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Machine learning and topological analysis methods are becoming increasingly used on various large-

scale omics datasets. Modern high dimensional flow cytometry data sets share many features with other

omics datasets like genomics and proteomics. For example, genomics or proteomics datasets can be

sparse and have high dimensionality, and flow cytometry datasets can also share these features. This

makes flow cytometry data potentially a suitable candidate for employing machine learning and

topological scoring strategies, for example, to gain novel insights into patterns within the data. We have

previously developed a Topological Score (TopS) and implemented it for the analysis of quantitative

protein interaction network datasets. Here we show that TopS approach for large scale data analysis is

applicable to the analysis of a previously described flow cytometry sorted human hematopoietic stem

cell dataset. We demonstrate that TopS is capable of effectively sorting this dataset into cell populations

and identify rare cell populations. We demonstrate the utility of TopS when coupled with multiple

approaches including topological data analysis, X-shift clustering, and t-Distributed Stochastic Neighbor

Embedding (t-SNE). Our results suggest that TopS could be effectively used to analyze large scale flow

cytometry datasets to find rare cell populations.

Introduction

Utilizing high-throughput technologies, dynamic -omics data
including genomics, transcriptomics, epigenomics, proteomics, and
metabolomics has produced temporal-spatial big biological datasets
which generally can be analyzed using similar approaches.1,2

Statistically, -omics data is typically presented as a large data
matrix where the rows correspond to variables like the expression
level of a gene in genomics, the expression level of a protein in
proteomics, and the expression of protein markers on a cell in
flow cytometry, and the columns correspond to independent
samples.3,4 Major challenges persist regarding the analysis of
large scale -omic datasets. This includes challenges regarding
how to handle the complexity of data and how should the data be
translated to discover the underlying biology from these large
and complex matrices.

It is therefore necessary to use different analysis methods or
scoring strategies for large scale datasets to achieve more
biological understanding and generate novel hypotheses. We
recently introduced a new topological score for the analysis of

proteomics data named Topological Scoring (TopS).5,6 The
TopS method has already been used in an analysis of biological
networks and its performance has been tested against other
tools for proteomics analysis.5–8 TopS uses a likelihood score
on quantitative values and in principle it can use any type of
quantitative data, rather than being restricted to one type of -omics
data. TopS generates large and small values corresponding to
strong or weak links between variables and samples relative to
other samples in a matrix.5,6 In general, TopS in combination with
machine learning can be used to detect subnetworks consisting of
points with similar patterns in large networks.

Flow cytometry is a technology that typically generates large
scale quantitative datasets for the discovery of specific rare cell
populations such as bone marrow-residing hematopoietic stem
cells (HSCs).9,10 The ability to detect specific cell populations
that associate strongly with different cell-surface protein markers
typically presents challenge to data analysis and many clustering
methods have been used to study such a dataset.9,10 Here, we
report the results of analyzing the Nilsson rare human hemato-
poietic stem cell dataset9,10 by TopS and machine learning (Fig. 1).
We compared the use of TopS to original transformed data and
expert gating results to test the usage of TopS for the analysis of a
multi-color cytometry data set. Here we implemented three
different computational approaches-based on machine learning
including topological data analysis (TDA),11–14 X-shift clustering,15–17

and t-Distributed Stochastic Neighbor Embedding (t-SNE)18–20
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analysis for the analysis and visualization of the flow cytometry
data. TDA is one of the newer and powerful method for the
analysis of large datasets.11–14 TDA is using topological and
geometric approaches to infer relevant features in complex
datasets. X-shift clustering has been used in the analyses of
the CyTOF (cytometry by time of flight) and flow cytometry
datasets and it is using weighted K-nearest neighbor density
estimation (KNN-DE) to determine the clusters in a large
dataset.15–17 Lastly, t-SNE is a non-linear technique for dimension-
ality reduction that is commonly used for the visualization of high-
dimensional datasets.18–20 Unlike TDA and X-shift, t-SNE is often
used with other unsupervised learning algorithms for data
classification. We demonstrate that TopS is an effective approach
for processing data prior to utilization of TDA, X-shit, or t-SNE and
is capable of efficiently finding rare cell populations in a flow
cytometry sorted human hematopoietic stem cell dataset.

Results and discussion
Clustering of human hematopoietic stem cell dataset

One of the major challenges for the study of hematopoietic
stem cells (HSCs) is their identification and isolation from
larger pools of cells.9,10 Thus, developing biological and com-
putational techniques for the identification of HSCs is of great
importance. Here we selected a publicly available data from
experiments in immunology using flow cytometry to demon-
strate the use of TopS in the analysis of flow cytometry data.
The Nilsson rare data contains rare population from bone
marrow cells from healthy donor with 44 140 number of cells,
13 cell-surface protein markers and 358 (0.8%) manually gated
cells (Table S1, ESI†).9,10 Early studies showed that no single
cell-surface protein marker could specifically define the HSCs
and there is need of additional markers to purify HSCs to
homogeneity.9,10 The Nilsson rare data consists of 13 different

markers (i.e. CD10, CD110, CD11b, CD123, CD19, CD3, CD34,
CD38, CD4, CD45, CD45RA, CD49fpur, CD90bio) that led to the
identification of 9 different cell populations such as myeloid
cells; B-lymphoid cells; CD4-T-cells; CD4+ T-cells; common
lymphoid progenitors (CLPs); megakaryocyte/erythrocyte pro-
genitors (MEPs); granulocyte/macrophage progenitors (GMPs);
multipotent progenitor (MPPs); and hematopoietic stem cells
(HSCs).9,10 The original data was pre-processed as described in
Weber et al.10 by using an arc-sinh transformation with a
standard factor of 150 (i.e. arcsinh(x/150)) (Table S1, ESI†).
From here on we call this matrix original/transformed data.
TopS was next used to generate topological values on this
dataset (Table S2, ESI†).

To better understand the changes in the expression of these
cell-surface protein markers in the original/transformed data,
we first applied a Pearson correlation (see Methods). In Fig. 2A
we represented the correlations between the cell-surface protein
markers using their expression in the 44 140 cells. Overall, the
Pearson correlations show a high range of correlations, ranging
from rather low to high correlation coefficients. The highest
correlations were between the CD110 and CD19 with a correlation
of 0.911 followed by the correlation between CD19 and CD34 with
a correlation of 0.857 (Fig. 2A). This result indicates that CD19,
CD34 and CD110 might form a small cluster. In contrast, the
lowest correlations were observed between CD3 and CD38 with an
anticorrelation of �0.44147 followed by the correlation between
CD10 and CD11b markers with an anticorrelation of �0.433
(Fig. 2A). These results suggest a substantial difference between
the cell-surface protein markers profiles.

Hierarchical clustering was also performed on both the
original/transformed data and the topological scores using
the TopS Shiny app to further illustrate the classification of
the samples according to similarities of the cell-surface protein
markers profiles (Fig. 2B). Interestingly, the markers pairs with
the highest correlations are separated from each other when the

Fig. 1 Overview of the computational flow. The computational approach started with the FSC files. The files were exported as CSV files. TopS shiny was
used to produce the TopS values. TDA analysis was used for the original/transformed data and TopS values. The X-shift and t-SNE clustering were used
for the original/transformed data and TopS values.
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original/transformed data is used (Fig. 2B). On the other hand,
when using TopS the markers with the highest correlations in
the matrix (i.e. CD19, CD110 and CD34) were under the same tree
(Fig. 2C) in agreement with the Pearson correlations reported
above. In addition, all the markers with the lowest correlations
were positioned in both clusters away from each other (Fig. 2C).
This figure illustrates the value of additional normalization
methods like TopS to better elucidate the structure of the
data and better cluster the samples. Furthermore, Fig. 2 also
suggested that various distance metrics must be explored when
the transformed/original data is used.

Topological scoring of dataset with machine learning approaches

Next, we utilized multiple machine learning approaches with or
without TopS to evaluate the ability of TopS to discern rare cells
in the Nilsson rare human hematopoietic stem cell dataset. To
begin, we investigated the utility of topological data analysis
(TDA).11–14 TDA has been used for different omics data including
cytometry data.21 TDA is a method that allows for the study of
high dimensionality data sets by extracting shapes or patterns

from the underlying data such that the researcher can gain new
insights into patterns and relationships within the data.11–14 TDA
also allows identification of clusters of rare events with a unique
signature in a much larger data set.11–14 Because of its robustness
to noise, TDA has proved effective in identifying meaningful
groupings or patterns of samples and data points from a diverse
set of biological data types including microarray, transcriptome
data and protein–protein interaction networks.22,23

Here, the input data for TDA was represented in a matrix,
with each column corresponding to each cell-surface protein
marker and each row corresponding to a cell. The values were
transformed values or topological scores for each cell-surface
protein marker in different cell types. A network of nodes with
edges between them was then created using the TDA approach
based on Ayasdi platform. Nodes in the network represent
clusters of multiple cells, which is an important feature of the
TDA network. This contrasts with other networks where nodes
consist of a single cell. Nodes in Fig. 3 are colored based on the
rows per node and on the label that corresponds to the gated
cells (0 for major/multiple cells or 1 for HSCs cells). Our aim

Fig. 2 Pearson correlation and hierarchical clusters. (A) Pearson correlation was computed to show the similarity between cell–surface protein markers.
For the original/transformed data (A) one hundred sixty-nine correlations are displayed in the figure. We used phyton based seaborn.heatmap function to
generate the figure. Hierarchical clustering was performed on the two matrices (i.e. original/transformed and Tops) with Euclidean distance and Ward’s
linkage as the linkage method. In (B) and (C) the hierarchical clustering was performed on a 44 140 � 13 matrix using original/transformed data (B) and
TopS values (C). The markers with the highest correlations in (A) were colored in red in (B) and (C). Note that in the shiny application the default
parameters were set to Euclidian distance for the metric and Ward’s linkage as the linkage method.
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was to provide a global overview of this complex dataset with
the focus on the detection of rare events using TDA and
additionally show the benefit of using TopS with TDA for the
analysis of flow cytometry data. In Fig. 3, we show the TDA
analysis using (A) the topological score and (B) the original/
transformed data in which the nodes are colored by the rows
per node. In Fig. 3A we observed that the cells are well
separated in different groups based on the expression profiles.
Importantly, Fig. 3A also revealed group of cells in which the
expressions of specific markers were enriched when compared
with the rest of the markers, which is one of the unique features
of the TopS. For example, we observed that the rare events were
separated in two groups by TDA and the CD90bio and CD49fpur
markers are enriched in these cells when compared with the
other markers, and this agrees with the known association of
CD90 and CD49f with human HSCs.24

TDA and TopS also detected other groups of cells where
other markers were enriched. For example, on the right side of
the Fig. 3A, we can observe that the CD10 marker was highly
expressed in the group of cells colored by red. TDA also shows a

substantial amount of cross-talks between different markers. In
contrast, in Fig. 3B, when the original data/transformed data
was used, TDA didn’t separate the data very well using the same
parameters as in Fig. 3A, and the majority of the rare events
were spread through the entire network. To better highlight the
location of the rare events in the two networks we colored the
nodes by the label that corresponds to the gated cells and we
observed a more focused localization of these cells when using
TopS with TDA (Fig. 3C and D).

We next investigated the use of X-shift clustering15,16,25,26 on
the Nilsson rare flow cytometry data. X-shift (VorteX) is a
standalone application with graphical interface that uses the
weighted k-means density estimation.15,16,25,26 Validation of the
number of neighbors value by elbow point gives an optimal
number of neighbors for density estimate of 62 for 38 clusters in
the case of TopS and an optimal number of neighbors for density
estimate of 62 for 30 clusters for the use of the original/trans-
formed data (Table S3, ESI†). The results of TDA analysis using
TopS data agrees with the results from the X-shift where the rare
events were separated in two clusters. Similarly, X-shift produced

Fig. 3 TDA data analysis. A TDA network was constructed for the original/transformed data and TopS scores. Correlation was used as a distance metric
with 2 filter functions: Neighborhood lens 1 and Neighborhood lens2. Resolution 51 and gain 2 were used for A–D. Node size is proportional with the
number of cells in the node. Markers are illustrated in the figure. Cells are colored based on the rows per node for A and B. Color bar: red: high values,
blue: low values. Cells were colored based on the label for the C and D. Cells were separated in different clusters based on their patterns in the
13 markers. The rare events were separated in two different clusters when using TopS values (A) and they were in multiple clusters when original/
transformed data was used (B). The CD90, CD45 and CD49fpur markers were enriched in these rare events as shown in (A). The gated cells were colored
in red, yellow or green (i.e. depending on the average per node) while the other cells were colored in blue. In C, we illustrated the rare events in the two
clusters similar as in (A) while in (D) the rare events are spread throughout the network suggesting a poor separation.

62 | Mol. Omics, 2021, 17, 59�65 This journal is The Royal Society of Chemistry 2021

Research Article Molecular Omics

Pu
bl

is
he

d 
on

 1
3 

A
ug

us
t 2

02
0.

 D
ow

nl
oa

de
d 

on
 1

1/
15

/2
02

5 
5:

57
:4

7 
PM

. 
View Article Online

https://doi.org/10.1039/d0mo00039f


two clusters for the rare events when the original/transformed data
was used, however the overall numbers of clusters was smaller
than the number of clusters obtained for TopS (Fig. 4A and B,
colored in blue). It is desirable to have more clusters than few in
order to avoid smaller populations merging in larger clusters.27

Fig. S1A and B (ESI†) show that TopS provides wider range of
numbers than in the original/transformed data, thus the over
representative values in the matrix can be identified and therefore
the markers that bring the most contribution in the detection of
the rare events can be easily selected.

Lastly, wet performed a t-SNE18–20 analysis on the original/
transformed and TopS data sets followed by a k-means clustering
approach on the two vectors generated from the t-SNE (Table S4,
ESI†). The number of clusters used for the k-means were obtained
from the X-shift as optimal numbers. Using k = 38 for TopS and
k = 30 in the case of the original/transformed data, t-SNE produced
similar results as the X-shift and the TDA. Using TopS, the rare
events were separated in two clusters (Fig. S2A and B, ESI†). Like
X-shift, t-SNE recovered two clusters for the rare events when
original/transformed data is used (Fig. S2C and D, ESI†). The
smallest cluster identified cells in which the C90bio marker was
remarkably expressed when compared with the other markers, while
the largest cluster identified cells in which the C49fpur and CD45
were highly enriched (Table S4, ESI†). To visualize the difference
between these two clusters determined by t-SNE using TopS values
we decided to represent the clusters as heat maps (Fig. S3, ESI†). The
first cluster showed cells with high enrichment of several markers
(Fig. S3A, ESI†) while the second cluster was an exception where cell
populations has CD90bio with the highest enrichment (Fig. S3B,
ESI†). These results also show that CD90bio, CD45 and CD49fpur are
likely the most important markers among the 13 markers in the
recovery of the HSCs cells from this dataset.9,10

Conclusions

High-dimensional flow cytometry is an important technique of
choice to define and identify different population cells and

detect expression levels of thousands of proteins markers.9,10

We recently developed a topological score (i.e. TopS) that
generates large range of values which subsequently can be used
to identify overwhelming pairs, like those between an affinity
purified protein and an associated protein, in a quantitative
matrix.5,6 Thus, subnetworks with highly scored pairs can be
selected and visualized with TopS.5,6 Previously, TopS was used
on smaller to medium matrices with thousands of rows (i.e. up
to 10 000 rows) for the analysis of networks, hence our goal was
to extend its usage for the larger data sets like flow cytometry
data. Here we tested the TopS Shiny app for the analysis of a
flow cytometry dataset described in Weber et al.10 and we
showed the results for the Nilsson rare data.9,10

We first demonstrated that TopS values can be used with
different clustering approaches for the analysis of the flow
cytometry data. Using Nilsson rare data,9,10 we applied three
clustering methods with different approaches with the special
focus on the identification of the rare events. Given the
difficulties of identifying small clusters in a large dataset, TopS
in combination with these methods identified the smallest
population of rare events in a separate cluster (Fig. S2B and
S4, ESI†). We demonstrated that rare populations have different
patterns as they are pulled by different markers. As a result,
they were separated in different clusters and not in a single
cluster as one would expect. Using TopS we could identify a
group of cells (Fig. S4 and Table S4, ESI†) in which the markers
are having the highest expression. This data show that markers
involved in T-cell and stem cells like CD11b, CD123, CD3 and
CD90bio have the highest expressions in cells in this dataset.
However, when focusing only on the HSCs cells, we could show
that TopS values revealed that the CD90bio, CD45, and
CD49fpur are the most useful markers in the recovery of these
cells and that a biological basis for the separation of HSCs into
two clusters likely exists. These results could be beneficial for
designing further experiments for the HSCs isolation. TopS in
combination with machine learning can be effective in marker
reduction (i.e. from 13 markers to three/four markers) in the
analysis of the bone marrow cells. Future work should focus on

Fig. 4 X-shift data analysis. X-shift(vortex) was used for the analysis of the original/transformed values and TopS values. Networks are colored by the
label in fig. A and B. The gated cells are represented by blue.
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exploration of normalization methods and clustering approaches
for a better representation of flow cytometry data. In conclusion,
TopS5,6 could be an effective approach for processing flow
cytometry data prior to further computational analysis with
approaches like TDA,11–14 X-shift,15–17 and t-Distributed Sto-
chastic Neighbor Embedding (t-SNE).18–20

Experimental
Data set

To evaluate the TopS method, we selected for our analysis an
available data set from experiments in immunology using multi-
color flow cytometry.10,25 We have used a publicly available high-
dimensional data set where cell population identities are known
from the expert manual gating. The data was downloaded from the
FlowRepository at https://flowrepository.org/id/FR-FCM-ZZPH. The
data was manually gated cell population labels as the reference
populations. The Nilsson rare data contain rare population from
bone marrow cells from healthy donor with 44 140 number of
cells, 13 cell-surface markers and 358 (0.8%) manually gated
cells.10,25 Data was transformed using arcsinh and TopS method
as described in Sardiu et al.6 Pre-processing of the original data
included the application of an arc-sinh transformation with a
standard factor of 150 (i.e. arcsinh(x/150)).

Overview of the TopS method

The updated TopS Shiny app together with detailed documentation
is freely available on github at https://github.com/WashburnLab/
TopS_updated. Here, the raw data was assembled into a matrix in
which the columns represent the individual cell-surface markers
and rows represented pull-down cells. The elements of the matrix
were represented by the transformed expression of cell-specific
protein markers. The data was next normalized on the columns,
rows and total sum of the numerical values in the matrix.

We used a simple model to calculate a score for each link
between every cell and every marker in the matrix as follows:

TopS ¼ Qij log
Qij

Eij
; (1)

where Qij is the observed expression in row i and column j; and

Eij ¼
row sum ið Þðcolumn sum jÞ

ðtable sumÞ :

Pearson correlation output

Pearson correlation was used here to illustrate the similarity
between the 13 cell–protein markers (Fig. 2A). Pearson correlation
on the original/transformed data was calculated using phyton
seaborn package corr(). The heatmap was used to illustrate the
correlation between different samples using expression profiles.
The heatmap shows a data matrix where coloring gives an overview
of the numeric differences between cell-surface protein markers.

Clustering with topological data analysis

The input data for TDA were represented in a matrix, with each
column corresponding to each cell-surface protein marker and

each row corresponding to a cell where the values are expression
profiles. A network of nodes with edges between them was then
created using the TDA approach based on the Ayasdi platform.11–14

Nodes in the network represent clusters of cells. Nodes in the
figures were colored based on the metric Neighborhood lens1 and
Neighborhood lens2. Two types of parameters were needed to
generate a topological analysis: The first is a measurement of
similarity, called metric, which measures the distance between two
points in space (i.e. between rows in the data). The second are
lenses, which are real valued functions on the data points. Lenses
could come from statistics (mean, max, min), from geometry
(centrality, curvature) and machine learning (PCA/SVD, Autoenco-
ders, Isomap). In the next step the data was partitioned. Lenses
were used to create overlapping bins in the data set, where the bins
are preimages under the lens of an interval. Overlapping families
of intervals were used to create overlapping bins in the data.
Metrics were used with lenses to construct the network output.
There were two parameters used in defining the bins. One is
resolution, which determines the number of bins. Higher resolu-
tion means more bins. The second is gain, which determines the
degree of overlap of the intervals. Once the bins were constructed,
we performed a clustering step on each bin, using single linkage
clustering with a fixed heuristic for the choice of the scale
parameter. This gives a family of clusters within the data, which
may overlap, and we then constructed a network with one node for
each such cluster, and we connected two nodes if the corres-
ponding clusters contain a data point in common.

Clustering with X-shift via Vortex

X-shift is using graphical tool for cluster analysis of multi-
parametric datasets.15,16,26 The following parameters were used to
run the X-shift application: transformation: none; noise threshold:
yes, 1.0; feature rescaling: std; normalization: none; minimal
Euclidean length: no; distance measure: angular distance; density
estimate: N nearest neighbors (K) from 150 to 5, steps 30; N:
determine automatically; elbow point for automatic number of
clusters was determined.

Data analysis with t_SNE

To spatially map the cells in the dataset we first applied a
t-distributed stochastic neighbor embedding(t-SNE), a non-
linear visualization of the data.18–20 We then applied k-means
clustering to this transformed matrix using the Hartigan–Wong
algorithm and a maximum number of iterations set at 50 000.
We used k = 30 for the original/transformed data and k = 38 for
the TopS values to partition our data. The number of clusters
were generated from the X-shift tool using elbow point. All
computations were run using R environment using k-means
function for the partition and daisy function to compute all the
pairwise dissimilarities (Euclidean distances) between observa-
tions in the dataset for the silhouette.
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