Recent advances in the functionalization of formyl and acroleyl appended corroles

Abstract

The field of corrole systems, particularly those with functional groups at their peripheral positions, has experienced a surge of interest in recent years, driven by their exceptional optical and electronic properties, which hold significant promise for a range of applications. This timely review article mainly focuses on synthetic strategies of reaction of meso-triarylcorroles having formyl or acroleyl groups at peripheral positions, with specific emphasis on the influence of core-metal insertion, the quantity of reagent and meso-substituents. Corroles bearing formyl and acroleyl substituents have been exploited as synthons for preparing novel compounds with a magnificent bouquet of characteristics. Furthermore, the reactivity of these corroles derivatives with active methylene compounds and substituted pyrroles is highlighted. The detailed exploration of these functionalizations is helping to advance new developments in the field. Additionally, the review addresses the potential applications of corroles in chemosensing, catalysis, photovoltaics, and nonlinear optics. It also examines the systematic advancements in the optical properties of corroles, providing a thorough overview of their photophysical and redox characteristics. This will help researchers working in this area and promote exceptional future investigations.

Graphical abstract: Recent advances in the functionalization of formyl and acroleyl appended corroles

Article information

Article type
Highlight
Submitted
15 Aug 2024
Accepted
19 Sep 2024
First published
20 Sep 2024

Chem. Commun., 2024, Advance Article

Recent advances in the functionalization of formyl and acroleyl appended corroles

I. Yadav, D. Dhiman and M. Sankar, Chem. Commun., 2024, Advance Article , DOI: 10.1039/D4CC04164J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements