and the most separated analogues,
are selected as training data points.

Machine learning/chemoinformatics methodologies

In this study we used several supervised and unsupervised
chemoinformatic techniques, in order to develop the most
efficient model for predicting genotoxicity of MWCNTs. These
techniques were applied using python 3.6.7.%?

Unsupervised techniques

Principal Component Analysis (PCA)*?** is a technique that
reduces dimensionality of the dataset and removes the noise
and the redundant information. PCA produces an orthogonal
transformation on a set of features (in this case MWCNTs'
physicochemical properties) and creates new latent features,
known as Principal Components (PCs). Each principal compo-
nent is a linear combination of all primary features. PCs are
orthogonal to each other.*

Supervised techniques

Random Forest (RFP**** combines simple tree predictors in a way
that each tree depends on the values of a random vector

© 2021 The Author(s). Published by the Royal Society of Chemistry
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sampled independently, while for all trees in the forest, the
same distribution is applied. The RF model decides according
to the leveraged Gini impurity of each tree (mean decrease in
Gini) leading to predictive models that do not overfit during the
training process.

Support Vector Machines (SVM)***” is a method that aims to
represent the data as points in the multi-dimensional space,
mapped in a way that the samples of each class are divided by
the widest possible gap. Given a training set, SVM constructs
a set of hyperplanes that discern the analogues according to
their class (in this case genotoxic or non-genotoxic). Finally, the
hyperplane with the largest distance to the nearest training
sample of any class is chosen for the classification.

Logistic Regression (LR)***® is a statistical model that uses the
“logistic function” in order to predict if a sample is labeled in
class “0” or in class “1”. In LR, the logit function (log-odds) is
calculated as a linear combination of the features and the values
of this function can vary between 0 and 1. Then, by applying the
logistic function the log-odds are converted to probability of
class and also vary between 0 and 1. Finally, if the probability of
a sample is higher than 0.5 the sample is labeled in class “1”,
else it is tagged in class “0”.%

Naive Bayes (NB)*** is a probabilistic model, based on the
Bayes' theorem (eqn (1)), assuming independence among the
features. A Gaussian NB model (GNB) is a Naive Bayes model
where the likelihood of the features is assumed to follow
a Gaussian distribution (eqn (2)).

_ P(xi)P(ylx:)

P(x|y) P(y)

1)

Bayesian optimization

Bayesian optimization® is a technique that aims to minimize
a function, f(x) on a bounded set S. In Bayesian optimization, the
basic idea is to construct a probabilistic model for f{x) and use
this model to decide the next point in S where the function will be
evaluated. The Bayesian optimization method was applied for
tuning the hyperparameters of the RF, LR and SVM methods.
Table 3 presents the hyperparameters involved in the RF, SVM
and LR methods, that were tuned during the training process.

View Article Online
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Recursive feature elimination (RFE)

Recursive Feature Elimination (RFE)* is a feature selection
method. RFE removes iteratively the features with the lowest
predictive importance until the specified number of features is
reached. In order to apply this method, the machine learning
algorithm should provide weights of the feature in the decision
function of the produced model. In our analysis, the RFE
method was applied to the RF*® and LR algorithms.>®

Leverage method for defining DOA

DOA? is the physicochemical space on which the developed
model is trained. Predictions on outliers (i.e. MWCNTs which
are not inside the DOA) are not considered as reliable. DOA was
defined, in this study, according to the Leverage method, which
calculates a threshold depending on the number of features and
the number of the training samples (eqn (3)). In the process of
making prediction for a new MWCNT, the leverage value is
calculated according to eqn (4), where X is the information
matrix of the training set and x; is the vector containing the
input features of the new MWCNT.*” Query MWCNTs with
leverage higher than the defined threshold are considered to be
unreliably predicted.

(number of features)

Threshold = 3
rene 8 (number of training samples)

(3)

hi = x{ (XX 'x; (4)

Results and discussion

In this study we developed two alternative workflows in order to
select the most accurate and robust model for prediction gen-
otoxicity of MWCNTs. The first workflow starts with the appli-
cation of the PCA method, which reduces the dimension of the
input space, by producing the principle components (PCs) or
latent variables. The produced model still needs all the input
features to calculate a prediction for a new MWCNT.

In the second workflow, the aim was to eliminate the “noisy”
features, i.e. features which were not highly informative for
predicting the endpoint of interest. The RFE method was used
for selecting the most important variables.

Table 3 Hyperparameters that were tuned by the Bayesian optimization method

Model Hyperparameter Description
RF n_estimators Number of trees in the forest
Min_samples_split Minimum number of observations required to split a node
Max_features Maximum number of features to consider when looking for the best split of a node
LR c Inverse of regularization strength
Penalty Norm used in the penalization
SVM c Regularization parameter
Gamma Kernel coefficient
Kernel Kernel type

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig.2 Diagram representing the percentage of the explained variance
as a function of the principal components.

Predictive modelling using the reduced dataset produced by
PCA

Fig. 2 presents the level of variance explained by applying the
PCA method as a function of the number of PCs. Two PCs
explained slightly more than 65% of the variance. In order to
maintain most of the available information, we proceeded with
using the first nine PCs corresponding to explaining 96% of the
variance (Table S37).

For the selection of the testing samples, the KS algorithm**
was applied on the reduced dataset produced by the application
of the PCA method. The following five analogues:

o NRCWE-040

o NRCWE-041

o NRCWE-048

o NM-401

o NM-402

were included in the test set, while the remaining 10
MWCNTs formulated the training set.

The RF, LR, SVM and NB statistical models were applied on
the training set, in order to examine if the dimensional reduc-
tion process improves the prediction of genotoxicity endpoint.
The hyperparameters of the RF, LR, SVM methods were opti-
mized using the Bayesian optimization technique where the
cross-validated accuracy score in the training set was the
objective function that was minimised.*® The optimal parame-
ters are presented in Table 4.

The metrics of the models on the training set showed that all
models were able to learn the underlying patterns of the

Table 4 The optimal hyperparameter values that were extracted from
the Bayesian optimization technique,*® for the models that were
trained on the reduced PCA-dataset
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Table 5 Validation metrics for the models that were trained on the
reduced PCA-dataset

RF LR SVM NB
Accuracy 0.800 0.800 0.800 0.600
Precision 0.000 0.50 0.500 0.000
Sensitivity 0.000 1.000 1.000 0.000
Specificity 1.000 0.750 0.750 0.750
F1-score 0.000 0.670 0.667 0.000
MCC 0.000 0.612 0.612 —0.250
Cross-validation 0.833 0.542 0.708 0.625
Confusion matrix 4 0 3 1 3 1 3 1

training dataset, leading to an accuracy score of 1.0. The trained
models were then used to predict the genotoxicity endpoint of
the testing analogues. The performance of the produced models
on the test set was examined using several classification
metrics: confusion matrix, accuracy score, precision, specificity,
sensitivity, F1-score and MCC metrics (eqn (S1)-(S7) of the
ESIT). The accuracy score in a 4-fold cross validation test*® was
used to evaluate the robustness of the models. The results are
summarized in Table 5.

The values of the metrics indicated that NB was unable to
predict correctly two out of five testing samples. In addition, the
RF model classified all the testing samples as non-genotoxic
indicating a possible overfit of the model. The rest of the
models had an accuracy score of 0.8 due to a misclassification of
a non-genotoxic MWCNT. However, this particular MWCNT
(NRCWE-048) is considered to be slightly out the domain of
applicability of the models, hence in can be neglected. The low
cross validation metric indicated that the LR and NB models
failed the cross-validation test. The RF and SVM models' high
cross-validation scores illustrated that both these models are
highly robust.

Predictive modeling using feature selection

In our second approach the full dataset was considered first.
The KS algorithm?* was used for splitting the scaled-dataset into
training and testing subsets. The five selected testing analogues
from this method were the same as in the PCA approach. The
Bayesian optimization method*® was applied on the training set
for selecting the optimal values of the hyperparameters of the

Table 6 The optimal hyperparameter values that were extracted from
the Bayesian optimization technique,*® for the models that were
trained on the full dataset

Model Hyperparameter Optimal values Model Hyperparameter Optimal values
RF n_estimators 9 RF n_estimators 10
Min_samples_split 0.1025 Min_samples_split 0.5
Max_features 0.6983 Max_features 0.1
LR C 43.71 LR C 43.71
Penalty L2 Penalty L2
SVM C 4.37 SVM C 9.98
Gamma — Gamma 0.254
Kernel Linear Kernel Sigmoid
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Table 7 Validation metrics for the models that were trained on the full
dataset
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Table 8 Most significant features of the LR and RF models after the
application of the RFE method

RF LR SVM NB Features for the LR model Features for the RF model
Accuracy 0.600 0.800 0.8000 0.600 Zeta average at 12.5 ug ml " Zeta average at 12.5 ug ml ™"
Precision 0.0.333 0.500 0.333 0.333 Length (average) Length (average)
Sensitivity 1.000 1.000 1.000 0.500 Polydispersity index (batch) Purity (%)
Specificity 0.500 0.500 0.750 0.500 Purity (%) —
F1-score 0.500 0.667 0.500 0.500
MCC 0.666 0.612 0.612 0.408
Cross-validation 0.708 0.458 0.917 0.458
Confusion matrix 9 9 3 1 3 1 2 2 The RFE iterative process® was applied to exclude the less

RF, LR and SVM methods using again the cross-validated
accuracy metric as the objective function to be minimized.
The optimal values are presented in Table 6.

The metrics of the models on the training set showed that all
models were able to learn the training dataset. In more details,
the RF, LR and NB models classified all training samples
correctly, whereas the SVM model misclassified one non-
genotoxic MWCNT, leading to a 0.9 training accuracy score
and 0.82 MCC score. The produced models were validated on
the test-dataset using the same classification metrics that were
presented in the first approach. The results are presented in
Table 7.

The performance of all produced models was clearly poorer
compared to the models trained on the reduced PCA dataset.
None of the models managed to predict correctly all the testing
samples, while cross validation scores were lower, with the
exception of the SVM method. The reason for this poor perfor-
mance was the existence of noisy and non-informative features
in the training set. Therefore, we proceeded with eliminating
these variables, by applying the RFE method.** This method was
applied on the RF and LR algorithms only, because these
models include attributes that distinguish the most significant

important features, by eliminating the features with the small-
est importance in each iteration. The result of this process was
the development of LR and RF models, which use only four or
three features accordingly, as shown in Table 8.

The “Purity” of MWCNTs as well as the “Zeta average” values
at a 12.5 pg ml~ ' dose and the “Length” were considered as
significant features for both models. The two models were
further optimized by applying the Bayesian optimization
method. The optimal values of the hyperparameters are dis-
played in Table 9.

The performance of these trained models was tested by
classifying both the training and the corresponding testing
analogues. Both models classified correctly all training samples,
leading to an accuracy score equal to 1.0. The metric values
corresponding to the test set are presented in Table 10.

The accuracy score, precision, recall and F1-metrics and the
confusion matrices all indicated that both LR and RF models
were able to classify correctly the majority of the testing

Table 9 The optimal hyperparameter values that were extracted from
the Bayesian optimization method,*® for the LR and RF models that
were trained on the four most significant features

features. The significances of the features in the LR model are Model Hyperparameter Optimal values
represented by their coefficient at the exponential of the deci- LR C 4.37
sion function, whereas the significance of the features in the RF Penalty L2
models is indicated by the Gini criterion.*® The importance of ~RF E{estimatolrs it (1)9116
. . . . . 1n_samples_splir .

the features in the two models is presented graphically in Fig. 3. MaX_featlI])reS P 0.666
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Fig. 3 Scaled significance of features in the LR and RF models.
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Table 10 Validation metrics for the models that were trained on the
most significant features

RF LR
Accuracy 0.800 0.800
Precision 0.500 0.500
Sensitivity 1.000 1.000
Specificity 0.750 0.750
F1-score 0.666 0.666
MCC 0.612 0.612
Cross-validation 0.917 1.000
Confusion matrix 3 1 3 1

0 1 0 1

samples. Among the two methods, LR had a higher cross-
validation score and was more robust. To further evaluate the
performance of the two models, we present in Table 11 the
probability distributions of all predicted outputs over the set of
two classes. The probabilities were similar for the RF and the LR
models and not close to 0.5, which indicating that the
successful classifications are not due to chance correlations.

Next step of the workflow was the calculation of DO
according to the Leverage method for the models. The thresh-
olds were estimated to be equal to 1.2 for the LR model and 0.9
for the RF model and the values of the testing analogues are
displayed below in Table 12. According to this table, all test
MWCNTs were clearly within the DOA of the model, which
further supported our confidence on the predictions of the
model.

23,42

Final results and model selection

In the first workflow, the application of the PCA data reduction
and transformation method affected positively the performance

Table 11 Classification probabilities of the RF and LR models after
applying the RFE method,* for the testing samples

RF LR

Prob. of “0”  Prob. of “1”  Prob. of “0”  Prob. of “1”
MWCNT class class class class
NRWCE-040 0.74 0.26 0.74 0.26
NRWCE-041 0.74 0.26 0.82 0.18
NRWCE-048 0.68 0.32 0.73 0.27
NM-401 0.31 0.69 0.36 0.64
NM-402 0.00 1.00 0.31 0.69
Table 12 Leverage values of the testing samples

RF LR
Name Leverage value Reliability Leverage value Reliability
NRCWE-040 0.20 Reliable 0.20 Reliable
NRCWE-041 0.18 Reliable 0.36 Reliable
NRCWE-048 0.33 Reliable 0.43 Reliable
NM-401 0.48 Reliable 0.51 Reliable
NM-402 0.13 Reliable 0.19 Reliable
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of all models (increased precision and significantly improved
the MCC metric). In the second workflow, the dimensional
reduction of the dataset was achieved through the RFE method,
which was applied on the RF and LR training procedures and
resulted to models that use only 3 and 4 input features,
accordingly, with 80% accuracy on the testing dataset. Several
predictive models were produced as a result of the application
of the two workflows. In order to select the best performing
model, multiple criteria were taken into account:

(i) Prediction accuracy. High accuracy, sensitivity, specificity,
recall, F1 and MCC scores on the external validation

(i) Prediction confidence. Correct predictions with high
probabilities

(iii) Robustness. High cross validation score

(iv) Simplicity. Use of a small set of input features

A number of models produced by the two workflows were
highly successful with respect to the prediction accuracy crite-
rion. The final LR and RF models were similar in terms of
performance. The LR model's mean cross validation score is
equal to 1.0 indicating that it may be considered as a slightly
more robust model compared to the RF modes (mean cross
validation score 0.917). However, the simplicity criterion was
considered as a key parameter to select the best model to clas-
sify the genotoxicity of MWCNTs. Under this consideration, the
RF that predicted the genotoxicity end point using only three
input features was selected as the model that outperformed the
rest with respect to all other criteria: highest cross validation
score, high MCC score on the testing data, high probabilities of the
predictions and use of only three features. This model was chosen
as the most efficient model for predicting genotoxicity of
MWCNTs. The model was finally trained on the full dataset, in
order to take into account all the information in the available
dataset. The final model predicted correctly the genotoxicity
endpoint for all samples in the full dataset. The threshold that
defines the DOA of the full model was 0.9.

Web implementation of the model

The source code for developing the model is available at: https://
github.com/ntua-unit-of-control-and-informatics/
MWCNTshttps://github.com/ntua-unit-of-control-and-
informatics/SPIONs. The model has been implemented as a web
service in the Jaqpot 5 modelling platform (https://
app.jagpot.org/) and is available in the following URL: https://
app.jagpot.org/model/THPwkjY80z7yalFNAYJR under the BIO-
RIMA organisation. In the overview tab, more details about the
model are presented including a Predictive MarkUp Language
(PMML) representation which contains the scaling coefficients
and the logit function. For accessing the model, the interested
user should first register in Jaqpot 5 and then become
a member of the BIORIMA organisation by sending an e-mail to:
hsarimv@central.ntua.gr.

Discussion and conclusions

The remarkable properties of MWCNTs and their potential use
in a wide range of applications has led researchers to consider

© 2021 The Author(s). Published by the Royal Society of Chemistry
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nanotubes based on carbon as one of the potential materials
that may play key roles in the future of nanoscale-based appli-
cations. In this paper we have focused on developing a fully
validated mathematical model for the prediction of genotoxicity
of MWCNTs. Genotoxicity was selected as the toxicological
endpoint, due to data completeness in literature and its rele-
vance in risk assessment; it is a REACH requirement at the
lowest tonnage level.”> Toxicological data of MWCNTs were
extracted from both in vivo and in vitro studies." The goal was to
develop the most efficient classification model for MWCNTs
(geno)toxicity by designing and executing two different chem-
informatics workflows employing various state-of-the-art
machine learning applications. After a thorough validation of
the models using multiple performance criteria, a model
produced by the RF method and the RFE variable selection
procedure, was selected as the model with the best perfor-
mance. Another efficient model using four descriptors only, was
produced by the LR method. The “percentage of pure carbon”,
the “Zeta average” and the “Length” play a significant role in the
prediction for both models. The LR model selected an addi-
tional physicochemical characteristic (“the polydispersity
index”). These results are in agreement with the literature.
“Carbon purity” and “zeta potential” have been reported by
Aschberger et al.** as important factors affecting MWCNTs
genotoxic hazard potential. “Length” has also been suggested in
the literature as a critical factor for MWCNTS in vivo toxicity.
More specifically, long MWCNTSs were usually considered to be
more hazardous® than short ones, in in vivo tests, causing cell
death and ROS generation.**

In conclusion, this study exhibited the value of using che-
moinformatic techniques to produce a reliable model for pre-
dicting genotoxicity of MWCNTs. In future studies the
predictive power of the model can be improved by considering
information and data on extrinsic properties of the surrounding
medium (pH, serum proteins, ionic strength).*®*”
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