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Data-independent acquisition mass spectrometry (DIA-MS) is a next generation proteomic methodology

that generates permanent digital proteome maps offering highly reproducible retrospective analysis of

cellular and tissue specimens. The adoption of this technology has ushered a new wave of oncology

studies across a wide range of applications including its use in molecular classification, oncogenic

pathway analysis, drug and biomarker discovery and unravelling mechanisms of therapy response and

resistance. In this review, we provide an overview of the experimental workflows commonly used in

DIA-MS, including its current strengths and limitations versus conventional data-dependent acquisition

mass spectrometry (DDA-MS). We further summarise a number of key studies to illustrate the power of

this technology when applied to different facets of oncology. Finally we offer a perspective of the latest

innovations in DIA-MS technology and machine learning–based algorithms necessary for driving the

development of high-throughput, in-depth and reproducible proteomic assays that are compatible with

clinical diagnostic workflows, which will ultimately enable the delivery of precision cancer medicine to

achieve optimal patient outcomes.

Introduction

Rapid advances in the development of Omics technologies
(e.g. genomics, transcriptomics, proteomics, metabolomics and
glycomics) in the past two decades has significantly broadened
our understanding of cancer biology. For instance, the com-
prehensive molecular characterisation of tumours has enabled
better classification of different cancer types and improved the
speed and accuracy of disease diagnosis while the discovery of
new oncogenes and tumour suppressors has led to novel drug
targets and more effective treatment strategies.1,2 Due to demo-
cratisation of cancer genomics as a result of the introduction of
standardised platforms and decreasing costs, next generation
DNA and RNA sequencing has been rapidly adopted as the
method of choice for molecular characterisation of tumours
by the cancer research community.3 To date, hundreds of gene
aberrations have been identified as tumour drivers or suppressors
and genomic profiles of hundreds of thousands of tumour
specimens have been analysed across more than 20 cancer
types.2,4,5

In contrast to the cancer genome, there is a significant gap
in our knowledge of the cancer proteome. Proteins, as down-
stream effector molecules of the genetic code, reflect the
phenotypic consequence of the cancer genome and allows
one to link the relatively static genetic information with the

dynamic proteomic landscape within the cell. Furthermore,
given that the majority of druggable targets in tumour cells
are proteins, a global overview of the cancer proteome may
reveal new options for drug discovery and development. Recog-
nising this gap, there has been significant investment in recent
years in the large-scale characterisation of the tumour pro-
teome led largely by the Clinical Proteomic Tumor Analysis
Consortium (CPTAC) of the National Cancer Institute.6 These
studies have provided publicly available proteogenomic data-
sets for several cancer types such as breast cancer, ovarian
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cancer and colon cancer with ongoing studies in other cancer
types.7–9

Since the discovery of soft ionization techniques such as
matrix-assisted laser desorption/ionization (MALDI) and elec-
trospray ionization (ESI), mass spectrometry (MS) has become
an unrivalled analytical tool for the identification, characteriza-
tion and quantification of proteins and their post-translational
modifications. In particular, the combination of liquid chro-
matography coupled to tandem mass spectrometry (LC-MS/MS)
has provided a sensitive high-throughput platform enabling
analysis of several thousand proteins from an individual sample.
In oncology, proteomic analysis by LC-MS/MS has been widely
used in multiple applications such as biomarker discovery,
drug screens and personalized medicine. Most of these appli-
cations use conventional data-dependent acquisition (DDA) or
targeted methods such as single or multiple reaction monitoring
(SRM/MRM) which have been comprehensively reviewed
elsewhere.10–12 In this review, we focus on the use of data-
independent acquisition (DIA) (also known as sequential window
acquisition of all theoretical mass spectra (SWATH-MS))13 and
provide an overview of specific applications in cancer proteomics
to inform molecular classification, biomarker discovery and the
identification of new drug targets. This review will focus
on DIA-MS applications in tissue and cell line analysis, and
readers who are interested in the use of this technology in
liquid biopsies and plasma proteomics are referred to these
excellent reviews on the topic.14–16 We further present the latest
innovations in DIA-MS that will push the boundaries of this
technology and accelerate its implementation in precision
cancer medicine.

Principles and workflow of DDA versus
DIA mass spectrometry

Conventional DDA-MS involves the scanning of all precursor
peptide ions during the survey scan (MS1) which is followed by
the selection of a predefined number of precursor ions for
subsequent fragmentation (MS2). This sequential selection and
fragmentation approach provides detailed peptide sequencing
information about precursor ions (Fig. 1A). Technological
advances in MS instrumentation has not only led to faster
scanning speeds but also increased sensitivity. These develop-
ments have resulted in the development of a next generation
proteomic strategy known as DIA-MS or SWATH-MS which
provides better reproducibility and sensitivity when compared
to conventional DDA-MS.13,17–19 In contrast to DDA-MS, DIA-MS
is based on the fragmentation of all precursor ions identified in
a MS1 survey scan where fragment ions are accumulated in a
fixed number of wide isolation windows that span the entire
mass-to-charge ratio (m/z) range (Fig. 1B).13 In this fashion,
rather than only acquiring fragmentation data from a prede-
fined set of selected precursor ions as is the case in DDA-MS, all
detected precursor ions within a survey scan are fragmented.
The minimum instrument requirements for DIA-MS experiments
are mass spectrometers capable of high-resolution MS/MS spectra

acquisition at fast scan speeds. Modern and commonly used mass
spectrometers with quadrupole time-of-flight (QTOF) or hybrid
quadrupole Orbitrap mass analyzers comply with these require-
ments, enabling straightforward adoption with minimal adapta-
tion for use in DIA-MS.

Typical sample processing workflows for label-free DDA-MS
analysis (Fig. 2A) often include the steps of protein extraction,
digestion, data acquisition and data processing (indicated by
solid arrows in Fig. 2A). To increase the depth of proteomic
analysis, off-line fractionation such as SDS-PAGE or liquid
chromatography are often used. However, such pre-fractional
steps will increase total sample amount requirements for the
experiment. In DIA-MS, the sample processing and data acqui-
sition steps are identical to single-shot DDA-MS (Fig. 2B).
However, because all precursor ions in a survey scan are
fragmented (Fig. 1), there is a need to incorporate post-
acquisition in silico data processing steps to deconvolute the
resulting complex fragment ion spectra which involves inter-
rogating MS data with spectral libraries (Fig. 2B). A spectral
library is a database which contains mass spectrometric and
chromatographic parameters such as precursor and fragment
m/z value, fragment type, charge and elution time for each
individual peptide in the analysed sample.13,20 These study-
specific spectral libraries are conventionally generated by exten-
sive DDA-based proteomic characterization of the same samples
prior to analysis by DIA-MS (Fig. 2B).21–23 However, study-specific
libraries can vary between laboratories due to the lack of
consistency in DDA experiments and spectral library genera-
tion. This can result in wide variations in the number and type
of proteins identified and quantified between studies. As a
result of the extensive number of DDA-MS experiments
required to generate study-specific spectral libraries, there are
also cost and time implications to consider which may decrease
the attractiveness of DIA-MS. More recently, the generation of

Fig. 1 Schematic overview of the DDA-MS and DIA-MS. In DDA-MS, the
top n most abundant precursor ions are selected based on the survey scan
(MS1) and selected ions are fragmented in MS2. In DIA-MS, the survey scan
provides snapshot of the precursor ions (MS1). Pre-defined wide isolation
windows cover the whole MS1 m/z range and all precursor ions within
each isolation window are fragmented in MS2.
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comprehensive spectral libraries as a community resource have
been employed as an alternative solution. To date, comprehensive
reference libraries have been generated for number of organisms
including human,24 mouse,25,26 zebrafish,27 fruit fly,28 yeast,29

and various bacteria.30–32 Most of these libraries are publicly
available in repositories such as SWATHAtlas.org for community
use. These comprehensive reference libraries remove the need to
generate study-specific libraries for each DIA-MS experiment, thus
increasing inter-laboratory reproducibility while economising
sample requirements and MS instrument time. This high inter-
laboratory reproducibility was demonstrated by Collins et al. who
undertook a multi-laboratory assessment of HEK293 cell lysates in
11 laboratories across the world and showed a very high median
inter-laboratory Pearson correlation coefficient of 0.94 in the
quantification of 4,077 proteins.33

Strengths and limitations of DIA-MS

A major strength of DIA-MS is the exceptional reproducibility in
protein identification across multiple experiments (Fig. 3). In
DDA-MS, the stochastic nature of the automated precursor ion
selection in the survey scan prior to fragmentation leads to a
well-documented inability of this method to reproducibly iden-
tify the same set of proteins across technical replicate
experiments.18,19,34,35 This lack of consistency in precursor
ion fragmentation results in a large number of missing values
in large-scale experiments involving multiple samples which
significantly impacts the level of reproducibility necessary for
contemporary biological experiments. DIA-MS overcomes
this challenge by the cyclic acquisition of fragment ions for
all precursor ions in the survey scan thereby significantly

improving reproducibility in protein identification between
technical replicate experiments. For instance, Bruderer et al.
reported that in an MS analysis comprising of 24 samples,
DIA-MS resulted in only 1.6% missing values across all samples
compared to 51% missing values in DDA-MS.19

Both methods typically quantify similar number of proteins
(B3000–5000) in a single shot analysis.17 Based on the pub-
lished reports, it has been shown that the limit of detection

Fig. 2 Schematic workflow of the label-free DDA-MS and DIA-MS experiments. (A) In DDA-MS, extracted proteins are digested and either directly
analysed by single-shot DDA-MS (solid arrows) or subjected to off-line fractionation (dotted arrows) prior to DDA-MS analysis of individual fractions. The
acquired data is searched against a database of known protein sequences and further processed by software tools. (B) In DIA-MS analysis, extracted
proteins are digested and directly analysed by single-shot analysis. The complex spectra generated is processed using either reference spectral library
(solid arrow) or a study-specific library that is generated from the same samples by a parallel DDA-MS analysis (dotted arrow).

Fig. 3 Advantages and limitations of DDA-MS in comparison to DIA-MS.
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(LOD) of the DIA-MS is B100 amol and its dynamic quantifica-
tion range spans over 4–5 orders of magnitude13,33 (Fig. 3).
A comparison of DDA-MS and DIA-MS performed by Gillet et al.
showed that DDA-MS failed to identify reference peptides
spiked into a yeast lysate background at 2–10 fold higher
concentration than the LOD of DIA-MS.13 Furthermore, an up
to 10-fold gain in the sensitivity of DIA-MS was reported when
compared to label-free workflows based on extraction of pre-
cursor ion trace from MS1 scans.13,33 These analyses suggest
that the sensitivity of DIA-MS is superior to DDA-MS although a
direct head-to-head comparison of the sensitivity of these two
methodologies has yet to be performed.

The nature of the LC-MS/MS analysis is based on the
destructive sampling of the analyte eluted from the LC column
into the MS instrument. Therefore, once the sample has been
injected into the LC-MS/MS system and the data acquired, it
cannot be regenerated. Given the stochastic nature of DDA-MS
and the missing values resulting from this technique, it is
challenging to undertake comprehensive retrospective analysis
of the acquired mass spectra. Retrospective signal extraction
from DDA-MS data is therefore only available for precursor ions
with acquired fragmentation spectra. In contrast, DIA-MS frag-
ments all detected precursor ions in a sample which opens new
possibilities for retrospective analysis. The acquired digitized
proteome files can be reprocessed with different spectral
libraries and provide reliable quantitative information for new
sets of queries including post-translational modifications.36,37 As
a result, DIA-MS proteomic data can become an invaluable
repository for the community for subsequent analyses without
the need of additional data acquisition.

One major limitation of DIA-MS is the need to generate
spectral libraries for data processing (Fig. 3). In situations
where a comprehensive reference spectral library is not avail-
able for use or if the study involves analysis of a sub-proteome
(e.g. specific subcellular compartments or post-translational
modifications) that is underrepresented in reference spectral
libraries, there will be a need to generate study-specific
libraries. As discussed above, building a new study-specific
spectral library for DIA-MS involves significantly higher starting
sample amounts, instrument time and costs. This barrier may
have important implications particularly where sample avail-
ability is limiting such as in the case of tissue biopsies or in rare
diseases.

Applications of DIA-MS in cancer
proteomics

Since the first publication of DIA-MS in 2012,13 the use of this
method in cancer proteomics has been steadily increasing. In
2019 alone, DIA-MS was employed in 42 published studies
across a range of cancer types to analyse a variety of different
types of biological material. In the following section, we provide
a broad overview demonstrating the versatility and utility of
DIA-MS in key cancer proteomics applications including

molecular characterisation and classification, evaluating treat-
ment response and biomarker discovery (Fig. 4 and Table 1).

Molecular characterization of tumour specimens for defining
biological pathways, subtype classification and biomarker
discovery

While the traditional classification of tumours based primarily
on histopathological assessment has played a critical role in
diagnosis and clinical management of disease, the increasing
use of molecular and Omics based approaches have provided
unprecedented insights into the underlying biology of cancer
and facilitated new classification systems based on molecular
alterations.38–40 In line with this, recent advances in MS tech-
nologies have driven new opportunities for deep proteomic
profiling of clinical cohorts for the refinement of current cancer
classification systems as well as revealing important disease-
specific biological pathways. There is also a high demand for
robust cancer markers for early and reliable tumour diagnos-
tics, selection of appropriate treatments or prediction of patient
outcomes. In this regard, DIA-MS has been employed in the
proteomic characterization of multiple cancer types including
breast, kidney, liver and prostate cancer,22,41–45 a selection of
which are reviewed in this section.

The first reported application of DIA-MS in cancer proteomics
was published by Guo et al. who analysed biopsy samples
obtained from kidney cancer patients.41 In this pioneering work,
the authors presented a novel approach of combining pressure
cycling technology (PCT) for sample preparation with DIA-MS data
acquisition as a rapid proteomic pipeline for the analysis of
human tissue specimens. Given that DIA-MS generates profiles
comprising all fragment ions in a sample, this methodology
results in a permanent digital proteome map for each individual
patient which can be routinely interrogated for the identification
and quantification of proteins of interest. In this proof-of-
principle experiment, the authors analysed tumour and
matched adjacent tissue samples from 9 patients in three
different subtypes of renal cell carcinoma (RCC); clear cell RCC
(ccRCC), papillary RCC (pRCC) and chromophobe RCC (chRCC).41

Overall 2375 proteins were quantified by PCT-DIA-MS across all

Fig. 4 Common applications of DIA-MS in oncology. FFPE – formalin-
fixed paraffin-embedded.
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Table 1 Summary of the DIA-MS applications in cancer proteomics described in this review

Cancer
type Study Ref. Study design Number and type of samples

Proteome
coverage Key findings

Breast
cancer

Bouchal et al.
2019

22 Quantitative profiling of
global proteome in biopsy
samples from 4 breast
cancer subtypes

96 fresh frozen needle biopsies
from 4 breast cancer subtypes:
Luminal A (n = 48), Luminal
B (n = 24), Her2-enriched
(n = 8), triple-negative (n = 16)

2842 proteins � NF-KB pathway upregu-
lated in luminal subtypes,
VEGF pathway upregulated
in Her2+ subtypes.
� Decision tree classifier
developed based on expres-
sion of ERBB2, INPP4B and
CDK1 with correct identifi-
cation rate of 84% when
applied on the original
dataset

Prostate
cancer

Liu et al. 2014 45 Quantitative profiling of
N-glycoproteins in tissue
samples from prostate
cancer patients

75 fresh-frozen tissue
specimens; normal (n = 10)
tissue, non-aggressive (n = 24),
aggressive (n = 16) and
metastatic (n = 25) prostate
cancer

897 N-
glycoproteins

� NAAA and PTK7 identified
as potential markers for
stratification of high- and
low-risk prostate cancer.

Keam et al.
2018

57 Quantitative profiling of
global proteome in tumour
and matched adjacent
tissue samples pre- and
post-radiotherapy

Fresh-frozen (n = 4) and FFPE
(n = 16) biopsies taken pre-
and post-radiotherapy from
8 patients

4665 proteins in
fresh frozen
samples

� Wound healing, extra-
cellular remodelling and
acute inflammatory response
pathways were enriched in
the samples after radiation
therapy

3974 proteins in FFPE sample

Nguyen et al.
2018

58 Quantitative proteomic
profiling of prostate cancer
patient-derived explants
treated with HSP90
inhibitors

46 patient-derived explant
tumours; discovery study
(n = 16), validation (n = 30)

4095 proteins in
discovery cohort

� mRNA translation, ribo-
some function and RNA
metabolism pathways were
found downregulated and
TCA metabolism upregu-
lated after treatment with
HSP90 inhibitors.

5450 proteins in
validation cohort

� 9 proteins are universally
decreased after inhibition of
HSP90.
� TRFC and TIMP1 identified
as candidate drug response
markers for treatment of
prostate cancer by AUY922

Latonen et al.
2019

66 Multi-omic analysis
of fresh frozen tissue
samples by genomics,
trascriptomics and
proteomics

38 fresh frozen tissue specimens;
BPH (n = 10), treatment naı̈ve PC
(n = 17) and CRPC (n = 11)

3394 proteins � A panel of 95 miRNA iden-
tified as an important
mechanism of gene expres-
sion regulation in prostate
cancer.
� Decreased expression of
miR-22 and miR-205 related
to upregulation of MDH2 in
CRPC compared to PC

Kidney
cancer

Guo et al. 2015 41 Quantitative profiling of
global proteome in 9
tumour and matched
tissue biopsies

Fresh frozen tumour and
matched adjacent tissue biopsy
specimens from 9 patients with
ccRCC (n = 6), pRCC (n = 2) and
chRCC (n = 1)

2375 proteins � Proof-of-principle study
demonstrating utility of
DIA-MS for molecular char-
acterization and biomarker
identification in cancer
research.
� A set of 21 known diag-
nostic markers of kidney
cancer identified in the
dataset including AMACR,
VIM and GSTA1.

Lymphoma Schwarzfischer
et al. 2017

69 Metabolomic analysis
of cell lysates and tissue
samples by GC-MS, LC-MS
and NMR spectroscopy
combined with quantitative
analysis of global
proteome by DIA-MS

24 lymphoma cell lines
(BL: n = 6, DLBCL: n = 18),
fresh-frozen (n = 11) and FFPE
(n = 13) tissue specimens

3041 proteins in
cell lines

� Higher intra- and extra-
celullar level of pyruvic acid
in DLBCL compared to BL.

2938 proteins in
fresh-frozen
tissues

� Upregulation of proteins
involved in non-oxidative
phosphorylation and one-
carbon metabolism in BL
identified as a result of
metabolic reprogramming
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18 samples, including 21 proteins such as alpha-methylacyl-
CoA racemase (AMACR), vimentin (VIM) and glutathion-S-
transferase A1 (GSTA1) which are currently used as diagnostic
or prognostic biomarkers in kidney cancer. Unsupervised clus-
tering of the whole proteomic dataset clearly separated pRCC
from ccRCC suggesting that proteomic profiling is an effective
means for molecular classification of this disease. In particular,
the authors showed by MS that AMACR, an established diag-
nostic biomarker used in immunohistochemistry for distin-
guishing pRCC and ccRCC,46 was 13 times higher in pRCC
samples in comparison to ccRCC, validating the methodology.
Conversely, VIM and GSTA1, were significantly increased in
ccRCC which is in accordance with previously published
literature.41,46 The comparison of the ccRCC tumours versus
adjacent non-tumour regions identified 296 upregulated and
317 downregulated proteins in the tumour tissue including
protein kinases, transcription factors and other proteins
involved in biological processes such as apoptosis, immune
response or in signalling. Taken together, this work showed for

the first time that DIA-MS can be applied to the analysis of
human tissue biopsies in order to generate digital proteome
maps that are useful for molecular classification and identifi-
cation of tumour-relevant biomarkers.

Breast cancer can be molecularly classified into five intrinsic
subtypes (luminal A, luminal B consisting of Luminal B and
Luminal B-like, Her2 enriched, normal-like and triple-
negative).38,47 There have been several published MS-based
studies focused on profiling the proteomic landscape of these
molecular subtypes using conventional DDA approaches.7,48–50

DIA-MS has only recently been employed by Bouchal et al. to
profile 96 breast cancer needle biopsies across four of the breast
cancer subtypes (48 � Luminal A, 24 � Luminal B comprising
16 � Luminal B and 8 � Luminal B-like, 8 � Her2-enriched, 16 �
triple-negative).22 In total, 2842 proteins were quantified across all
samples and analysis of this data led to the identification of
biological pathways which are enriched in each individual sub-
type. For instance, the authors showed that the nuclear factor
kappa-B (NF-kB) pathway was upregulated in the luminal subtypes

Table 1 (continued )

Cancer
type Study Ref. Study design Number and type of samples

Proteome
coverage Key findings

1442 proteins
in FFPE tissues.

Liver
cancer

Gao et al. 2017 42 Quantitative profiling of
global proteome in 14
pairs of tumour and
non-tumour tissue
samples by DIA-MS

28 fresh-frozen specimens;
tumour (n = 14) and adjacent
normal tissue (n = 14)

4216 proteins � Significant upregulation of
spliceosome pathway and
downregulation of 37 meta-
bolic pathways in HCC com-
pared to adjacent normal
tissue.

� Expression of 9 proteins
validated by IHC on separate
cohort of 6 pairs of samples

Zhu et al. 2019 43 Quantitative profiling
of global proteome in
19 pairs of tumour and
non-tumour tissue samples
by DIA-MS

38 fresh-frozen specimens;
tumour (n = 19) and adjacent
normal tissue (n = 19)

2579 proteins � MCM7, proteins from HSP
family and mitochondrial
ribosomal proteins found
upregulated in HCC samples
compared to adjacent nor-
mal tissues.
� Upregulation of MCM7
validated by IHC on separate
cohort

Other Guo et al 2019 60 Global proteomic
profiling of the NCI-60
cancer cell lines

60 cell lines included in
NCI-60 panel

3171 proteins � Drug response prediction
based on DIA-MS data out-
performs prediction based
on DDA-MS data.
� DIA-MS data can be inte-
grated with mutational and
transcriptomic data to obtain
optimal predictive power for
drug response simulations

Mehnert et al.
2020

70 Multi-layered
proteomic analysis of
Dyrk2 mutant cell lines

6 HEK293 mutant cell lines;
HEK293 wild type

5138 proteins in � Individual mutations of
Dyrk2 cause mutation-
specific reorganization of the
protein–protein interactions
network and changes in
phosphoproteomic profile.

2888 phospho-
peptides

� Subset of the mutations
modulate Cancer Driver Pro-
teins suggesting that these
mutations are associated
with cancer progression.
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while an enrichment of vascular endothelial growth factor (VEGF)
pathway components was found in Her2-positive subtypes (Lumi-
nal B-like, Her2-enriched). Subsequent statistical analysis of the
subtype-specific proteomic maps resulted in the construction of a
decision tree for subtype classification based on the expression
levels of three proteins – receptor tyrosine-protein kinase erbB-2
(ERBB2) or Her2, inositol polyphosphate 4-phosphatase (INPP4B)
and cyclin-dependent kinase 1 (CDK1). This decision tree correctly
classified 84% samples from the original cohort of 96 samples into
the appropriate molecular subtype. As an orthogonal validation, the
authors extended the protein-based decision tree to evaluate the
gene expression levels of ERBB2, INPP4B and CDK1 in published
microarray and RNASeq datasets from 883 and 1078 breast
cancer patients respectively, which confirmed the association
of expression levels of these three genes with individual breast
cancer subtypes.

Hepatocellular carcinoma (HCC) represents B90% of all liver
cancers and due to the asymptomatic manifestation in the early
stages, patients often present with advanced disease.51,52 The
availability of curative therapy consisting of liver resection and
transplantation for patients with early stage HCC increases the
importance of identifying biomarkers for early detection.42,52

DIA-MS has been used in a small number of studies to characterise
the biology of this disease and identify new protein-based diagnostic
biomarkers of HCC.42–44 For instance, Gao et al. performed a
comparative proteomic analysis on 14 matched pairs of HCC
tumour and adjacent non-tumour tissue resections.42 In total, the
authors quantified 4216 proteins and identified 191 upregulated
and 147 downregulated proteins in tumour compared to adjacent
normal tissue. Gene ontology and KEGG pathway enrichment
analysis revealed a significant upregulation of the spliceosome
pathway in HCC as well as a downregulation of 37 metabolic
pathways including the metabolism of glycine, serine and sarco-
sine, metabolism of retinol and biosynthesis of antibiotics.42

Based on these observations, the authors selected 9 proteins for
further validation by immunoblotting in an independent set of
6 matched HCC pairs which showed expression levels changes
which were consistent with the DIA-MS data. In another study,
Zhu et al. analysed 19 matched pairs of HCC and adjacent tissue
samples and quantified 2579 proteins by DIA-MS with 541
differentially expressed proteins between HCC and adjacent
tissue.43 A number of proteins from the heat-shock proteins
(HSP) family as well as mitochondrial ribosomal proteins were
found to be upregulated in tumour samples compared to the
adjacent tissue. The authors focused on the DNA replication
licensing factor MCM7 (MCM7), which was found by DIA-MS to
be upregulated in tumour specimens, and further validated this
observation by IHC in an additional series of three tumour and
adjacent matched tissue specimens. The authors also separated
HCC samples into two groups based on the serum alpha-
fetoprotein (AFP) levels, which is an FDA approved serum marker
to indicate risk for liver cancer and for early detection of HCC.
A comparison of adjacent normal tissue and tumour regions in
HCC cases with high levels of serum AFP (420 ng ml�1) identified
419 upregulated and 192 downregulated proteins in the tumour
specimens. Conversely, no significantly altered proteins were

found in the cases with low serum AFP when tumour specimens
were compared to adjacent normal tissue. While hypothesis
generating in nature, these studies suggest that complex meta-
bolic reprogramming may play a role in HCC and that there are
protein alterations that are specific in high risk (high serum
AFP) HCC that could potentially be developed as early detection
biomarkers. These findings open new opportunities in drug
development for therapy and biomarker validation in this
difficult-to-treat disease.

One interesting area where DIA-MS has shown some success in
biomarker discovery is in glycoproteomic analysis of tissue speci-
mens. The glycoproteome is comprised of all N- and O-glycosy-
lated proteins present in tissue and is thought to be more
amenable to biomarker discovery due to their accessibility as cell
surface or secreted proteins.53 In one example, Liu et al. char-
acterised the N-glycoproteome in prostate cancer by utilising a
combination of solid phase deglycosylation of peptides and
DIA-MS.45 To achieve this, they developed a novel spectral library
optimised for the human N-glycoproteome generated from multi-
ple DDA-MS sources. In this study, the authors analysed 75 tissue
specimens including 10 normal prostate samples, 40 prostate
cancer samples and 25 metastatic prostate cancer samples. The
aim of the study was to identify protein biomarkers associated
with aggressive prostate cancer. Based on the histopathological
staging of the tumours (using Gleason score), the authors further
divided the prostate cancer specimens into two groups, namely
non-aggressive (NAG, Gleason score = 6) and aggressive (AG,
Gleason score = 7–9) prostate cancer. Overall 2188 N-glycosites
were identified across all 4 pooled sample groups (normal, NAG,
AG and metastatic) that enabled quantification of 897 distinct
N-glycoproteins. Fifty glycoproteins were found to be significantly
altered between NAG and AG which included the glycoproteins
N-acylethanolamine-hydrolyzing acid amidase (NAAA) and protein
tyrosine kinase 7 (PTK7) which was significantly decreased and
increased in AG respectively.45 These proteins were further eval-
uated by IHC analysis in tissue microarrays (TMA) on an expanded
cohort of 56 prostate cancer cases which showed that a combined
panel of these two proteins was able to discriminate between AG
and NAG. These data suggest that the NAAA and PTK7 glycopro-
teins may be candidate markers for staging of low-risk versus high-
risk prostate cancer. However, given the relatively small single
centre cohort used in this study, validation in larger multi-centre
independent cohorts is required to further validate their
clinical utility as robust biomarkers.

These exemplar studies demonstrate the utility of DIA-MS in
the acquisition of biologically relevant protein profiles from small
starting sample amounts such as biopsies. These profiles not only
aid in the classification of the tumour samples into molecular and
histological subtypes, they also shed light on the specific biologi-
cal pathways that operate within individual cancer types which
may be ultimately be useful for downstream functional investi-
gation, drug discovery and biomarker development.

Unravelling mechanisms of therapy response

Therapy resistance remains one of the key challenges in cancer
management today. The inherent intratumoural heterogeneity
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and plasticity in cancers results in the evolution of a wide
spectrum of distinct and often unpredictable resistance
mechanisms when patients receive chemo- and radio-therapy.
Given that the majority of druggable targets in cells are pro-
teins, proteomics remains a pivotal technology for characteris-
ing the molecular reprogramming that occurs upon drug
treatment, especially in instances where the mechanisms of
drug action are unknown.54–56 In addition, knowledge of the
activation or suppression of individual biological pathways
initiated by treatment may shed light on heterogeneity in the
patient responses commonly seen in the clinic. The ability of
DIA-MS to comprehensively analyse many different cell lines
and tissue specimens reproducibly without missing data has
immense potential for interrogating mechanisms of drug
action or resistance in large cohorts. Linking this information
with other clinic-pathological characteristics or underlying
genetic information may result in the identification of predic-
tive biomarkers of therapy response and help design new
treatment strategies. Several key examples of DIA-MS applica-
tions in the study of cancer treatment response and resistance
mechanisms are summarised in this section.57–60

The NCI-60 panel comprises of 60 cancer cell lines from nine
distinct tissue types. This panel is a preclinical workhorse for
the cancer community and has been subjected to in-depth
molecular (genomic and transcriptional) and pharmacological
(over 100 000 chemical compounds) profiling. Guo et al.
employed DIA-MS to analyse the proteomic landscape of the
NCI-60 panel and identified 3171 proteins across all cell lines.60

The authors then used univariate and multivariate regression
analysis to evaluate drug response predictions of 224 pharma-
cological compounds either based on the DIA-MS data alone or
integrated with genomic and transcriptional features. Interro-
gating existing data available in CellMiner, they showed that
the proteomic data contributed to a higher percentage of drug
response prediction features (12%) that those derived from
DNA mutations (2%) and RNA transcripts (6%). They further
showed that the response of 49 screened drugs were best
predicted by DIA-MS data while response to 83 compounds
had optimal predictive power when combining DIA-MS data
with transcript and mutational data. Notably, the authors
found that the protein expression levels of multiple ATP-
binding cassette family transporters were strongly associated
with response to cancer drugs across several classes, including
alkylating agents, histone deacetylase inhibitors and kinase
inhibitors. This result underscores the importance of this
family of transporters as a putative mechanism of drug
response and their use as candidate biomarkers for optimisa-
tion of cancer therapy. The authors further demonstrated that
the predictive power of the regression models based on DIA-MS
data was generally higher compared to the models using DDA
data61 due to the better quantitative accuracy and data consis-
tency of the DIA-MS dataset. This study highlights the role that
DIA-MS can play important role in the burgeoning field of
pharmacoproteomics where protein level measurements not
only enable deep insights into mechanisms of drug action but
may also lead to predictive biomarkers of therapy response.

Commercial immortalised cell lines such as those in the
NCI-60 panel have been subjected to decades of cell culture and
thus may not retain many of the molecular features present in
the tumours from which they were originally derived. In recent
years, there has been a push towards the development of
patient-derived models for preclinical cancer research. These
models encompass patient-derived xenografts, organoids or
tumour explants and are thought to better recapitulate the human
disease.62,63 DIA-MS has been used as a characterisation tool to
profile such models to identify clinical response mechanisms of
drug action. One example is the study undertaken by Nguyen
et al., who employed prostate cancer patient-derived explants
obtained from men undergoing radical prostatectomy to study
tumour-specific response to treatment with heat shock protein
90 (HSP90) inhibitors 17-AAG and AUY922.58 The use of fresh
tumour specimens from different patients was important in
modelling the heterogeneity inherent in prostate cancer and
highlight any conserved mechanisms of treatment response
found across all patients. Proteomic analysis identified a con-
sistent downregulation of 44 proteins involved in pathways
associated with mRNA translation, ribosome function and
RNA metabolism. Conversely, 54 proteins were found to
be increased with drug treatment with an enrichment of
tricarboxylic acid metabolism components. Despite the hetero-
geneity amongst the 46 cases examined, the authors were
remarkably able to identify 9 proteins that were universally
downregulated by AUY922 treatment, including two proteins
from the HIF-1 pathway, transferrin receptor protein 1 (TRFC)
and metalloproteinase inhibitor 1 (TIMP1), which could serve
as candidate markers of drug response. This study provides
proof-of-principle evidence for the use of DIA-MS profiling in
patient-derived models and brings the field one step closer to
implementing this next generation proteomic strategy in pre-
cision cancer medicine.

Another interesting area of research is the design of window
of opportunity studies to better understand mechanisms of
therapy response and resistance.64 Such studies involve the
sampling of tumour tissue prior to and after the treatment of
interest for thorough pharmacodynamic assessment. In addi-
tion to chemotherapy and surgery, radiotherapy is the mainstay
local treatment in a wide array of different cancer types
including prostate cancer. To investigate the major cellular
pathways that are regulated following the use of radiotherapy,
Keam et al. performed DIA-MS based proteomic profiling of
matched tissue biopsies collected at pre-treatment and 14 days
post brachytherapy from 8 prostate cancer patients.57 The
authors found that out of 45000 proteins identified, 24 pro-
teins and 3 proteins were consistently up- or down-regulated
post radiation respectively in all patients. The authors also
identified a number of upregulated pathways in the post-
radiation samples including wound healing, extracellular
matrix remodelling and acute inflammatory response. These
biological processes are consistent with tissue deposition and
remodelling associated with radiation response. One of the
limitations of this study is that it is descriptive in nature and
lacks any clinical response and patient outcome data which
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restricts the ability to define proteins associated with bra-
chytherapy response. Nonetheless, the identification of a num-
ber of candidate proteins which are universally regulated as a
result of radiotherapy provides a useful resource for future
studies elucidating their mechanistic role in radiotherapy
response and resistance.

Collectively, the aforementioned examples demonstrate that
DIA-MS is a useful tool for the investigation of how therapeutic
interventions impact the proteomic landscape in cell lines,
patient-derived models and human tissue and thus refines
our current understanding of treatment responses at the mole-
cular level. Such correlative studies can aid in revealing putative
mechanisms of drug resistance and identify novel response
markers to both chemotherapy and radiotherapy for subse-
quent functional and clinical evaluation.

Multi-omic and integrative analysis

With the dramatic decrease in the cost of genomic and tran-
scriptomic profiling over the past decade, there has been a
push towards integrative multi-omic analysis as a means to
provide a holistic view of the molecular landscape of cancer.
The underlying basis for this integrative approach is the idea
that multiple orthogonal measurements of the same tumour
specimens may reveal new findings that are likely to be masked
due to the inherent limitations of any single type of Omic
measurement. This is a burgeoning field for DIA-MS and here
we provide some recent examples of how this methodology
has been integrated with other Omics modalities in cancer
research.

Castration resistant prostate cancer (CRPC) is a chemoresistant
form of prostate cancer that is unresponsive to androgen-
deprivation therapy.65 Currently there are no alternative treatment
options available for CRPC patients.66,67 To study the genomic,
transcriptomic and proteomic changes during different stages of
prostate cancer disease progression, Latonen et al. undertook an
integrative multi-omic study of 11 tumour specimens from
CRPC patients and compared them to profiles obtained from
17 untreated prostate cancer (PC) and 10 benign prostate
hyperplasia (BPH) tissue specimens.66 Using DIA-MS, the
authors quantified 3394 proteins across all samples and iden-
tified 382 and 728 differentially expressed proteins between
CRPC and PC samples and PC and BPH samples, respectively.
A comparison of the acquired proteomic dataset with the copy
number and transcriptomic data obtained from the same
specimens revealed a poor correlation between genomic, tran-
scriptomic and proteomic measures. The authors hypothesized
that this discrepancy may be due to alterations in the levels of
cellular microRNA (miRNA) which can either directly lead to the
degradation of mRNA targets or block the protein translation
process by binding to mRNA and forming mRNA/miRNA com-
plexes. Such complexes may alter levels of the expressed protein
without affecting the overall mRNA levels of the coding gene.68

To test this hypothesis, the authors undertook miRNA sequen-
cing and identified 95 differentially expressed miRNAs between
PC and CRPC samples and these miRNAs have the potential to
target almost 500 genes. From this list of potential gene targets,

only 24% were differentially expressed between PC and CRPC at
the mRNA level, while 45% were differentially expressed at the
protein level supporting the concept that miRNAs may decrease
protein levels but not the corresponding mRNA levels of
the same gene target. To validate this, the authors focused on
miR-22 and miR-493 that were differentially expressed between
PC and CRPC and transfected them into PC-3 prostate cancer
cells. The mRNA levels of the miRNA targets Endonuclease
domain containing 1 (ENDOD1) and Golgi membrane protein 1
(GOLM1) were significantly decreased in the transfected cells
while miRNA targets KH-type splicing regulatory protein
(KHRSP1) and dynamin 1-like protein (DNML1) showed no
change on the mRNA level but displayed decreased protein
expression levels. In a second example, the authors identified
two miRNAs (miR-22 and miR-205) with the potential to target
malate dehydrogenase (MDH2). DIA-MS and RT-qPCR analysis
of PC-3 cells transfected with these miRNAs revealed a decrease
in MDH2 protein levels but no change in MDH2 mRNA levels.
This comprehensive study demonstrates capability of DIA-MS
to reveal novel insights into the regulation of gene expression in
therapy resistant prostate cancer when integrated as part of
multi-omic investigation.

In another example, Schwarzfischer et al. performed an
integrative metabolomic and proteomic analysis of two forms
of high-grade non-Hodgkin lymphomas, Burkitt’s lymphoma
(BL) and Diffuse large B-cell lymphoma (DLBCL).69 Metabolo-
mic analysis of 24 lymphoma cell lines (6 BL and 18 DLBCL)
identified increased intracellular levels of pyruvic acid in
DLBCL compared to BL as well as higher secretion of pyruvate
by DLBCL cell lines. Higher levels of pyruvate were also detected
in 6 DLBCL cryopreserved tumour tissue samples when compared
to 5 BL tumours. Pyruvate is a key intermediate energy metabo-
lism and a central intersection for a number of vital metabolic
pathways. To test whether the difference in pyruvate levels
observed in the metabolic studies is reflected by alterations
in proteins involved in specific metabolic pathways, the authors
performed proteomic analysis of 11 lymphoma cell lines (5 �
BL and 6 � DLBCL), 11 fresh-frozen and 13 formalin-fixed
paraffin-embedded (FFPE) tissue samples. DIA-MS analysis of
the lymphoma cell lines revealed a downregulation of proteins
involved in pyruvate metabolism, glycolysis and oxidative phos-
phorylation pathways in BL compared to DLBCL. For instance,
key glycolytic enzymes such as hexokinase (HXK1) and phos-
phoglycerate kinase (PGK1) were significantly downregulated
in BL. In contrast, an upregulation of lactate dehydrogenase
(LDH1), phosphoglycerate dehydrogenase (PHGDH) and phos-
phoserine aminotransferase (PSAT1) in BL suggests that the
metabolism of glucose using non-oxidative phosphorylation
and the one carbon metabolic pathway may be the predomi-
nant processes operating in this disease. The differences in
expression levels of the key enzymes described above in BL and
DLBCL were further confirmed by proteomic analysis of the
fresh-frozen and FFPE tissue samples. This study underscores
the important complementary role that DIA-MS has in the
interpretation of metabolomics data and highlights the power
of this integrative approach in revealing new insights into the
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complex metabolic reprogramming underlying the develop-
ment of non-Hodgkin lymphoma.

Recent studies employing integration of orthogonal MS
strategies to sample different facets of tumour biology have
also been promising. For instance, Mehnert et al. developed a
multi-layered proteomic approach to study effects of different
mutations of Dual specificity tyrosine-phosphorylation-
regulated kinase 2 (Dyrk2) on protein topology, protein–protein
interactions (PPI) and global proteomic and phosphoproteomic
profiles.70 Through interactions with the EDVP E3 ubiquitin
ligase complex, Dyrk2 plays a key role in cell cycle and apop-
tosis and has been identified as both a putative tumour
suppressor and oncogene.71,72 Based on published data, the
authors generated a series of cancer-associated Dyrk2 mutants
which were expressed in HEK293 cells. Analysis of the PPI
networks by affinity purification-mass spectrometry (AP-MS)
identified mutation-specific reorganization of the Dyrk2 PPI
network in truncated and catalytically inactive mutants of this
protein. MS-based quantitative crosslinking analysis revealed
topological changes in the Dyrk2 structure as well as a decrease
in Dyrk2 phosphorylation status particularly in the truncated
and catalytically inactive mutants. To explore the broader
effects of Dyrk2 mutations on the proteome, the authors
employed DIA-MS for proteomic and phosphoproteomic analy-
sis of the HEK293 mutant cell lines. When combined with the
PPI AP-MS data, this workflow showed that a subset of Dyrk2
mutants modulated multiple proteins annotated as Cancer
Driver Proteins in Cancer Gene Census catalogue, suggesting
that these Dyrk2 cancer-associated mutations have the
potential to contribute to cancer progression. This study high-
lights the power of combining orthogonal MS-based strategies
with DIA-MS to deliver multi-scale molecular information
to dissect the functional roles of oncogenes and tumour
suppressors.

These examples provide proof-of-principle that DIA-MS can
be an integral part of proteogenomic or metaboproteomic
analysis of tissue samples and cell lines and we anticipate
the use of such comprehensive integrative studies will continue
to grow and ultimately become a routine toolkit in cancer
research.

Looking ahead: harnessing the latest
innovations in DIA-MS technology

Despite the clear promise of DIA-MS, as with all other technol-
ogies, further innovations in instrumentation and informatics
will be key to pushing the boundaries of improved sensitivity
and throughput. In this section, we delve into some of the latest
innovations in DIA-MS technology which are likely to have a
direct impact on future applications in oncology.

New developments in data acquisition and MS instrumentation

Some notable technological advances in data acquisition and MS
instrumentation include the development of scanning quadru-
pole isolation (SONAR, scanningSWATH), high field asymmetric

waveform ion mobility spectrometry (FAIMS) and parallel accu-
mulation – serial fragmentation (diaPASEF).73–79 Scanning
quadrupole isolation is a novel method where fixed precursor
isolation windows are replaced by a single isolation window
that periodically slides through the entire MS1 range.73,74 The
main advantage of this approach is the improvement in acqui-
sition speed as the sliding scan can be completed more rapidly
than the conventional method of scanning through fixed iso-
lation windows. This set-up allows for the use of shorter LC
gradients and higher flow rates resulting in an up to 3 times
increased overall sample throughput.74 FAIMS is an ion selec-
tion and separation device that can be used as an interface
between the ion source and orifice of the mass spectrometer.76

FAIMS uses a combination of oscillating high and low electric
fields to focus the ions generated by the source which results in
a reduction of chemical noise (neutral particles) and the
removal of interfering ions. In this manner, FAIMS further
improves the sensitivity, robustness and reproducibility of
DIA-MS quantification.75 Rapid improvements in DIA-MS sen-
sitivity has also been achieved by diaPASEF. This method is
enabled by the development of trapped ion mobility spectro-
metry (TIMS).77,79,80 TIMS technology allows the separation of
ions in the gas phase based on their size and shape and in
diaPASEF, two TIMS regions in the mass spectrometer are
employed. The first TIMS region (TIMS1) is used for the
accumulation of the precursor ions which are later released
into the second TIMS region (TIMS2) to be separated by their
size and shape prior to release and fragmentation. In parallel to
the ion separation in TIMS2, TIMS1 is accumulating a new set
of precursor ions, which rapidly improves the ion sampling
efficiency from B3% used in conventional DIA-MS to nearly
100%. This brings about a dramatic increase in sensitivity
as demonstrated by Meier at al. who identified more than
4000 proteins from as little as 10 ng of input protein extract
from HeLa cells.79 In addition, diaPASEF offers 10 times faster
sequencing speed which is advantageous for rapid MS analysis
and increased throughput.78,79 Collectively, these advances in
data acquisition and instrumentation dramatically improve the
speed and sensitivity of DIA-MS analysis leading to enhanced
proteomic depth and sample throughput critical for large-scale
biological studies.

Advances in informatics strategies for DIA-MS data processing

As indicated in earlier sections, one of the main drawbacks of the
DIA-MS is the need to generate spectral libraries from DDA-MS
experiments prior to undertaking any investigation. To address
this limitation, there has been a strong interest in the devel-
opment of algorithms that generate in silico spectral libraries
which dispense with the requirement for experimentally-
derived libraries.81–84 These tools can be divided into two
categories. The first category is spectrum-centric algorithms
(DIA-Umpire, Group-DIA) which use the intensity profiles of co-
eluting fragments and precursors from a DIA-MS experiment
to generate ‘‘pseudo-MS/MS’’ spectra that can then be searched
against a database of in silico digested protein sequences in
a similar manner as conventional DDA-MS workflows.81,82
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The second category is peptide-centric algorithms (PECAN,
DIA-NN) where in silico spectral libraries are simulated from
protein sequence databases and subsequently queried against
DIA-MS datasets.83,84 Recent advances in computational mod-
elling based on deep learning-based methods have further
improved the quality of in silico libraries for peptide-centric
data processing. For instance, deep neural networks have been
used in tools such as Prosit or DeepDIA to train model spectral
libraries based on large DDA datasets, which lead to highly
accurate predictions of peptide fragmentation patterns and
chromatographic retention times.85,86 It has been shown that
these two categories of data processing tools result in the
reliable identification and quantification of thousands of proteins.
For instance, a comparison of the spectrum-centric algorithm
DIA-Umpire with conventional processing tools demonstrated
good agreement in protein quantification (R2 4 0.76) with a slight
B10–15% decrease in protein and peptide identification.87 It
should be noted that these in silico approaches are not mutually
exclusive from experimentally-derived spectral libraries and can
be readily used to augment existing spectral libraries to further
increase the depth of protein coverage in retrospective analysis of
DIA-MS datasets.

Another limitation of DIA-MS is that the complex mass
spectra arising from this methodology is compounded when
a short chromatographic separation is applied in order to
increase sample throughput. The reason for this increased
complexity is due to the lower number of data points during
acquisition in combination with very high number of co-eluting
peptides. The resulting complex spectra poses significant chal-
lenges for deconvolution with conventional data processing
platforms. To address this challenge, machine learning algo-
rithms have been exploited to distinguish real signals from
interfering background.19,84 A very recent innovation in this
area is the development of the DIA-NN algorithm which uses
deep neural networks to improve proteome coverage in DIA-MS
data analysis.84 Demichev et al., compared the performance of
DIA-NN to conventional platforms such as Spectronaut, Skyline
and OpenSWATH. In a 30 minute DIA-MS experiment, DIA-NN
identified more precursors than Spectronaut and Skyline at the
same false discovery rate (FDR) threshold, while OpenSWATH
failed to process the data. Moreover, DIA-NN identified more
precursors in a 30 minute experiment compared to Skyline and
OpenSWATH in 60 minute experiment using the same FDR
threshold. Such novel approaches could enable a step-change
in the translation of DIA-MS into the clinical setting where
fast and reliable analysis may be necessary for applications in
personalised cancer medicine.

Conclusion

Omic technologies are rapidly changing the conventional way
of cancer classification, biomarker discovery and drug develop-
ment. As a next-generation proteomic method, DIA-MS can
reproducibly quantify thousands of proteins from a single
tissue section or biopsy opening new frontiers in large-scale

oncology studies with minimal sample requirements. Such
studies can offer the statistical power to identify proteomic
signatures for molecular subtypes and provide a more compre-
hensive description of the underlying cancer biology. In addi-
tion, DIA-MS can both complement and be integrated with
genomic, transcriptomic or metabolomic analyses. The results
of such integrative multi-omic studies may be imperative for
the development of more accurate predictive and prognostic
biomarkers in oncology where any one analyte is likely to be
insufficient to fully describe the complexity inherent in cancer
development and progression. We anticipate that new develop-
ments in DIA-MS technology and machine learning–based
algorithms will usher a new era of rapid, in-depth and repro-
ducible proteomic measurements that are compatible with
clinical diagnostic workflows and will ultimately facilitate the
delivery of precision cancer medicine to achieve better patient
outcomes.
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