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Detecting cancer dependencies is key to disease treatment. Recent efforts have mapped gene dependencies

and drug sensitivities in hundreds of cancer cell lines. These data allow us to learn for the first time

models of tumor vulnerabilities and apply them to suggest novel drug targets. Here we devise novel

deep learning methods for predicting gene dependencies and drug sensitivities from gene expression

measurements. By combining dimensionality reduction strategies, we are able to learn accurate models

that outperform simpler neural networks or linear models.

Introduction

Genetic dependencies of cancer cell lines provide a compre-
hensive assessment of cancer vulnerabilities and, thus, are very
beneficial for the development and discovery of target-based
drugs.1 Gene dependencies can be systematically measured via
loss-of-function screens using shRNAs.2,3 With the advent of
CRISPR technology, CRISPR-Cas9-based sgRNA (single guide
RNA) was adopted as the major technique to conduct genome-
scale loss-of-function screens.4

In spite of the tremendous promise of sgRNAs, it has been
shown that genes within highly amplified regions have a great
deal of false-positive results.1 In addition, the fact that the on-
target activity and off-target effects of individual sgRNAs can
vary widely is another cause for the inaccuracy of the method.5

Several computational methods were developed to address this
problem.5,6 In particular, CERES7 significantly decreases the
false-positive in copy number-amplified regions.

The cancer dependency map project (depmap.org) aims
to systematically catalog and identify biomarkers of genetic
vulnerabilities and drug sensitivities in hundreds of cancer
models and tumors, to accelerate the development of precision
treatments. In particular, it reports the Achilles data set which
contains gene dependency values obtained with CRISPR-Cas9
screening and using the CERES algorithm for data cleaning and
normalization. These values represent the effects of gene
knockdowns on the survival of cancer cell lines, where large
effects point to cancer vulnerabilities. A detailed description of
the dataset is provided in Methods.

A fundamental question concerning this important resource
is whether one can automatically learn probabilistic models

that will allow predicting gene dependencies or drug sensitiv-
ities for new samples or drugs. Previous work in this domain
was mainly focused on small sets of target cell lines or
drugs.8–11 Related work for drug sensitivity prediction focused
on inferring the sensitivity of new cell lines to a fixed set of
drugs, leaving open the reverse prediction of cell line sensitivity
to new, previously unobserved, drugs.12–15

Here we aim to address this question of the predictive power
of transcriptomics data in estimating gene dependencies and
drug sensitivity. We design a neural network regression model
to predict the dependency data of new genes in various cell
lines based on the gene’s expressions. Furthermore, given gene
expression measurements of a cell line, we design a neural
network that combines an encoder–decoder component and a
prediction component to predict the sample’s gene dependen-
cies. Finally, we construct a neural network to predict drug
sensitivities based on their target gene’s expression and depen-
dencies. By combining dimensionality reduction strategies, we
are able to learn accurate models that outperform simpler
neural networks or linear models. Our models and implemen-
tation are publicly available at: https://github.com/cstaii2020/
cancer_dependency_prediction.

Results
Models for predicting dependency data

We consider two prediction problems, the prediction of gene
dependencies across cell lines and the prediction of the entire
vector of dependencies for a given cell line. The first problem is
motivated by a missing data scenario where not all genes are
measured for their dependencies across a given collection of cell
lines. The second problem is motivated by a clinical setting where
a new sample arrives and its dependencies are sought for.
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First, we aim to predict the dependencies of a gene (across
cell lines) from its expression profile. Before tackling this
problem, we wish to assess the correlation between gene
expression and gene dependency. To this end, we use a com-
mon multivariate statistical method: canonical correlation
analysis (CCA, see Method). CCA considers the expression
and dependency information of a gene as two views of the
same entity, aiming to project these views into a common
subspace in which their cross-correlation is maximized. The
analysis over the 630 available cell lines shows significant
correlations between the two views of the data, the highest
being 0.74 (for the first CCA component, see Fig. 1a for the
full results), implying that the dependency information may be
predictable from the expression data.

In order to be able to predict gene dependencies across cell
lines, we need to solve a multivariate regression task, in which
every cell line is a regression’s dependent variable. We note that
while a previous work approached this problem, it was focused
on a very small number of specific cell lines and used an
obsolete version of the dependency data,8 hence we could not
readily compare to it.

We attempt to predict the dependency data using various
models. First, we tested a simple linear regression model. We
got a cross-validation score of 0.55 ACC (average correlation
coefficient across cell lines and folds, see Methods; Spearman
correlation of 0.37). This confirms that a gene expression profile is
a very good predictor of the gene’s dependencies. Next, we
attempted to improve this result by adding L2 regularization to
the linear model (ridge regression). This yielded a slight improve-
ment to an ACC of 0.57 (Spearman correlation of 0.38). Last, we
attempted to use a non-linear model to improve performance
further. To this end, we built a feed-forward neural network model
with a non-linear activation function. Our cross-validation test
tunes the hyperparameters that concern the network architecture
(i.e., number of hidden layers and number of neurons per layer,
see Methods). This yielded a further improvement to an ACC of
0.6 (Spearman correlation of 0.385).

In order to further improve performance, we explored the
impact of dimensionality reduction of the gene expression data

using the CCA results. We observed that the correlations of the
different CCA components are high (Fig. 1a) and so we fed the
CCA-reduced expression data as features to the neural network
model, with the data dimension as a hyperparameter. Alto-
gether, this improved scheme led to an ACC score of 0.61
(Spearman correlation of 0.39). The full results are summarized
in Fig. 1b.

The second prediction problem we consider is the predic-
tion of gene dependencies in yet unobserved cell lines (or
samples). First, we study the gene dependency data distribu-
tion. A plot of gene dependencies is given in Fig. 2. From the
plot, it is evident that genes can be roughly classified to
B13 000 ‘‘constant’’, i.e., close to 0 or close to 1 with low
standard deviation (o0.1), and B5000 ‘‘variable’’, i.e., between
0 and 1 with high standard deviation (40.1).

We focus here on the prediction of dependencies for the
variable group of genes. Such a prediction problem is challenging
since a direct prediction of the dependency values (e.g., using
linear regression) requires learning about 90 M parameters while
the number of data points is around 30 M. Similarly, for simple
neural network architecture, the relatively small number of data

Fig. 1 (a) CCA results for correlating a gene’s expression profile and dependency vector. (b) Boxplot presenting the cross-validation Pearson correlations
of the predictions of the cell lines’ genes dependencies, across various models. The orange line is the mean value across the cell lines and is equal to the
ACC score of the model.

Fig. 2 Scatter plot of gene dependencies. Shown are the mean and standard
deviation of the dependencies of each gene across cell lines.
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points for training greatly limits the number and size of the
hidden layers (see Methods). Indeed, a neural network model
without dimensionality reduction provided poor results. Speci-
fically, it performed best with 3 hidden layers of 100 neurons
each, yielding an ACC across all genes of 0.14, with 1172 genes
having a correlation higher than 0.2.

To tackle the dimensionality challenge we aimed to reduce
the data dimension. However, the dimensions of both the
expression data and the dependency data, are much larger
than the sample size (the number of cell lines). In such a
setting, the canonical correlations can be extremely misleading
as they are generally substantially overestimated.16 Indeed, when
we applied CCA to these data, the resulting canonical correlations
were always one, implying that they do not carry any information
about the true population canonical correlations.

Therefore, we chose to reduce the dimension of the inde-
pendent variables of expression data and the dependent
variable of dependency values using autoencoders.17 An auto-
encoder consists of an encoder and a decoder. Given the input
data n-dimensional data point x, the encoder first maps x to its

latent d-dimensional representation z = E(x), where typically
d o n. The decoder then maps z to a reconstruction x0 = D(z)
(also n-dimensional), with reconstruction error measuring the
deviation between x and x0. The encoder consists of an input
layer, one hidden layer, and an encoded layer. The decoder
starts at the encoded layer, uses one hidden layer and finally
outputs the reconstruction layer (see Fig. 3). The parameters of
the network are updated via backpropagation with the goal of
minimizing the reconstruction error (see Methods). By restricting
the latent space to lower dimensionality than the input space
(d o n) the trained autoencoder parametrizes a low-dimensional
nonlinear manifold that captures the data structure.

In more detail, the dependency data spans 630 cell lines,
each with expression measurements of 18 239 genes and 4902
measurements of dependency values for variable genes. We
filtered out from the input genes for which the expression data
has more than 80% zero values to ensure sufficient information
through the cross-validation iterations. This resulted in a final
set of 17 040 genes. Autoencoders were applied to reduce the
dimension of the expression profiles to 500 and the dependency

Fig. 3 Illustration of the autoencoder model architecture and results. (a and c) The network architecture of the expression and dependency autoencoders
respectively, along with the number of neurons at each layer. (b and d) Boxplots of the cross-validation reconstruction result for expression and dependency
data respectively. The scores displayed are the Pearson correlation averages between the original data and the reconstructed data.
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profiles to 300 (these values were chosen to respect the volume
of the data available for training, see Methods). We evaluated
the autoencoders in a 5-fold cross-validation setting. We found
that the average Pearson correlation between the expression
data and the reconstructed expression data was 0.94, while the
same measure of the dependency data autoencoder was 0.82.
These high correlations indicate that the dimension-reduced
profiles can well represent the original data.

When combining the autoencoders into the neural network
regression scheme, we could explore larger layers (Methods),
achieving the best results with 6 hidden layers of 600 neurons
each. The average Pearson correlation across all genes was 0.18,
while 1639 genes had a correlation higher than 0.2. These
results and the comparison to a neural network that does not
use the autoencoders are summarized in Fig. 4.

A model for predicting drug sensitivity data

As drug treatment often leads to the inhibition of the drug’s
targets,18 we reasoned that our success in predicting gene
dependencies across cell lines could imply that we could
perform a similar prediction for drug sensitivities. In contrast
to dependency data, drug sensitivities have relatively high stan-
dard deviations across different cell lines, hence there was no
need to filter low-variance drugs. Altogether, we analyzed data
from 3464 drugs with known targets across 524 cell lines.

We explored two sources of information for the prediction
task. First, as above, we used gene expression data. Specifically,
for every drug, we obtained its set of known targets (from
DepMap) and formed mean expression vectors for those targets
across the 524 cell lines. For this task, we first explored ridge
regression as a linear model that achieves a cross-validation
score of 0.36 ACC. Second, we use a neural network regression
model which presents a cross-validation score of 0.39 ACC.

Next, we wish to explore the prediction of the drug sensitivities
based on the corresponding gene dependencies. We formed mean
vectors from the dependency data of the drug’s targets, similar to
the mean gene expression as before. Applying ridge regression to

these data yielded an ACC score of 0.37. A neural network
regression model performed better with a cross-validation score
of 0.39 ACC.

Finally, the combination of the two data sources used above
can be exploited for predicting drug sensitivities. To this
end, we concatenated the expression and dependency data
and tested both a linear model and a neural network model.
The linear model performance improved to an ACC of 0.39.
The neural network model also benefits from utilizing both
data sources, achieving an ACC score of 0.4. The results are
summarized in Fig. 5.

Conclusions

In this work, we tackled various prediction problems that
concern the identification of cancer cell line vulnerabilities.
We have shown the utility of deep learning models for predict-
ing gene dependencies and drug sensitivities across genes and
cell lines. To cope with the high number of predictive features,
we combined dimensionality reduction strategies into our
prediction framework, leading to improved predictions that
outperform simpler models.

Our work focused on predicting genetic dependencies from
transcriptomics data as this remains the most abundant data
type to date. Yet, our framework can be strengthened by
combining other data types such as DNA methylation data,
proteomics, interactome data, etc. In addition, while our algo-
rithms achieved promising results, their performance in a real
clinical setting where samples come from real patients will need
to be assessed when such dependency data becomes available.

Methods
Achilles gene dependency data

The Achilles dataset19 contains the results of genome-scale
CRISPR knockout screens for 18 333 genes in 689 cell lines
from the cancer cell line encyclopedia (CCLE) project.20 The

Fig. 4 Model performance in predicting gene dependencies. For all tested
models, shown is a histogram of gene number as a function of the correlation
between their predicted and real values. The majority of the genes (15 401)
had a correlation below 0.2 and are not presented in this figure.

Fig. 5 Drug sensitivity predictions. Each boxplot presents the cross-
validation Pearson correlations of the predictions of the cell lines’ drug
sensitivities. The predictions are obtained with linear models as well as
neural networks, using gene expression information, gene dependency
information and both.
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Achilles gene dependency dataset contains for each of the
tested genes and cell lines the probability that knocking out
the gene has a depletion effect. The data were corrected using
the CERES algorithm.7 As can be observed in Fig. 1, most genes
are either near 0 (no effect) or near 1 (significant effect across
all cell lines) with the rest of the genes having a high standard
deviation (40.1). We call the latter genes variable.

Overall, 4902 genes were variable, 12 500 near 0 (precisely,
mean o0.5 and std o0.1) and 837 near 1 (precisely, mean 40.5
and std o0.1). When learning the variable gene dependencies,
we learned from the 630 cell lines for which the dependency
data for all these genes were given.

CCLE expression data

CCLE expression data contains RNAseq TPM (transcript per
kilobase million) measurements, which were obtained with the
RSEM software package.21 The total number of genes in the
dataset is 19 144. However, we used only genes that also appear
in the dependency dataset. The total number of genes that
appear in both datasets is 18 239.

Drug sensitivity data

The drug sensitivity dataset22 contains the results of pooled-cell
line chemical-perturbation viability screens for 4518 com-
pounds screened against 578 cell lines. The dataset can be
downloaded from the DepMap website (primary_replicate_col
lapsed_logfold_change_v2.csv). We filtered out cell lines with
more than 75% missing data, leaving us with 524 cell lines.
Missing entries were completed by the mean sensitivity value of
the corresponding drug. We focused on 3464 drugs with known
targets, as taken from primary-screen-replicate-treatment-info
published on the DepMap website.

Cross-validation and hyperparameter tuning

In our regression models, we aim to present results that are
unbiased by train-test splitting, and by hyperparameter tuning.
The score we present for each model is an average score of a
5-fold cross-validation test. For each fold, the current fold is
marked as test data while the rest is used for train-validation.
For each train-validation, we randomly split it into a train (80%)
and validation (20%). We run the model with different sets of
hyperparameters, and validate it on the validation data. We
choose the hyperparameter configuration that performed the
best and we use it for training on the entire train-validation
data. Finally, we evaluate the model on the test data. This
process is repeated for every fold, and the score is the average
score over all folds.

Evaluation of a regression task is typically made by the
Pearson correlation coefficient. It is preferable on measures
like mean squared error, since the value of the error can be of
any range. As the regression problems we solve have multiple
dependent variables, we compute the correlation for every
variable separately and then average the results across all of
them,23 we call it ACC (average correlation coefficient). The
score of a cross-validation test is thus the average ACC across all
test folds.

Canonical correlation analysis

Canonical correlation analysis (CCA) is a multivariate analysis
between two data views. The CCA objective is to project the two
data views onto a shared space such that the correlation
between the projections is maximal. The first component is
the absolute optimal solution, the i-th component is the max-
imal solution such that it is orthogonal to the previous compo-
nents (see eqn (1)). This process is repeated until no more pairs
are found. The implementation of the CCA we used in this
paper was given by the Scikit-Learn library.

cos yr ¼ max
za;zb2R

zra; z
r
b

� �

zra
�� �� ¼ 1 zrb

�� ��
2
¼ 1

zra; z
j
a

� �
¼ 0 zrb; z

j
b

� �
¼ 0;

8jar:j; r ¼ 1; 2; . . . ;minðp; qÞ:

(1)

za and zb are the images (components) of views a and b
respectively. p and q are the dimensions of the two views.

Neural network construction

Our models were based on a feedforward multilayer neural
network, which enables us to create increasingly more complex
nonlinear functions as its number of hidden layers increases.
The network generally consists of at least three layers, one
input layer, one output layer, and one or more hidden layers.
Every layer of the neural network consists of a linear function
and a nonlinear activation function. Note that without the
activation functions, any neural network reduces to a linear
regression model, as any composition of linear functions is also
linear. The error computed from the output layer is back-
propagated through the network, and the weights are modified
according to their contribution to the error function. For our
models, we chose a hyperbolic tangent as it is a common
activation function for any layer in regression tasks and for
hidden layers in classification tasks. For the optimization task,
we chose mean squared error loss and the Adam optimizer with
a learning rate of 10�4.

In order to choose the number and size of layers in the deep
network, we used cross-validation. We explored 1–10 hidden
layers and layer sizes of 100 to 1000. We limited the search to
architectures in which the number of weights to learn is at
most the number of available data points to train on. In
addition, we limited the search so that the number of neurons
of a hidden layer is roughly between the sizes of the input and
output layers.

Autoencoder construction

For encoding the gene expression data and the dependency
data, we trained two autoencoders. For the autoencoders of
the expression data, the input and output layers had the size of
the gene expression vector that describes a cell line (17 040). For
the autoencoder of the dependency data, the input and output
layers had the same number of neurons as the number of
genes for which we wish to predict their dependencies (4902).
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The architecture tuning and parameter learning were per-
formed similarly to the regression networks.
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