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Metabolomics in infectious diseases and
drug discovery

Vivian Tounta, Yi Liu,† Ashleigh Cheyne† and Gerald Larrouy-Maumus *

Metabolomics has emerged as an invaluable tool that can be used along with genomics, transcriptomics

and proteomics to understand host–pathogen interactions at small-molecule levels. Metabolomics has

been used to study a variety of infectious diseases and applications. The most common application of

metabolomics is for prognostic and diagnostic purposes, specifically the screening of disease-specific

biomarkers by either NMR-based or mass spectrometry-based metabolomics. In addition, metabolomics

is of great significance for the discovery of druggable metabolic enzymes and/or metabolic regulators

through the use of state-of-the-art flux analysis, for example, via the elucidation of metabolic

mechanisms. This review discusses the application of metabolomics technologies to biomarker

screening, the discovery of drug targets in infectious diseases such as viral, bacterial and parasite

infections and immunometabolomics, highlights the challenges associated with accessing metabolite

compartmentalization and discusses the available tools for determining local metabolite concentrations.

Introduction

Metabolomics is a holistic approach towards the determination
and quantification of metabolites in a biological system and the
omics method most closely related to phenotype, last in the
cascade of genomics, transcriptomics, and proteomics. Alterations
at the metabolome level reflect disturbances in the preceding
cascade, bridging the gap between the genome and phenotype.
Metabolites are the products and intermediate molecules of
metabolic pathways and include small molecules such as lipids,
sugars, nucleotides, and amino acids. Changes at this level can
precede the onset of disease symptoms, which renders meta-
bolomics an essential diagnostic and prognostic tool crucial
for investigating the mode of action of chemical compounds
and obtaining an in-depth understanding of the impact of
infection.

Two techniques are regularly employed for metabolomics
analysis: mass spectrometry (MS) and nuclear magnetic resonance
(NMR) spectroscopy. The main advantages of NMR lie in its
non-destructive nature, reproducibility, and simple sample pre-
paration, whereas its lack of sensitivity – limited to molecules at
concentrations above 1 mM – poses the core limitation of this
technique.1,2 Samples are placed in a magnetic field, and radio
pulses alter nuclei with nonzero momentum. The spectra
commonly used in NMR studies are 1H-NMR, 13C-NMR and

31P-NMR because these offer the highest sensitivity, and this
sensitivity is further improved by advances in magnet technology
and sample preparation – including cryogenically cooled probes
and the introduction of separation methods such as liquid
chromatography.3–5 Although NMR resonance ambiguity and
overlapping signals can be improved by 2D experiments in
which two spectra are recorded, the inherent high sensitivity
of MS (picogram level) renders it ideal for biofluid analysis and
one of the most widely used methods for metabolomics.

MS measures and separates molecules based on their mass-
to-charge ratio (m/z) and requires three components: an ion
source that generates ions, an analyser, and a detector. Different
types of each component exist and are suitable for different
experiments. MS analysis is usually preceded by the chromato-
graphic separation of molecules, and this separation can be
achieved by liquid chromatography (LC) and/or gas chromato-
graphy (GC), which are the most widely used techniques, as well
as capillary electrophoresis (CE). LC/MS provides the highest
coverage of the metabolome and includes hydrophilic inter-
action chromatography (HILIC) for polar metabolites and
reverse-phase LC for molecules with higher hydrophobicity.
Although the GC-MS coverage is lower than that of LC/MS, GC
is ideal for volatile compounds.6 CE chromatography can also be
used prior to MS analysis, provides medium coverage of the
metabolome and is an ideal approach for charged metabolites.7,8

Metabolomics studies include two complementary approaches,
targeted and untargeted metabolomics. The targeted approach is
usually preceded by the formation of a hypothesis that needs to be
tested and aims to quantify a predetermined set of metabolites.9

The untargeted method, which was initially called fingerprinting,
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is based on comparisons and the identification of differences
between the complete metabolic profile of a reference and those
of samples, e.g., healthy and diseased individuals.9 The objective
of untargeted metabolomics is to identify changes in metabolites
caused by a specific factor under study, e.g., an infection. Thus,
the aim of this approach is not absolute quantification but rather
the identification of differences between samples and the refer-
ence caused by a specific element in question, and the assembled
list of altered metabolites can then be used for a targeted
metabolomics study. Thus, untargeted and targeted metabolomics
provides quantification of and insight into affected metabolic
pathways. Metabolites are not unique to a single biochemical
pathway, which makes their characterization and classification
more complex than those of genes. For example, the Human
Metabolome Database (HMDB, https://hmdb.ca/) and Metlin
Database (hhttps://metlin.scripps.edu) are freely available electronic
databases containing 114 264 entries (as of January 2020) and over
500 000 molecular standards, respectively.

One of the major bottlenecks of metabolomics is the generation
of large volumes of raw data, which results in the need of multi-
variate statistical analysis in which each metabolite constitutes a
variable.10 Principal component analysis (PCA) is an unsupervised
method commonly used for initial visualization.11 The aims of
data visualization are the identification of outliers and the deter-
mination of sample clustering. The difference in metabolites
abundances can then be presented as fold-change differences
between samples and controls, and the statistical significance of
the differences is then measured such as by analysis of variance
(ANOVA) and T-tests. Supervised methods require training on
labelled data sets in which the outcome is known. Popular
supervised methods include partial least squares regression
discriminant analysis (PLS-DA) and orthogonal partial least
squares regression discriminant analysis (OPLS-DA), which are
associated with the risk of data overfitting,10,12 and thus, cross
validation using techniques such as CV-ANOVA is essential for
overcoming this issue.13

Metabolomics can provide a broad picture of the metabolome
and insights into complex biochemical pathways by quantifying
metabolites that are known players in major metabolic pathways,
such as central carbon metabolism, including glycolysis, the
tricarboxylic acid (TCA) cycle, and the pentose phosphate
pathway. Glycolysis is the conversion of glucose to pyruvate and
is used by proliferating cells because it generates adenosine
50-triphosphate (ATP) while reducing nicotinamide adenine
dinucleotide NADH to NAD+, which acts as a cofactor for many
enzymes. The pentose phosphate pathway branches from glycolysis
through the intermediate metabolite glucose-6-phosphate and
diverts cell metabolism towards two outcomes: the synthesis of
nucleotide and amino acid precursors for cell growth and
proliferation and the synthesis of reducing metabolites for
redox metabolism and fatty acid synthesis. The TCA cycle
involves the conversion of pyruvate or fatty acids to multiple
metabolites involved in ATP, NADH, and flavin adenine dinucleo-
tide hydroquinone form (FADH2) production, the intermediates
of which can be used for amino acid and lipid synthesis. NADH
and FADH2 are used in mitochondrial oxidative phosphorylation

(OXPHOS) metabolism to generate energy, which is used by
nonproliferating cells to maintain their basal metabolism rates.
Fatty acid oxidation involves the breakdown of fatty acids, is an
alternative energy production pathway and is more effective for
ATP generation than glycolysis. In contrast, fatty acid synthesis is
used by proliferating and growing cells because it generates lipids
that are required for maintaining the integrity of the cell
structure. Moreover, amino acid metabolism is important for
a wide range of metabolic pathways, such as protein synthesis,
fatty acid synthesis, purine and pyrimidine synthesis.

Infection affects organisms in complex ways and often alters
pathways involving enzymes encoded by uncharacterized genes.
Activity-based metabolic profiling (ABMP) is a metabolomics
approach that aids the functional annotation of genes by
detecting subtle changes in metabolite abundances caused by
recombinant enzyme expression.14–16 To gain further insights
into the mechanistic changes to the metabolome in response to
stimuli, metabolomics and, more particularly, stable isotope
tracing analysis (e.g., 13C, 15N, and 2H) allow a direct snapshot of
pathway activities and metabolite regulation. Effectively, stable
isotope labelling provides a unique picture of intracellular
metabolism. Although untargeted and targeted metabolomics
can provide the abundance of different metabolites within
metabolic pathways, several metabolic changes do not a priori
result in an increase or decrease in the metabolite level. Stable
isotope tracing provides information not revealed by conven-
tional untargeted metabolomics by measuring the rates of
metabolite interconversion as a readout of metabolic enzyme
regulation, which makes stable isotope tracer studies a powerful
option for probing metabolic changes in complex biological
systems. Insights into the full picture of cell metabolism
obtained from the combination of targeted metabolomics and
flux analysis data can inform biological research because
answers from one platform can drive experiments on the other,
resulting in a feedback loop for follow-up experiments.

Metabolism is central to the impact of infection on immunity
because immune cells require the synthesis or degradation of
different proteins, such as cytokine or cell surface receptors, to
perform their different functions.17 A typical immune response
begins with host exposure to a pathogen and initial infection,
through several means such as inhaled aerosolised droplets or
through the skin. The pathogen will then interact with their
target cell of infection such as cells local to the area of infection or
local innate immune cells such as tissue macrophages through
host cell surface proteins called pattern recognition receptors.
Once infected, these host antigen-presenting cells become acti-
vated and release signalling molecules such as cytokines, which
can activate neighbouring cells. Within the antigen presenting cell,
pathogen derived antigens bind to major histocompatibility
complex (MHC) proteins and are presented at the cell surface to
cells of the adaptive immune system to trigger an immune
response specific to the invading pathogen. In the case of most
viral and bacterial infections, the invading pathogen peptides,
generated in the antigen presenting cell, will stimulate adaptive
immune cells via MHC class I molecules, for viral infections and
intracellular bacteria, or MHC class II molecules for extracellular
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bacterial infections.18 Activation of cytotoxic CD8+ T lymphocytes
by MHC class I presentation of peptides leads to killing of the
infected cells through a number of mechanisms. MHC class II
with bound pathogenic peptide stimulates naive T lymphocytes to
differentiate into activated T helper (Th1) cells and increase a
specific immune response at the site of infection. These Th1 cells
also aid in activating naive B cells to mature into plasma cells and
initiate a humoral response through production of antibodies. In
the case of parasites, the specific immune response to parasites
leads to the production of antibody. Infection by protozoan
parasites is associated with the production of immunoglobulin
G (IgG) and immunoglobulin M (IgM).19–21 With helminths there
is, in addition, the synthesis of substantial amounts of immuno-
globulin E (IgE).22

In contrast, for parasitic infections, the innate immune response
will instead stimulate an anti-inflammatory response through
differentiation of T helper (Th2) cells and regulatory (Treg)
T cells and the regulation and suppression of immune responses
through cell surface receptors such as PD-1 and anti-inflammatory
cytokines such as IL-10. These immunological processes are
mirrored by a change in metabolism, which is dependent on
the function and state of the differentiated cells. For example,
during chronic viral infection, T cells can become exhausted as
a result of continuous signalling through antigens or other
immunostimulatory factors. Exhausted T cells form a distinct
T cell population defined by the expression of inhibitory receptors
(such as PD-1) and a decrease in effector functions compared
with effector T cells and, importantly, exhibit a difference in
metabolism.23 Exhausted CD8+ T cells are dependent on glycolysis
during hepatitis B infection compared with effector cytomegalovirus-
infected CD8+ T cells by upregulating the glucose transporter GLUT1
and are unable to carry out mitochondrial OXPHOS.24 In contrast,
early infection with lymphocytic choriomeningitis virus (LCMV)
suppresses both glycolysis and OXPHOS in the chronic strain
clone 13 compared with an acute strain of LCMV called
Armstrong,25 which highlights the differences in metabolism
even between chronic viral pathogens.

As a result of this unique interplay between immune cell
function and their metabolism, metabolomic studies of immune
cells has become a research field with increasing popularity.
Studies in immunometabolism – defined as metabolic alterations
that affect immune cells – have mainly focused on the major
metabolic pathways and their link to immune cell activation and
function.26 These pathways include glycolysis, the TCA cycle, the
pentose phosphate pathway, amino acid synthesis, fatty acid synth-
esis, and fatty acid oxidation.26 Altogether, these metabolic pathways
are used by all immune cells at different stages of their development
and in response to disease and are thus of great interest when
attempting to understand the impact of infection on immunity. As
such, the varying energy demands and functions of different cell
types, such as macrophages and T cells, are directly linked to
differential metabolic levels. The complex relationship between
metabolic programming and cell phenotype offers the potential for
therapeutic manipulation of the immune response.27,28

The study of the metabolome is the omics approach most
closely related to the phenotype and is the most informative

with respect to interactions between biological compounds. This
review aims to highlight how metabolomics can be an invaluable
tool for understanding host–pathogen interactions in infectious
disease research by providing insights into its application for the
discovery of biomarkers that can be used for disease diagnosis and
its uses in drug discovery. We will further focus on the uses of
activity-based metabolic profiling and how metabolomic flux pro-
vides a more complete picture. Topics such as immunometabolism
and the emerging field of single-cell imaging metabolomics will
also be introduced to showcase the versatility of metabolomic
approaches in infectious diseases and the challenges faced.

Metabolomics for host–pathogens
interactions and biomarker discovery

Metabolomics analyses can be used to understand these host–
pathogens interactions and screen host samples for biomarkers
that are characteristic of a specific state. Those biomarkers can
then be used for disease diagnosis, prognosis, and staging and
for the assessment of new drugs with applications in viral,
bacterial, and parasitic infections.

Metabolomics and viral infections

The host innate immune response to several viral infections
has been well studied. The immunometabolic response to the
Herpesviridae family of viruses is the most studied; however, the
response to many other viruses, such as Epstein–Barr virus,
influenza virus, rhinoviruses, Flaviviridae, hepatitis B and C
viruses, human immunodeficiency virus, and, more recently,
SARS-CoV-2, has also been researched29–31 It is well established
that during viral infections, the host metabolic response is
manipulated by the virus to adapt to the increased virion
replication rate by switching host cells from energy-producing
metabolism, including aerobic glycolysis, to a more efficient
means of energy production through anaerobic glycolysis.29

More recently, however, progress in understanding the role
of inflammation and inflammatory metabolites and lipids on
viral infectious diseases has been achieved. A substantial study
of dengue virus infection was performed to investigate the
metabolome (through LC/MS and GC/MS) and lipidome
(through LC/MS/MS) of serum samples from 44 dengue virus-
infected patients compared to 50 healthy control patients at
three stages of the disease: less than 72 hours after presenting
with fever, days 4–7, and weeks 3–4.32 The study identified
several pathways, including fatty acid biosynthesis, fatty acid
beta-oxidation, polyunsaturated phospholipid hydrolysis, lipolysis,
and glycolysis, that were upregulated during the acute stages of
dengue fever (the first two time points) and then returned to the
control levels by weeks 3–4. The authors identified different
polyunsaturated phospholipids that both promote and inhibit
inflammation, which indicated that the host cell must balance
the degree of inflammation during the infection to control the
virus but not damage the host.

Several chronic viral pathogens infect T cells, and many are
known to manipulate or suppress adaptive immune cells.29
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In contrast to previous research, many recent studies have
investigated changes in bioenergetics by using Seahorse tech-
nology to measure glycolysis and mitochondrial OXPHOS, the
pathways for glucose breakdown and energy generation, while
a few studies have used mass spectrometry technologies.
Seahorse technology analyses the bioenergetics of live cells
by measuring the oxygen consumption rate (OCR) and extra-
cellular acidification rate (ECAR) and thus provides insight into
cellular respiration and glycolysis.

Viral infections – biomarkers

As biomarkers are metabolites whose abundance can be used as
indicators of specific disease states or stages, they have been.
They have been used to diagnose and evaluate progression of
viral infections. These alterations in abundance that correlate to
disease are often the result of the host immune response and
the dysregulation of the main biochemical pathways in response
to infection. This review will focus on four viral infections that
have attracted numerous metabolomics studies and are highly
relevant such as Human immunodeficiency virus (HIV), hepatitis B
virus (HBV), hepatitis C virus (HCV) and severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2).

Metabolomics in HIV disease

Human immunodeficiency virus (HIV) is a retrovirus that
causes acquired immunodeficiency syndrome (AIDS), which
remains a global health issue. Due to substantial progress in
HIV diagnosis and treatment, affected individuals can live with
chronic infection while undergoing antiretroviral therapy (ART)
despite the lack of a cure. Human immunodeficiency virus type
1 (HIV-1) is responsible for the majority of global AIDS cases,
whereas only 30% of type 2 (HIV-2) infections develop AIDS.33

After infection, the HIV viral load reaches a peak at an excess of
1 million HIV RNA copies per mL after approximately two
weeks.34 The acute and primary infection is followed by an
asymptomatic stage that can last multiple years before symptoms
arise and the disease progresses. Even during the asymptomatic
phase, infection leads to gradual decrease in CD4+ T-cells, as the
virus binds and infects the cells to replicate within them.35 HIV-2
exhibits lower virulence and transmission compared to HIV-1
and is described by slower CD4+ T-cell decline.

Metabolomics has been a versatile tool in HIV research and
has been applied towards vaccine development and disease
diagnosis. Studies have attempted to identify biomarkers from
biofluids, such as plasma, that correspond to the protection
afforded by potential vaccines. Initial efforts established that
discrimination between HIV+ and HIV� was possible by a com-
parison of the metabolic profiles of the serum of patients.36 A
more interesting finding was the discrimination between HIV+

individuals who had received antiretroviral therapy (ART+) and
HIV� individuals,36,37 which was based on significant changes in
the glucose and lipid levels. These findings were validated by
Cassol et al. by untargeted ultrahigh-performance liquid chroma-
tography UHLC/MS/MS and GC/MS of plasma and cerebrospinal
fluid (CSF).38 The alterations discovered in HIV+ ART+ samples
suggested an effect similar to accelerated ageing and involved

neurotransmitters (glutamate, N-acetylaspartate), myo-inositol
and ketone bodies. The identified metabolites were also some of
the top-ranked classifiers for the development of HIV-associated
neurocognitive disorders (HAND), and the results thus provide
insight into the inflammation and neurotoxicity involved.

To characterize the factor responsible for the lower patho-
genicity of HIV-2, HIV-1 and HIV-2 infections were compared
based on their metabolic profiles obtained by LC/MS.39 Despite
similar glycolytic and TCA profiles, the HIV-2 profile was
characterized by an increase in deoxynucleotide triphosphate
(dNTPs), which are hypothesized to be connected to HIV-2 viral
protein x (Vpx). Vpx has been implicated in the degradation of
SAMHD1, a host antiviral factor with deoxynucleoside tripho-
sphate triphosphohydrolase (dNTPase) activity that aims to deplete
dNTP availability for viral reverse transcription.39,40 Noninfected
and HIV-infected primary monocyte-derived macrophages were
used to extract metabolites for LC-MS/MS. Increases in the glyco-
lysis intermediates fructose 1,6-bisphosphate (FBP) and glyceral-
dehyde 3-phosphate (G3P) were discovered with the HIV-1 strains,
although the most remarkable change was the increase in quino-
linate obtained with HIV-2 infections. Quinolinate is an upstream
metabolite of NAD+ production in the kynurenine pathway, which
starts with tryptophan degradation. Despite the observed changes
in the quinolinate levels, NAD+ was not significantly diminished.
Impaired function of the kynurenine pathway has been associated
with various disorders, such as neurodegenerative diseases and
chronic inflammation. In addition, the tryptophan levels have
been linked to the immune response, and the continued depletion
of this amino acid has been connected to T cell exhaustion and
tryptophan catabolism toward immune activation.41,42 These
results led to the speculation that the difference between HIV-1
and HIV-2 pathogenicity can potentially be attributed to trypto-
phan levels.39

Metabolomic studies using biofluids, such as urine, whole
blood and serum, have also been employed to identify meta-
bolite markers correlating to HIV-induced oxidative stress
(OS).43 Studies using various methods (NMR, LC/MS, GC/MS,
UPLC/MS), including both untargeted and targeted metabolomics,
have explored changes indicative of OS, such as altered amino acid
metabolism, e.g., alanine and glutamine. Bipath et al. performed
GC/MS analysis on 105 plasma samples from HIV+ sub-Saharan
populations using a DB-5 MS capillary column and found
increased levels of indoleamine 2,3-dioxygenase (IDO) in the
HIV+ samples. This increase resulted in the upregulated break-
down of tryptophan and the accumulation of kynurenine pathway
intermediates such as quinolinate and metabolites with neurotoxic
properties compared with the results obtained with HIV� and
HIV+ samples from higher-income countries. These results
reinforce the findings reported by Cassol et al., who showed
how tryptophan levels can be connected to inflammation and
the development of HIV.38,44

Application of metabolomics to hepatitis B

Metabolomics can greatly impact hepatitis B virus (HBV)
research by providing a sensitive method for determining the
stage of the disease without the need for high-risk methods

Review Molecular Omics

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
A

pr
il 

20
21

. D
ow

nl
oa

de
d 

on
 7

/2
8/

20
25

 8
:2

7:
59

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1mo00017a


380 |  Mol. Omics, 2021, 17, 376–393 This journal is © The Royal Society of Chemistry 2021

such as biopsies and histology.45 After acute infection develops into
chronic disease, the next steps are liver fibrosis (LF) and cirrhosis,
which can progress to hepatocellular carcinoma (HCC).45

In 2015, Gao et al. used an untargeted GC/TOF workflow to
identify metabolite markers that could be used to discriminate
between HBV stages and support the early diagnosis of HCC
based on 201 serum samples of various disease stages and
healthy controls.46 These researchers successfully identified
metabolites characteristic of HBV infection, progression to
cirrhosis and perturbations towards discrimination between
cirrhosis and HCC (asparagine and b-glutamate). Core path-
ways such as glycolysis and the TCA cycle undergo significant
changes to enable HCC development; a blockage of the TCA
cycle thought to be caused by observed increases in malic acid,
citric acid, and succinic acid results in a dependence on
glycolysis. They further proposed phenylalanine, malic acid and
5-methoxytryptamine as potential biomarkers for discrimination
between HBV and controls and palmitic acid for cirrhosis
recognition against HBV. In 2016, Shoeman et al. performed
UPLC/MS analyses of 69 HBV positive and 19 control serum
samples to study the metabolome during chronic HBV and
further demonstrated how metabolic reprogramming can indi-
cate disease staging.47 Similar to Gao et al., these researchers
detected increased ornithine levels in addition to increased
levels of citrulline and glutamate, which pointed towards dysre-
gulation of the urea cycle associated with liver damage.47,48

Furthermore, they proposed that the virus hijacks the glycerol-3-
phosphate NADH shuttle to allow its replication, which offers a
novel possibility for therapeutic intervention.

Application of metabolomics to hepatitis C

Hepatitis C virus (HCV) is a leading cause of infection that can
develop into chronic disease in 70% of infected individuals
(WHO, 2018). The stages of fibrosis are often classified using
the scale named METAVIR as F0, F1–2, F3 and F4, which range
from no signs of fibrosis to cirrhosis, and a major risk of the
latter stages is further development into HCC.49 Anti-HCV treatment
has progressed substantially in recent years, and direct-acting
antivirals (DAAs) have replaced pegylated interferon and ribavirin
and offer effective treatment.50 Because metabolomics provides a
link between genotype and phenotype, it has served as a useful tool
in HCV diagnosis and disease staging.

Biomarkers for disease diagnosis have been identified using
NMR, and a combination of MS coupled to different chromato-
graphic methods have identified alterations in sugar metabo-
lism and increased metabolites such as glucose in plasma.51,52

As in HBV, metabolomics can provide a sensitive and non-
invasive method for disease staging, and many related studies
have been performed. One of these attempted to use statistical
methods to generate an algorithm to discriminate between
stages by using amino acid ratios in plasma based on the
formula [(phenylalanine)/(valine) + (threonine + methionine +
ornithine)/(proline + glycine)] was generated using data mining
and multivariate statistical analysis.53 Several links between the
recent SARS-CoV-2 virus infections in patients with diabetes, and
other metabolic disorders have suggested that immunometabolism

plays an important role in infection. Plasma samples from 53
patients were analysed and their fibrosis state was determined
using biopsies. Results showed that the formula could accurately
discriminate between F3–F4 and earlier stages, as well as identify
F4 against all other stages. Performance was measured by the
area under the receiver operator curve, and results yielded high
confidence (95% confidence interval). While these results are
preliminary, they hold the potential for non-invasive liver fibrosis
evaluation. Another study employed LC/MS and GC/MS and
identified alterations that could be used as markers for fibrosis,
e.g., cysteine and bile acids.54

NMR has also proven useful in disease staging. An 1H-NMR
approach used metabolite changes to distinguish serum from
F0 and F4 patients, whereas the new DAA treatment enabled the
study of a more representative metabolomic patient profile.55

Because DAA treatment directly targets viral replication and
does not include biologically active molecules such as the
previously used pegylated interferon (Peg-IFN), serum NMR
spectra of 67 patients with HCV, 50 with HBV and 43 healthy
controls were collected to characterize their metabolic finger-
prints.55 Two one-dimensional 1H-NMR spectra of each serum
sample were collected: one Nuclear Overhauser Effect (NOESY)
spectrum, which shows protons close in space even if not
bonded, and one Carr–Purcell–Meiboom–Gill (CPMG) train of
pulses to enhance the signal.56,57 Differences between META-
VIR levels were identified, and these focused on increases in the
levels of tyrosine and formate, which are involved in multiple
pathways, such as nitrogen and pyruvate metabolism. These
results agreed with those obtained in previous studies and thus
indicate the potential of using these molecules as fibrosis
biomarkers.58,59 Meoni et al. also showed how DAA treatment
reversed the changes to metabolite levels caused by infection
and effectively differentiated between patients with HCV or
HBV and healthy controls.55 HCV infection resulted in an
increase in certain metabolites (lactate, 3-hydroxybutyrate,
acetate, and pyruvate), indicating upregulation of the glycolysis
pathway, which has been hypothesized to be induced by the virus.
Similar to the results found for HBV, HCV diagnosis and staging
can greatly benefit from the application of metabolomics.

Metabolomics and SARS-CoV-2

The outbreak and rapid spread of SARS-CoV-2 in December
2019 has led to an unprecedented global pandemic causing
over 100 million confirmed cases of COVID-19 (as of March
2021) and over 2.5 million deaths (WHO, 2021). The absence of
an effective treatment renders its rapid and sensitive diagnosis
a necessity. The speed and ease that metabolomics offers make
it an excellent tool for the fight against COVID-19 because this
approach can generate massive amounts of data and allows the
rapid screening of molecules for the discovery of biomarkers
for the diagnosis and prediction of disease severity.

Several links among the recent SARS-CoV-2 virus, diabetes,
and other metabolic disorders have suggested that immuno-
metabolism plays an important role in infection,60 but few studies
have directly addressed these findings. One group compared whole
blood metabolites from 17 SARS-CoV-2-positive patient samples
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with 25 SARS-CoV-2-negative healthy control samples using both
NMR and LC/MS.30 The authors found several markers of inflam-
mation in samples from patients with COVID-19: increased
alpha-1-cis glycoprotein signal A, an increased kynurenine/trypto-
phan ratio, and the modulation of several lipid profiles, including
high density and low-density lipoproteins and an increase
in triglycerides. However, there is some discrepancy in their
findings because the authors state that the kynurenine/tryptophan
ratio is significantly higher in patients with COVID-19 according
to their PCA and OPSL-DA analysis but was also found to be
significantly lower in patients with COVID-19 based on the
abundance values and the application of a Kruskal–Wallis rank
sum test. Another study integrated several omics datasets
(including metabolomics via GC-MS and AEX LC-MS/MS,
proteomics via NanoLC/MS/MS, lipidomics via LC/MS, and
transcriptomics via RNA-seq) from the blood of 102 patients
with COVID-19 (including ICU and non-ICU-admitted patients)
compared with 26 non-COVID-19 patients (including ICU and
non-ICU-admitted control patients).31 An increased kynurenine/
tryptophan ratio in patients with COVID-19 was not described in
the study itself, but further investigation using their web app
found that this ratio is higher in patients with COVID-19 in this
dataset. Furthermore, the authors also identified an increase in
triglycerides, which further supported the initial findings
reported by Kimhofer et al., and a decrease in several metabolites
that are linked to decreased inflammation, such as citrate.31

While this study can confirm changes found in other analyses,
the inclusion of ICU patients can identify which immunometabo-
lomic pathways, in this study and others, are specific to SARS-CoV2
infection. These initial studies agree with several lines of evidence
suggesting that COVID-19 stimulates a severe inflammatory reaction
in the host and that patients with diabetes or cardiovascular
diseases are at greater risk of severe COVID-19.32,61 These findings
have helped identify underlying molecules promoting inflammation
and other comorbidities in COVID-19 disease.

In addition to the immunometabolomic studies on COVID-19,
there have been several studies identifying host biomarkers of
COVID-19 diseases. A recent study showed that COVID-19-
positive plasma samples were readily distinguishable from
healthy controls by comparing the arginine/kynurenine ratios.62

Direct injection LC/MS/MS and 1H-NMR approaches were
employed to measure 183 metabolites from plasma samples of
suspected COVID-19 cases that were admitted to intensive care
unit. These were later confirmed as cases (COVID-19+) or as
negative (COVID-19�). A third group of age and sex matched
healthy individuals acted as controls. The results showed a
unique profile for COVID-19+, which was characterized by
altered levels of kynurenine, creatinine, arginine, sarcosine
and lysophosphatidylcholines. The kynurenine pathway starts
with tryptophan degradation and results in the generation of
energy in the form of NAD+. Increased levels of kynurenine point
towards an increased degradation of tryptophan associated with
the release of interferon-g from activated T cells. The significance
of arginine reduction could be attributed to its role in tissue
repair. A significant step was also the identification of creatinine
as a potential biomarker for disease severity; creatinine or the

ratio of arginine to creatinine yielded 100% accuracy in the
prediction of mortality. While the study included a limited
number of test subjects, 10 in each group, the results exhibited
100% classification accuracy when distinguishing between
COVID-19+ and controls, and 98% when distinguishing between
COVID-19+ and COVID-19�. This underlines the potential of
metabolomics for COVID-19 diagnostic uses, bypassing the need
for polymerase chain reaction tests, and even more significant is
the potential for disease severity prediction which could anticipate
treatment requirements for each case.

Shen et al. used a combination of targeted proteomics and
metabolomics to further test the hypothesis that serum from
healthy individuals could be distinguished from that of infected
individuals based on the metabolic profile.63 Alterations in 204
metabolites, including amino acids and carbohydrates, were
detected by UPLC/MS/MS, and these can potentially serve as
biomarkers for the assessment of case severity. Affected func-
tions such as platelet degranulation and macrophage activity
were also identified. The results were based on sera from 46
COVID+ subjects and 53 controls. They proposed a machine
learning model for predicting cases that may become severe,
which they trained on 31 patients of ranging disease severity.
The model was validated on two test cohorts, where 7 out of 10
cases and 16 out 19 were correctly classified. While a higher
number of clinical specimens and absolute quantification of
metabolomic and proteomic data would be required before real-life
application of these findings, the results remain promising. Another
study performed LC-HRMS analyses of plasma of 55 infected
individuals and 45 controls to identify markers for diagnosis with
high accuracy and sensitivity.64 The multivariate model described in
the study predicted SARS-CoV-2 diagnosis with accuracy, sensitivity
and specificity greater than 74%. These researchers also demon-
strated a link between the tryptophan-nicotinamide pathway and
inflammation and potential implications of cytosine.

An attractive attribute of metabolomics approaches is the
potential for the use of saliva, an easily collected, readily available
sample that can be collected without the need for invasive
methods. SARS-CoV-2 enters the organism via epithelial cell
ACE2 receptors of salivary glands and the oral cavity, which
makes saliva an attractive target for further metabolomics ana-
lysis that could potentially provide rapid, sensitive and accurate
diagnosis.

Metabolomics and bacterial infections

Several studies have used metabolomics to understand bacterial
infections, typically focusing on the main cell type involved in
the immune response to the majority of these infections:
macrophage cells. Much information has been learned about
bacterial infection through the stimulation of macrophage cells
with lipopolysaccharide (LPS), a bacterial antigen that acts as a
Toll-like-receptor 4 (TLR-4) ligand to activate downstream
immune responses65 and thus acts as a pathogen-associated
molecular pattern to stimulate immune cells such as macrophages
towards an inflammatory phenotype. Before infection, resting
macrophages exhibit low levels of metabolic activity but do carry
out ATP generation through OXPHOS.66 Upon infection, however,
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different stimuli can induce macrophages to differentiate into
what is broadly grouped as proinflammatory (M1) or anti-
inflammatory (M2) macrophages. As the names suggest, pro-
inflammatory cytokines e.g. IFNg stimulates the differentiation
of naı̈ve macrophages into M1 macrophages, whereas anti-
inflammatory antigens such as IL-4 stimulate the differentiation
of naı̈ve macrophages into M2 macrophages.26 The differentiation
into these states has also been linked to different metabolic
activities: M1 macrophages upregulate glycolysis and the pentose
phosphate pathway, and M2 macrophages upregulate the TCA
cycle and OXPHOS.26

M1 macrophages exhibit increased glycolysis activity while
having a ‘‘broken’’ TCA cycle, which, upon LPS stimulation,
synthesizes metabolites such as itaconate, a known antimicro-
bial molecule.17 A flux balance analysis study revealed that
itaconate is the most abundant metabolite produced by bone
marrow-derived macrophages (BMDMs) after LPS and IFNg
stimulation towards an M1 phenotype and reduces the secretion
of proinflammatory cytokines such as IL-1b.67

In contrast, LPS stimulation has been linked to the production
of other proinflammatory cytokines when host cells are stimulated
with succinate. The synergistic effects of succinate and LPS
increase IL-1b secretion from BMDMs through the production of
reactive oxygen species and an increase in glycolysis.68 The same
study also identified further roles for LPS and succinate in
inflammation, including inhibition of the immune-suppressing
cytokine IL-10. In addition, an HP-LC/MS analysis showed that
LPS enhances the effects of IFNg, an inflammatory cytokine, in
BMDMs to increase the production of proinflammatory metabolites
such as L-glutamate and (S)-malate.17 These reports demonstrate the
diverse effects that one bacterial antigen, LPS, can have on the host
immune response. Furthermore, the complex metabolic regulation
by specific metabolites, such as itaconic acid and succinate, should
be further studied using in vivo models to fully elucidate their roles
during infection.

Bacterial infections – biomarkers

Building on these studies focussing on the metabolomics of the
host immune response, several host biomarker signatures have
been discovered for the diagnosis, prognosis, and disease staging
of bacterial infections.8 There are a variety of metabolomics
technologies and host samples, like urine and blood plasma,
used for the discovery of these biomarkers, leading to potential
signatures to take forward for development into diagnostic tests
applied to bacterial infections.

Application of metabolomics to Clostridium difficile

Clostridium difficile, a Gram-positive bacterium, is a nosocomial
pathogen that infects the gastrointestinal tract and causes
potentially severe and highly recurrent disease. Biomarker
discovery for the diagnosis and prognosis of recurrence has been
an area of considerable interest. In 2016, both Allegretti et al. and
Kao et al. identified metabolic changes for discriminating
between healthy controls and infected patients. Allegretti et al.
performed LC/MS analyses with an ACQUITY UPLC BEH C18
column on stool samples of 20 infected patients, 19 patients

suffering from recurrent infection and 21 controls. They identi-
fied changes in bile salts that could differentiate between
infection, recurrent infection, and healthy states69 and also
proposed that the deoxycholate/(glycoursodeoxycholate +
deoxycholate) ratio has the potential to be used as a biomarker
for distinguishing primary and recurrent infections.69 Kao et al.
performed NMR studies on urine of 31 infected subjects (age- and
sex-matched to 31 healthy controls) and detected 53 metabolites,
and which choline appeared to be the most relevant for the
diagnosis of Clostridium difficile infection, possibly due to the
absence of choline-metabolizing microorganisms.70 Similarly to
Allegretti et al., they demonstrated that discrimination between
primary and recurrent infection was possible using histidine, a
metabolite linked to Clostridium difficile infection, and trans-
aconitic acid, whose role in infection remains unknown.70 In
2018, Zhou et al. performed UPLC/MS analyses of faecal samples
for Clostridium difficile diagnosis and were able to detect obvious
metabolome characteristics based on the abundance of molecules
such as capsiamide and tyrosine.71

Application of metabolomics to Tuberculosis

Tuberculosis (TB) is a bacterial, potentially lethal disease
caused by the pathogen Mycobacterium tuberculosis (Mtb). While
treatable, TB constitutes one of the top causes of death due to a
single infectious agent (WHO, 2019). Despite estimates that
show that 1

4 of the world’s population has been infected by Mtb,
only B10% of these develop symptoms and active TB, whereas
the rest maintain a latent form of the disease. HIV-infected
individuals are particularly susceptible to TB progression. TB
treatment lasts 6 months and involves a cocktail of antibiotics.
The development of multiple drug-resistant and extensive drug-
resistant (XDR) TB poses rising threats.

Mtb infection has been a particularly well-studied area of
immunometabolism research because factors involved in Mtb
metabolism and host cell metabolism have been linked to
virulence and persistence during infection.72 Mtb predominantly
infects macrophages; therefore, macrophage metabolism has
been extensively studied in the last decade.73–75 A balance of
proinflammatory and anti-inflammatory responses is optimal for
host control of Mtb; a recent study investigated the transcriptome
and the metabolome of the two main macrophage subtypes in
Mtb infection (alveolar and interstitial macrophages) to establish
whether these represent the M1 or M2 phenotypes.76,77 Using
several reporter Mtb strains, the authors demonstrated that
alveolar macrophages presented with an M2 phenotype and were
permissive to bacterial replication, whereas interstitial macro-
phages exhibited the M1 phenotype and showed reduced bacter-
ial replication. Interstitial macrophages were found to produce a
higher abundance of lactate than alveolar macrophages, as
demonstrated by a lactate colorimetric/fluorometric assay, and
were reduced in number upon inhibition with the drug 2-deoxy-D-
glucose (2-DG), which suggested that higher glycolytic metabolism
is beneficial to the control of bacterial replication,77 in agreement
with previous studies.78 Furthermore, the inhibition of glycolysis
in BMDMs using 2-DG increased bacterial growth as measured
through colony forming units (CFUs), whereas the inhibition of
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fatty acid oxidation using the drug etomoxir reduced bacterial
growth, which supported previous findings showing that glycolysis
is critical for bacterial control.77

A recent comprehensive study used a more global approach
to investigate Mtb infection in murine lung tissue over a time
course of 9 weeks and compared LC/MS, GC/MS and CE/MS
technologies.79 The authors identified previously known changes
in innate immune cells, such as an induction of succinate
metabolism as mentioned previously, and also identified changes
in several metabolites involved in redox and oxidative stress path-
ways, including the inducible nitric oxide synthase (iNOS) and
xanthine oxidase-related metabolites. Xanthine and hypoxanthine
were decreased in the lungs of Mtb-infected mice 4 weeks post-
infection, but their levels were increased by 9 weeks post-infection,
which suggested the differential regulation of redox metabolites
throughout the infection time course. iNOS metabolites arginine
and citrulline were increased at both 4 and 9 weeks post-infection,
which indicated an increase in iNOS, but the authors caution the
interpretation of these results because it is unclear whether the
increase in arginase originates from host cells or mycobacterial
cells. This finding reflects the main limitation of the study; it is
impossible to distinguish which metabolites are produced by the
bacterial cell or the host cell and thus the specific host cell type
in the lung. Nevertheless, this study provides the first time-
course comparison of several metabolomic technologies inves-
tigating Mtb infection.

The host response to Mtb infection is an important field of
study, not only because the role of metabolism in both Mtb and
the host is critical for infection progression and outcome, but
also for the development of diagnostic biomarkers for disease.
While diagnostic tests exist for adult TB, albeit with poor
sensitivity, there is currently no effective diagnostic test for
paediatric TB.80

Most metabolomic efforts have aimed to provide faster and
more sensitive methods for TB diagnosis and the identification
of different types. Untargeted GC/MS has been used to compare
metabolic profiles of sputum samples of healthy controls and
patients with TB. The patients and controls formed identifiable
clusters in PCA plots, and significant metabolite changes were
noted in a variety of compounds, such as carbohydrates.81

Targeted and untargeted LC/MS studies of plasma and serum
also revealed metabolic alterations that enabled discrimination
between TB-positive patients and controls.82–85 Isa et al. made
substantial progress toward TB diagnostics with their proposal
of four urinary metabolites as biomarkers for active TB: diacetyl-
spermine, neopterin, sialic acid, and N-acetylhexosamine.86

Using an untargeted HPLC-MS approach for the study of 102
urine samples from infected individuals, these researchers initi-
ally identified 49 significantly altered metabolites between TB
cases and controls. This list was narrowed down to 10 metabo-
lites using the area under the receiver operator curve (485%),
and four of these metabolites were identified by MS/MS. These
results were further investigated using a blinded validation
cohort of 50 people and longitudinal cohort of 20 that was
followed during treatment. The results confirmed that the initial
ten molecules formed a signature for active TB and thus provide a

novel and non-invasive diagnostic approach. The majority of the
metabolites – neopterin, kynurenine, spermine, N-acetylated
sugars and sialic acids – are derived from the host and involved
in immune cell activation.87,88

Metabolite markers can also be used as a prognostic tool.
Weiner et al. studied metabolite perturbations in serum and
plasma for the prediction of TB onset using 4462 HIV-negative
study participants from East, West and South Africa.84 These
subjects were household contacts of diagnosed TB cases. Their
progress was followed over a period of 2 years after exposure to
TB to monitor whether they developed active disease or
remained healthy. The objective was the identification of a
biosignature that could be used to predict which of them would
develop active TB. The generated model made predictions using
external and blinded datasets with relatively high specificity (75%)
and sensitivity (69%). Some of the metabolites that were signifi-
cantly altered included cortisol, mannose and amino acids such as
histidine, cysteine, phenylalanine, and tryptophan. The identifi-
cation of progressors to disease can allow early therapeutic
intervention and control the spreading of the disease. TB is a
characteristic example in which the diagnostic potential of
metabolomics can be applied. Significant steps have been made
towards the identification of a biosignature that could revolutionize
diagnosis and facilitate timely treatment.

Metabolomics and antiparasitic approaches

Application of metabolomics to malaria. Malaria is a life-
threatening but preventable disease carried by female Anopheles
mosquitoes. It is caused by intracellular parasites of hepatocytes
and erythrocytes of the genus Plasmodium, of which P. falciparum
and P. vivax pose the highest risk. According to the WHO, malaria
caused more than 400 000 deaths in 2018 (WHO, 2019).

Metabolic markers for aiding non-invasive disease diagnosis,
in addition to the prognosis of disease severity, have been an
area of interest. MS has been applied to the identification of
P. falciparum infection in plasma, and significant differences in
metabolic profiles have been observed based on compounds
such as amino acids and lipids.89 In 2015, Surowiec et al. used
GC/MS to discern disease stages in paediatric infections by
testing plasma from 421 individuals.90 The marked differences
in severe cases of malaria included increased levels of
3-hydroxybutyric acid and fatty acids, which most likely derived
from the host, and decreased levels of alanine and pyruvate,
which are possibly connected to gluconeogenesis. A possible
link between case severity and valine increase was also proposed
and is conceivably connected to the digestion of haemoglobin.

Potential urinary biomarkers indicating active P. falciparum
infection were also identified in a case-control study of 21
infected individuals and 25 controls using high performance
liquid chromatography-high resolution mass spectrometry
(HPLC/HRMS).91 The observed increases in metabolite levels
were abated after antimalarial treatment. The altered levels of
1,3-diacetylpropane, N-acetylputrescine and N-acetylspermidine
between patients and controls make these attractive biomarker
candidates. The observed differences could be attributed to the
‘‘active phase responses’’, which refers to the changes directly

Review Molecular Omics

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
A

pr
il 

20
21

. D
ow

nl
oa

de
d 

on
 7

/2
8/

20
25

 8
:2

7:
59

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1mo00017a


384 |  Mol. Omics, 2021, 17, 376–393 This journal is © The Royal Society of Chemistry 2021

caused to the host by infection and parasite activity or to the
host’s response to infection, and these findings were consistent
with the abnormal levels of amino acids and their metabolites
(e.g., threonine and trimethyl-L-lysine) found by Surowiec
et al.90,91 A contradictory discovery was the levels of alanine,
which appeared to be increased and support an enhanced
glycolysis pathway. While most discoveries were supported in
findings of preceding studies, the limited study subjects mean
these results should be considered preliminary and in need of
further validation using other datasets. The increased levels of
urea linked to kidney injury were also of interest.91

Malaria is the cause of a significant global health burden,
and metabolomics can aid non-invasive disease diagnosis and
prediction of disease severity. The studies conducted to date
have demonstrated that metabolic reprogramming caused by
infection affects the gluconeogenesis pathway and supports
kidney injury. The significance of multiple alterations remains
unclear, which highlights the need for further experiments and
the potential for future breakthroughs.

Limitations and challenges

The study of metabolomics of the host immune response to
infection can provide meaningful insights into global pathway
differentiation, while its implementation in biomarker discovery
is a valuable tool in the study of infectious diseases with
applications in disease diagnosis, staging and assessment of
treatment efficacy.

However, technical and biological challenges remain. MS
and NMR each have distinct disadvantages, namely, a potential
lack of reproducibility and sensitivity, respectively. Although
most studies have focused on one approach, the combination of
both could overcome the inherent limitations of each approach.
Additional limitations are posed by the expensive nature of the
instruments, which need to be operated by professionals.
Targeted and untargeted metabolomics can detect a wide range
of metabolites and link them to affected biochemical pathways,
taking into consideration the challenge of metabolite identifi-
cation. Furthermore, certain changes might not cause detectable
perturbations in metabolite levels, and for the exploration of
these changes, stable isotope tracing can potentially be used to
provide insights into complex biological systems.

Challenges in downstream analysis include the lack of complete
databases or metabolite standards available to characterize meta-
bolites through techniques such as untargeted metabolomics. Often
the bottleneck of a biomarker search is not the detection of
metabolites, but the validation of their identity. In certain model
organisms or diseases there is a need to improve upon current
databases which can be done through comparison and integration
of already existing tools to extract metabolite information92 and
continued characterisation and validation of metabolites through
further molecular studies.

In addition to the technical considerations, there is a growing
number of immunometabolomics studies analysing infectious
diseases which have used different models of infection. For
example, studies focusing on respiratory pathogens such as Mtb
have used a range of models, such as macrophage cell lines79

and whole lung tissue.93 Although this progresses our under-
standing of the disease, the use of multiple models with
differing representations of true infection can lead to difficulty
in understanding which of the results are replicated in in vivo
infection. Furthermore, in certain multicell type models, bio-
informatics analysis tools must be advanced to provide a more
sophisticated interpretation of these complex datasets because
we are currently unable to untangle from which cell each
metabolite is derived.

Understanding the limitations of metabolomic studies is an
essential step towards their resolution. The metabolome is
affected by various external factors, like environmental and genetic
conditions. A wide and diverse subject pool is essential for quality
data that correspond to reality, in addition to optimised experi-
mental design to reduce confounding variables. As evidenced in
studies described earlier, different studies can result in inconsis-
tent and sometimes contrasting results. Comparison of data can
prove problematic due to the variation in analytical platforms,
samples and their preparation in addition to subsequent data
analysis. Collaborative initiatives where different laboratories can
share techniques and results could aid in the standardization of
operating procedures and could allow comparison between results
and conclusions.

While metabolomics has inherent challenges to overcome in
their application, their potential in disease diagnosis has been
evidenced in the various studies reported earlier. An exciting
future prospect for metabolomics is also their employment
towards personalized or precision medicine.94 Since the meta-
bolome reflects all variations of an individual’s genomic,
transcriptomic, and proteomic profile it would allow for the
most efficient and accurate personalized treatment plan for
both infectious and genetic diseases.

Discovery of drug targets and
deciphering of metabolome
regulations
Activity-based metabolomic profiling

Advances in sequencing technologies allow a more in-depth
understanding of pathogens at the genetic level; however, our
knowledge remains limited, with an estimated 30–50% of
genetic sequences lacking functional annotation or having
misannotations.95,96 The annotation of unknown genes is the
current challenge in genomics and indicates the needs to better
understand the differential physiology of pathogens and to
identify potential targets of treatment. A large proportion of
unannotated genes are expected to encode metabolic enzymes
that could be fundamental to the survival and virulence of
pathogens.16,96 Conventional genetic annotation is mainly
based on in silico homology search and structural predictions,
which is an approach that is extremely hard to use for genetic
sequences lacking similarity to known genes.16

The metabolome represents a pool of metabolites, including
unknown metabolites, metabolites for which less knowledge of
their structure and/or enzymatic kinetics is available, or less
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commercially available metabolites, which could be the substrate(s)
of the enzyme of interest.16 Cell metabolite extracts can be prepared
in large quantities, and the use of MS analyses enables the detection
of subtle changes in metabolite abundances and thus allows a
simpler profiling protocol that is efficient and accurate. Using the
metabolome of the host organism or similar species also ensures
the presence of putative cofactors and a nearly native environment
for the enzyme to be studied. In contrast to traditional genetic
studies, a genetically modified organism is not needed in this case,
which also allows studies of the candidate protein that could be
essential for growth. To set up an ABMP experiment, a recombinant
enzyme of interest can be prepared, purified and incubated with the
cellular metabolome extract from the same or closely related
organism. The samples are then analysed by NMR or mass
spectrometry coupled to a separation technique, such as LC/MS
or GC/MS. By comparing the metabolomic signatures of the
samples before and after target enzyme incubation, peaks
indicating native substrates showing a decrease in abundance
and products with an increase in abundance can be identified
and annotated16 (Fig. 1A).

The general approach of metabolomic profiling using meta-
bolome extracts was first performed by Saito et al., who combined
purified target enzymes from E. coli genes and metabolite pools
from different sources.97 These researchers used CE-MS to
analyse the mixture and identified two uncharacterized proteins,
YbhA and YbiV that exhibit both phosphotransferase and phos-
phatase activities with different substrates. In another study by
Saito et al., a novel hydroxybutyrate dehydrogenase in E. coli, YihU,
was annotated using similar approaches.97

De Carvalho et al. used the small metabolite extract of
Mycobacterium bovis as a substrate library and incubated this
extract with recombinant purified Rv1248c, a protein from Mtb
that was previously annotated as a thiamine diphosphate (ThDP)-
dependent alpha-ketoglutarate decarboxylase. By performing
untargeted metabolomics analyses using high-throughput and
accurate LC-MS methodology, a time-dependent consumption of
alpha-ketoglutarate and the accumulation of 5-hydroxylevulinic
acid (HLA) were identified and linked to the activity of the
enzyme. Later studies confirmed the reaction using 1H-NMR
spectroscopy, and Rv1248c was reannotated as a 2-hydroxy-3-
oxoadipate synthase. The protein was also found to be essential
for Mtb growth, and this finding highlights the ability of ABMP to
assign functions to essential genes, which cannot be achieved
by knockout mutant techniques.14 Similar ABMP techniques
were also used to annotate mycobacterial protein Rv1692, a
D,L-glycerol 3-phosphate phosphatase involved in glycerophos-
pholipid recycling,15 and Rv3722c, the primary aspartate amino-
transferase with essential roles in nitrogen metabolism and
virulence.98 ABMP was also used by Lee et al. to identify the
involvement of the methylcitrate cycle and glutamate synthase
GltB/D in the adaptive metabolism of M. bovis BCG, which is
different from the results obtained for Mtb and identifies a
potential target for treatment of M. bovis BCG infection.99

Although most studies in the literature have studied myco-
bacteria, ABMPs can be applied to different organisms and show
high potential in enzyme screening even in well-understood
model organisms. Sevin et al. further developed the method by
using cell lysate in addition to purified enzyme and combining it

Fig. 1 Workflow used to address the activity of an enzyme of unknown function by using activity based metabolomic profiling (A) and workflow used for
stable isotope tracing analysis on an LC/QToF mass spectrometer (B).
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with database screening. This automated, high-throughput approach
allowed the identification of 241 uncharacterized proteins in E. coli
with putative enzyme functions, and 12 novel enzymes were
validated in subsequent studies.96

ABMP can also be combined with multiomics techniques
and structural studies to better study the properties of candidate
enzymes in depth. For example, activity-based proteomic profiling
(ABPP) is a technique that uses small activity-based molecule
probes to identify proteins within a complex proteome and under-
stand interactions between proteins and compounds.100 ABPP is
being increasingly used to study uncharacterized enzymes and
identify drug targets, but its limitations include a dependence on
synthetic chemistry for the production of probes and the inability
to identify native substrates of the target.16 A combination with
metabolomic techniques, including ABMP, can improve the under-
standing of the target enzyme by allowing substrate identification
in near-native conditions. Due to the development of automated
protocols such as machine learning in data screening and
qualification to improve the efficiency and accuracy, this tech-
nique shows high potential for enzyme annotation and drug
target discovery.

Metabolomic flux studies using stable isotope tracing

The metabolome represents a complicated network of reactions
and pathways, and understanding the relative changes in the
abundances of key metabolites does not represent the full map
of the occurring events.101,102 Measurement of the metabolic
flux, which is the rate of interconversion between metabolites
reflecting the activities of enzymes and the whole pathway in
response to different conditions, allows access to this infor-
mation.103,104 By using stable isotope tracing techniques, the
incorporation of heavy isotopes from nutrients into intracellular
metabolites through a network of metabolic pathways could be
measured and compared between conditions to reveal key
pathways and potential targets for treatment.

Metabolic flux analysis (MFA) could be designed using
stationary or nonstationary experiments. In conventional stationary
labelling studies, the isotopic distribution is measured after a steady
state is reached, which could take hours to days and require
constant experimental conditions. The method is used to determine
the relative contribution of one nutrient to the synthesis of meta-
bolites but cannot be used to effectively target a single pathway or to
capture transient changes in metabolic flux.103 On the other hand,
isotopic nonstationary MFA measures changes in labelling profiles
over time and thus provides more details on metabolic reactions.104

The method shortens the duration of the labelling treatment time
but requires rapid sampling and quenching techniques to obtain an
accurate dataset.

Stable isotopes (e.g., 13C, 15N, 2H, and 18O), usually in the
form of labelled nutrients, are supplied to cell culture (Fig. 1B).
Depending on the purity of the isotope tracer, different aspects
of metabolic pathways might be studied; for example, labelling
with 50% but not 100% 13C-glucose allows identification of a
differential labelling pattern in the carbon backbone of pyruvate
that reflects the involvement of the pentose phosphate pathway.105

Tracers with heavy isotopes at specific positions might also be

used to reveal complicated pathways.103 Metabolically quenched
samples are processed and analysed by NMR or mass spectro-
metry.101 MS-based technologies are more widely used due to
their high sensitivity and wide range of detection.106 GC/MS is
more commonly used for the analysis of sugars, amino acids
and fatty acids and can provide more positional information on
heavy isotopes incorporated into metabolites,104 whereas LC/MS
provides a wider range of detection for metabolites and the
simultaneous quantification of metabolites and is thus more
suitable for nonstationary MFA.103 Metabolites are annotated by
species-specific databases based on m/z, retention times and
isotopologue patterns, or further experiments such as MS/MS
could be performed for the identification of isotopomer patterns.
Changes in abundances and labelling patterns can be analysed
using tools such as MassHunter Profinder (Agilent Technologies)
and XCMS (https://xcmsonline.scripps.edu) a nonlinear align-
ment of liquid chromatography mass spectrometry data sets.
Annotated metabolites can be mapped onto metabolic pathway
network using online databases such as KEGG pathway (https://
www.genome.jp/kegg/pathway.html) and MetaCyc (https://meta
cyc.org/), which also provide species-specific databases for more
accurate annotation and details of related enzymes and other
metabolites for further investigation. Other tools such as VistaFlux
(Agilent technologies) and iPath 3 (https://pathways.embl.de/) allow
import of LC-MS data for automatic generation of customisable
pathway map and data visualisation in various forms. Table 1
displays the most common metabolites and metabolic pathways
that can be found.

Flux analysis techniques are powerful for studying the
differential response of pathogens under varied environmental
factors or in response to drug treatment. The functions of genes
with putative roles can be studied using this method in addition
to transcriptomics, which can provide a more complete under-
standing. One example is the cyclic AMP receptor protein (CRP),
a global transcriptional regulator in Mtb with a regulon identi-
fied in genomic studies but whose downstream metabolomic
events are not understood. By performing untargeted LC-MS
analysis and 13C isotope labelling, its effects on nitrogen metabolism
and peptidoglycan synthesis were revealed, and the results
complemented the transcriptomics data.107,108 A comparison
between metabolomic networks of closely related pathogens can
also be achieved by stable isotope labelling to understand the
functions of enzymes.109,110

The technique is also applied to investigate the effect of
drug candidates and drug combinations for clinical treatment.
Cobbold and McConville summarized a mass spectrometry-
based protocol for detecting the effects of antimalarial drugs on
Plasmodium falciparum, and through its coupling with stable
isotope tracing, the method can provide a broader understanding
of overall metabolomic perturbations.111 An earlier study by the
same research group investigated the metabolic changes in
P. falciparum and infected red blood cells upon treatment with
a panel of clinical drugs and inhibitors.112 13C-glucose stable
isotope labelling was used for metabolite profiling with GC/LC-
MS, and specific metabolic signatures after treatment with drugs
including atovaquone, chloroquine and proguanil were identified.
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Moreover, a flux analysis showed that dihydroartemisinin (DHA)
disrupts pyrimidine biosynthesis and haemoglobin catabolism,
resulting in a redirection of the metabolic flux, which could
explain the susceptibility of P. falciparum to DHA treatment during
its early blood stage. This methodology can be applied to study the
mode of action of novel antimalarial drugs and their overall
impact on both parasite and host cells.

Another example is the study of the mode of action of
bedaquiline (BDQ), a new antibiotic for TB. Upon primary inhibition

of Mtb ATPase, BDQ triggers a complex set of secondary reactions
that are less understood. Using 15N labelling, glutamine bio-
synthesis was found to be almost completely inhibited and
largely correlated with a decrease in ATP levels after BDQ
treatment. The major glutamine synthetase GlnA1 was found
to be sensitive to changes in the ATP levels in response to BDQ
treatment. Supplementation with methionine sulfoximine, a glu-
tamine synthetase inhibitor, showed synergistic effects with BDQ
with an 18-fold decrease in the minimal inhibitory concentration.

Table 1 Target metabolites list and their formula, representative of core metabolic pathways

Information pathways Metabolite Formula

Glycolysis b-D-Glucose 6-phosphate C6H13O9P
D-Fructose 6-phosphate C6H13O9P
b-D-Fructose 1,6-bisphosphate C6H14O12P2
D-Glyceraldehyde 3-phosphate C3H7O6P
Dihydroxyacetone phosphate C3H7O6P
Pyruvic acid C3H4O4

Lactic acid C3H6O3

Pentose phosphate pathway D-Ribose-5-phosphate C5H11O8P
D-Gluconate-6-phosphate C6H13O10P
D-Ribulose-5-phosphate C5H11O8P
D-Gluconic acid C6H12O7

Bioenergetics NAD+ C21H27N7O14P2

NADH C21H29N7O14P2
ADP C10H15N5O10P2
ATP C10H16N5O13P3

TCA cycle cis-Aconitic acid C6H6O6

D-Threo-isocitric acid C6H8O7

a-Ketoglutaric acid C5H6O5
Succinyl-CoA C25H40N7O19P3S
Acetyl-CoA C23H38N7O17P3S
Succinic acid C4H6O4

Fumaric acid C4H4O4

Malic acid C4H6O5

Oxaloacetic acid C4H4O5

Urea cycle and nitrogen metabolism Citrulline C6H13N3O3
L-Ornithine C5H12N2O2

Arginine C6H14N4O2

Arginosuccinic acid C10H18N4O6

Glutamine C5H10N2O3

Glutamic acid C5H9NO4
g-Aminobutyric acid C4H9NO2

Amino acids Alanine C3H7NO2

Arginine C6H14N4O2

Asparagine C4H8N2O3

Aspartic acid C4H7NO4

Cysteine C3H7NO2S
Glutamine C5H10N2O3

Glutamic acid C5H9NO4

Glycine C2H5NO2

Histidine C6H9N3O2

Isoleucine C6H13NO2

Leucine C6H13NO2
Lysine C6H14N2O2
Methionine C5H11NO2S
Phenylalanine C9H11NO2

Proline C5H9NO2

Serine C3H7NO3

Threonine C4H9NO3

Tryptophan C11H12N2O2
Tyrosine C9H11NO3

Valine C5H11NO2
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This finding provides a new understanding of the mode of action
of BDQ and the collateral vulnerability of Mtb, and the results
could be applied to the design of new drug combinations for the
treatment of drug-resistant TB.113

One limitation of in vitro stable isotope tracing is that the
metabolomics of pathogens is largely affected by the environ-
ment, and the outcome of such studies could be less relevant to
clinical conditions. The study of host–pathogen interactions
could provide valuable insight into key events in the infection
process and suggest potential targets for treatment. Recent
studies applying stable isotope tracing methodologies on the
host–pathogen interface include HIV–macrophage interactions
during the neuropathogenesis of AIDS;114 membrane remodelling
and utilization of host metabolites by a largely unknown glycero-
phosphocholine pathway during Streptococci infection;115 and
measurement of the metabolism at the tachyzoite stage of
Toxoplasma gondii separated from host cells.116,117

Stable isotope tracing and flux analysis can also be used to
study host response to infection. T cells play important roles in
adaptive immunity. Stimulated T cells differentiate into effector
T cells, and during this process, the cellular metabolism is
remodelled to support proper proliferation and immune function.
Several studies have performed in vitro cultures and identified
metabolites key for T cell function, including glutamine, acetate
and arginine,118–121 but the differential use of nutrients by cells
in vivo is less understood. Ma et al. used a combination of
bioenergetics, proteomics and metabolomics with 13C stable
isotope labelling techniques to study the nutrient use of T cells
activated by Listeria monocytogenes in vivo and identified
higher bioenergetic plasticity with an increased rate of oxidative
metabolism. In vivo labelling experiments were performed
by intravenously infusing [U-13C] glucose into anaesthetized,
L. monocytogenes-infected mice followed by T cell isolation from
the spleen, and subsequent analysis revealed that in vivo
T effector cells displayed differential utilization of pyruvate into
the TCA cycle preferentially through the pyruvate dehydrogenase
complex instead of pyruvate carboxylase, which is preferentially
used by in vitro-activated T effector cells. Additionally, a promi-
nent flow of glucose carbon into anabolic metabolic pathways,
including nucleotide and serine biosynthesis, was identified, and
the latter was found to be essential for T effector cell proliferation.
This study highlights the importance of investigating immune cell
metabolism in vivo, and by using isotope labelling techniques, key
differences between in vivo and in vitro T cells were identified.
Understanding immune cell metabolism and nutrient regulation
at different stages of T cell proliferation provides inspiration for
immune system modulation upon infection.118

Another study by Mills et al. focused on the mode of action
of itaconate, an endogenous macrophage regulatory metabolite
found at increasing concentrations upon activation of macro-
phages by LPS.122 In addition to its ability to disrupt the activity
of succinate dehydrogenase (SDH), this study found that itaconate
alkylates cysteine residues on the protein KEAP1 and prevents
downstream degradation of Nrf2, which in turn activates anti-
oxidant and anti-inflammatory pathways. 13C-Glucose and
13C-glutamine were added to cells, entered the TCA cycle and

were used to synthesize itaconate. In comparison to the control
group, cells treated with LPS showed a higher rate of 13C incorpora-
tion into itaconate and a higher abundance of itaconate–cysteine
adducts. In combination with tandem MS, which confirmed
alkylation of cys151 on the KEAP1 peptide upon treatment with
4-ocyl itaconate (a permeable itaconate derivative), the authors
were able to confirm the ability of itaconate to modify KEAP1.
The researchers thus proposed a negative feedback loop in
which LPS stimulates the production of itaconate and thus
promotes an anti-inflammatory response via Nrf2 activation
and SDH inhibition, which in turn downregulates its own
production through the IFN pathway.122 Further understanding
of itaconate and related pathways can provide new insights into
the inflammatory response to infectious diseases and improve
clinical outcomes.

Stable isotope labelling techniques are also increasingly
used in drug development for studying the absorption, distribu-
tion, metabolism and excretion (ADME) of drugs, their toxicities
and their activities against targets.102,123 The incorporation of
stable isotopes into parent drugs or drug substrates will allow
the monitoring of the metabolic flux in the system and the
analysis of drug–target interactions with potentially affected
pathways, which is important prior to the design of therapeutics,
particularly in cases in which the host metabolism is largely
altered, such as genetic disorders, cancer and inflammation.102

13C and 15N are widely selected for these studies, whereas 19F is
present in some classes of drugs that can also be targeted for MFA,
mainly by NMR.102,124,125 Detection of the toxicity of reactive drug
metabolites that react with cell proteins or DNA and result in
adverse effects can also be achieved by stable isotope labelling and
MS techniques. For example, glutathione (GSH) has been used
for trapping reactive metabolites due to its natural scavenging
properties, and 13C-labelled GSH has been used in combination
with MS to detect glutathionylated drug conjugates.126–128

Based on the abovementioned literature, stable isotope
labelling and MFA techniques are widely used to study both
pathogens and hosts, as well as their interactions with drugs or
drug combinations. Because advances in MS techniques provide
higher resolution and wide coverages for the detecting of iso-
topologues of metabolites, the methodology acts as an invaluable
tool with increasing importance in metabolomic studies. The
choice of analytical platforms for stable isotope labelling studies
is based on the natures of the samples and the types of metabo-
lites of interest, and a combination of techniques, including
GC/MS, LC/MS, tandem MS and NMR, could be applied to obtain
a full coverage map of metabolic flux.102 Moreover, MFA requires
metabolite databases with higher coverage and accuracy for
species-specific metabolites, and the integration of databases in
multiomics platforms with automated annotation features would
accelerate the processes of metabolite identification and pathway
building.

Future directions of metabolic flux studies include the
identification of its spatial and temporal patterns using dynamic
labelling experiments and imaging mass spectrometry, which
could determine local concentration and location of intracellular
metabolites, and machine learning-based flux analysis (MLFA)
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could be applied to a large set of samples by predicting flux ratios
based on a small set of isotopologue measurements.129 Dynamic
profiling of the metabolomic pathway can also be applied to
pharmacometabolomics and personalized medicine by in vivo
MFA, which is becoming important in cancer biology to monitor
the tumour microenvironment, in allergen immunotherapy and
in studies of diet and nutrition.130–133 Various factors affecting
the treatment outcome for individuals, including levels of drug
tolerance, ADME profiles of drugs and efficiencies of drug
combinations, could be monitored precisely and used to build
a personalized profile for disease prevention, early intervention
and efficient, targeted treatment.

Recent advances: single-cell
metabolomics and imaging

Although metabolomics provides metabolic information on
immune cells, linking metabolic pathways with other molecules,
such as proteins, is important to fully understand the biological
mechanisms of action of many metabolites. Multiomic integration
studies would help link metabolites with other factors involved in
immune pathways. A handful of these studies have been previously
described,31,65,67,77 but the majority of multiomic analyses have
focused on genomics, transcriptomics and proteomics. Most of the
studies that incorporate metabolomics analyses do not fully
integrate the data with another-omics dataset; instead, most
simply use one dataset to separately confirm the other. Tools that
can model relationships between datasets have been developed
but have yet to be used in these studies. Although multiomic
studies are beginning to be published, the scale, cost, and
complexity of the data prevents most research groups from
using this approach.

Mimicking the move in the field of transcriptomics, single-
cell metabolomics is a recent development in immunometa-
bolomics. Instead of analysing samples containing several cells
and possibly several cell types that might provide conflicting
results, single-cell metabolomics focuses on the metabolic
profiles of individual cells. The major progress towards
single-cell metabolomics originated from the development of
tools to extract single cells from samples for analysis. These
tools involve extracting metabolites from both single cells on a
solid surface and in suspension and have been comprehensively
reviewed.93 Despite multiple reviews on the topic, the literature
on single-cell metabolomics focuses on the development of
methods for this technique, and the few studies so far have
investigated immune cells,134 cancer,135 and the microbiome.93

As this field develops further, we will hopefully see more
advances in the field of immunometabolism in infectious
disease.

The move towards studying individual cell metabolism is
accompanied by studies aiming to discover the metabolism inside
tissue or cellular compartments, which is known as metabolomics
imaging and is a growing field that uses mass spectrometry-based
technologies, mainly laser capture microdissection LC/MS
(LCM-LC/MS) and matrix-assisted laser desorption/ionization

mass spectrometry (MALDI-MS), to ‘image’ a cell or structure.
Despite the apparent importance of immunometabolomics in
disease, metabolomics imaging has focused predominantly
on evaluating drug efficacy in specific disease models. For
example, several models have investigated antibiotics in response
to Mtb infection because Mtb is an intracellular pathogen that can
form large cellular structures called granulomas in patient lungs,
which might prevent the efficacy of certain drugs.136 One study
using LCM-LC/MS confirmed that ethambutol, a first-line tuber-
culosis drug, accumulates at a dose suggested to be lethal to the
bacteria in almost all granuloma layers in rabbits; however, the
researchers did not measure the bacterial levels directly.136

Another study performed a similar LCM-LC/MS-based investigation
for another first-line tuberculosis drug, pyrazinamide, in rabbit lung
granulomas and found that the levels of the drug were similar in all
granuloma layers as in rabbit plasma and that these concentrations
were effective at lowering the bacterial load after 5 weeks of
treatment.137 Furthermore, the authors also used another method,
MALDI-MS, to analyse tuberculosis drugs in rabbits and several
other animal models, including marmosets and mice.137 Although
these studies are extremely relevant for the clinical implications of
Mtb drug use, all focused on animal models, and their applicability
to human infection is unclear. To the best of our knowledge, no
studies have addressed immunometabolism from an immunology
perspective, which has resulted in a gap in our understanding of
metabolism in immune cell compartments and structures.

A recent remarkable application of metabolomic imaging
was performed by Pareek et al., who used high-resolution gas
cluster ion beam secondary ion mass spectrometry (GCIB-SIMS)
to image single cells and visualize the purinosome in action.138

Purinosomes catalyse the de novo synthesis of purines and
consist of nine independent enzymes. Using a focused beam
on a frozen layer of HeLa cells, MS spectra were collected three
dimensionally at 1 mm resolution. By combining the spectra across
all layers, a two-dimensional picture of the cell was constructed. This
study highlighted how metabolomics can be used to probe single-
cell biochemistry. After single-cell imaging, research interest also
shifts to subcellular visualization of different compartments. Green-
wood et al. applied this method to visualize the localization of BDQ
in Mtb.139 Human monocyte-derived macrophages were infected
with Mtb, treated with antibiotics, fixed and imaged by correlative
electron microscopy and ion microscopy. The localization of BDQ
was correlated with the signal of the bromine atom and was
visualized as interacting with host lipid droplets. These researchers
proposed a mechanism in which BDQ and possibly other lipophilic
antibiotics collect in lipid droplets that interact with the bacteria and
are consumed, which results in the enhancement of antimicrobial
activity. The emergence of single-cell imaging metabolomics and
applications in subcellular localization demonstrate the versatility of
metabolomic approaches and show promise for future studies.

Conclusions

This review aimed to provide a concise overview of the wide-
ranging advances in metabolomics in recent years, the various
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applications of this technology in infectious diseases, drug
discovery and immunology, and the recent advances in single-
cell imaging. Metabolomics has classically been appreciated for its
value in biomarker discovery, which can aid disease diagnosis and
prognosis and assess the efficacy of therapeutic treatment or
identify elements that confer protection against diseases. However,
its importance is not limited to the screening of biomarkers; stable
isotope tracing can provide unique insight into metabolic path-
ways, and ABMP is a rapid and accurate approach for assigning
biochemical action to unknown enzymes. Immunometabolism
links metabolic changes to immune cells and offers the potential
for further understanding of infection and therapeutic interven-
tions. Moreover, single-cell metabolomics has emerged as a power-
ful method for the spatial localization of metabolites and shows
much promise for the future of the field. Altogether, the vast array
of application of metabolomics shows great promise to both
further our understanding and tackle infectious diseases.
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