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The in vitro bioinspired synthesis of silica, inspired from in vivo biosilicification, is a sustainable alternative to

the conventional production of high value porous silicas. The short reaction time, mild reaction conditions

of room temperature and its use of benign precursors make this an eco-friendly, economical and scalable

route with great industrial potential. However, a systematic optimisation of critical process parameters and

material attributes of bioinspired silica is lacking. Specifically, statistical approaches such as design of

experiments (DoE) and global sensitivity analysis (GSA) using machine learning could be highly effective but

have not been applied to this “green” nanomaterial yet. Herein, for the first time, a sequential DoE strategy

was developed with pre-screening experiments to outline the feasible design space. A successive screening

using 23 full factorial design determined that from the initially investigated three factors (the ratio of the

reactant concentrations, pH, and precursor concentration), only the first two were statistically significant

for silica yield and surface area. The subsequent concatenated optimisation using central composite design

located a maximum yield of 90 mol% and a maximum surface area of 300–400 m2 g−1. Since for successful

commercialisation, high yields and large specific surface areas are desirable, their simultaneous

optimisation was also achieved with high predictability regression models. For complementation, a

variance-based GSA was successfully applied to bioinspired silica for the first time. This method rapidly

identified key parameters and interactions that control the physicochemical properties and provided

insights in the wide parameter space, which was validated by the extensive DoE campaign. This work is the

starting point in holistically modelling the multidimensional factor–response relationship over a large

experimental space in order to complement efforts for resource-efficient product and process

development and optimisation of bioinspired silica and beyond.

1. Introduction

Silica is amongst the top traded commodity chemicals
worldwide,1,2 and it is the most mass-produced nanomaterial
both in Europe and worldwide3,4 for applications in
pharmaceuticals, cosmetics, foodstuffs and coatings to name
a few sectors. The bottom-up synthesis of silica
nanomaterials, from smaller molecules to structures of 1 to
100 nm, has prominent examples such as the MCM-41, SBA-
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Design, System, Application

Despite many studies on bioinspired silica and its vast potential in many applications, efforts for a systematic optimisation of its properties, such as the
silica yield and surface area, have been missing. Given the lack of clarity over the factor–response relationship, the tailored synthesis of silica towards ideal
process parameters and desired material attributes has been held back, which in turn has been a barrier to its production, despite its potential to provide
sustainable manufacturing of high-value porous nanomaterials. This work integrated design of experiments and machine learning tools, harnessing the
capabilities of both techniques that have been identified as a research frontier for inorganic materials synthesis. The application of a novel sequential
strategy, presented in this manuscript, in combination with a machine learning approach to bioinspired silica is of significant novelty. Employing this
unique DoE strategy in combination with multivariate analysis enabled constructing reliable models with good predictability. Machine learning using the
Sobol' index was successfully applied to bioinspired silica for the first time. This work is the starting point in holistically modelling the complex
multidimensional synthesis of bioinspired silica to complement sustainable and resource-efficient product and process optimisation and development of
this nanomaterial.
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15 and Stöber silicas, which however require harsh synthesis
conditions such as high temperatures, toxic solvents and
reagents of high purity and cost.5,6 The drive for greener yet
economical silica nanomaterials calls for a paradigm shift
away from conventional manufacturing routes.

One particular technique of sustainable silica production
was inspired by the 550 million-year-old biosilicification
process producing diatoms (microalgae) of well-defined
structures in nature. This is achieved by using highly-
specialised organic biomolecules, especially amines, that act
as catalysts, templates, and scaffolds.7,8 Learning from
biology, bioinspired silica synthesis has been developed by
us and others as a hybrid sol–gel/precipitation route that
mimics the natural silicification process and employs the
same or structurally similar reactants.9 Specifically, in
bioinspired silica synthesis, an amine additive is dissolved in
water together with a silicon source, which in solution is
present as silica monomers (Fig. 1). Addition of acid then
causes the monosilicic acid to condense and polymerise to
form oligomers, which subsequently undergo growth and
maturation to a solid silica “polymer” that precipitates. This
method has been extensively reported and reviewed
elsewhere;2,6,8,10,11 below a brief summary of investigations
relevant to the optimisation and modelling of this synthesis
is provided.

Recent investigations sought to gain a better
understanding of this chemistry and the relationship
between reaction conditions (factors) and materials
physicochemical properties (responses) in order to optimise
the bioinspired silica synthesis in a twofold way. On the one
hand, for developing commercial products with profitability,
critical process parameters need to be maximised. Although
rarely appraised in this area of research, the yield has been
identified as a crucial measure, and for this type of silica it is
conventionally expressed as the molar percentage of
elemental silicon in the final polymeric silica product
(mol%).12 On the other hand, optimisation must enable
control of critical materials attributes, such as its porosity, so
as to manufacture silica with predictable properties and
consistent quality. Porosity is a key parameter for most
porous nanomaterials where a material's specific surface area
is used commonly.13,14

Previous literature found that properties of bioinspired
silica depended on multiple synthesis parameters such as the
pH, the type of amine additive, the type of silicon precursor,

the ratio of the concentrations of the silicon precursor and
amine additive (Si : N), the reagent concentration ([Si]), and
the reaction time, amongst others.11 Generally, the silica
yield increased from initially 0 to 100 mol% with decreasing
Si : N ratio and increasing reaction time.15–17 Small straight
chain amines such as tetraethylenepentamine (TEPA), as well
as polymeric ones such as poly(ethylene imine) (PEI) were
found to produce yields of around 50 mol%.11,18 Annenkov
et al. investigated how two different sizes of poly(vinyl amine)
(PVA) affected the concentration of silicic acid monomers
over a certain time range15 and their results showed that the
initial silicic acid concentration decreased with increasing
reaction time. Although, a direct correlation to the yield
could not be established, the data suggests that the yield
generally increased with increasing reaction time.

The silica yield response, studied by Patwardhan and
Perry,16 observed that the silica yield increased with reaction
time. As the Si : N ratio and [Si] were changed
simultaneously, no conclusions could be drawn for those
two factors individually, apart from a 100 mol% silica yield
at 5 min reaction time, regardless of the factor levels.
Manning et al. investigated how the silica yield changed
when the type of additive and the reaction pH were both
varied.11 They found that the amount of coagulated silica
decreased from 66 to 47 mol% when decreasing the pH
from 7 to 6.65.

Unlike yield, the Brunauer–Emmett–Teller (BET) surface
area13 has been widely reported. Short chain and polymeric
amines produced a range of surface areas from 10 to 700
m2 g−1.19,20 However, the BET surface area generally
decreased with increasing mixing time, whereas the yield
increased with reaction time, highlighting a typical
optimisation problem whereby the best compromise between
different responses must be found.21,22 Belton et al. reported
the BET surface area of bioinspired silica which was prepared
by varying a range of factors.21–23 They found that the surface
area reduced (e.g. from ∼700 to 400 m2 g−1 or even to 0
m2 g−1) with either increasing additive length (with or
without changing the amines per molecule) or decreasing Si :
N ratio. As the three factors (amine type, reaction time, and
silicon to nitrogen ratio) were investigated one-factor-at-a-
time (OFAT), it was not possible to estimate how the surface
area varied with a simultaneous change in all three factors.
Many other studies on bioinspired silica did not investigate
the BET surface area as their focal point and therefore only

Fig. 1 Schematic representation of the bioinspired silica synthesis pathway. Condensation of silica monomers, mediated by self-assembly and
catalysis of amine additives, produces silica oligomers which subsequently further grow into solid polymeric silica particles that precipitate out of
the reaction suspension.
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reported individual values, which is insufficient to develop
predictive models.

Other parameters such as the pH and [Si], which have
known influences on the kinetics, reaction mechanism and
silica formation pathways24 were generally kept constant
within and between different studies and thus the effect of
those factors and the impact of the interplay between them
on the yield and BET surface area remains unknown. Table 1
summarises recent literature on the optimisation of
bioinspired silica. It reveals that studies were unsuccessful in
holistically optimising silica by accounting for multiple
factors, as the experiments were unsystematic and also did
not attempt to optimise several responses simultaneously.
Moreover, previous studies aimed to gain a qualitative
understanding and experiments were carried out in an OFAT
or univariate way. This is likely due to a complex nature of
the parameter space and interdependencies, which in turn is
a barrier to unlock the potential of bioinspired silica. As such
an empirical quantitative understanding can be gained by
more systematic experimentation.

Beyond bioinspired silica, conventional types of silica
nanomaterials were previously successfully developed using
organised statistical approaches, in particular design of
experiments (DoE), which allows product and process
optimisation by sound mathematical evidence. As part of the
DoE framework, efficient designs determine the combination
of synthesis factors and factor levels for each treatment in
order to provide a robust groundwork of experimental results
(observations) with the least amount of experiments
necessary. After the experiments, the statistical analysis
employs multivariate statistical methods to determine the

significance of synthesis factors and their interactions. A
powerful advantage is the possibility to construct linear
regression models to establish empirical relationships for
prediction of product responses as a function of synthesis
factors.25

Full and fractional factorial designs have been successfully
used previously to screen the synthesis of Stöber silica,30–32

SBA-15,33 and silica via dissolution precipitation.34 Whereas
factorial designs are regarded as resource-efficient for
identification of significant synthesis factors, they often do
not contain a sufficiently large number of treatments for
response modelling with more precise second-order
regression polynomials. As such, more elaborate central
composite designs were used to model the complex
relationship between multiple synthesis factors and product
property responses for sol–gel silica.35,36 However, the risk
with using designs that necessitate many treatments at an
early stage of the optimisation process is that not all factors
might be statistically significant, and thus the resulting
models may be unnecessarily complex. Experimentation was
performed more efficiently with the stepwise approach used
for zeolite-X and mesoporous TUD-1 silica, in which compact
screening designs were employed upfront for factor selection,
followed by more detailed designs for modelling the
remaining few significant factors.37,38 A holistic DoE strategy
could have reduced the numbers of required trials further by
re-using some of the treatments from the screening study for
the optimisation by concatenating both designs. Additionally,
it must be noted that all DoE studies constructed the
regression models with the design factor levels, which might
have differed slightly from the factor levels attained during

Table 1 A summary of literature on bioinspired silica showing selected examples where a range of factors were investigated and corresponding
responses

Additivea Si precursorb Si : N (mol mol−1) pH [Si] (mM) Time (min) Observation Ref.

Silica yield
PVA-238, PVA-1100 Na2SiO3·9H2O 1.5 10 10 0–1440 n/ac 15
PEHA Na2SiO3·9H2O 0.5, 1, 2 6.5, 7 20–40 0–5 Max 100 mol% 16
PEI TMOS n/ac n/ac 2.3 40 12–15 mol% 26
PDPA23–PDMA68 TMOS 1057 7.2 185 20 58 mol% 18
PEHA, TETA, DETA, PEI Na2SiO3·5H2O 1 7 30 5 47–66 mol% 27

Silica BET surface area
MEDA, DETA, SPDN, TETA, SPN, TEPA, PEHA SiCat, TMOS 1.7–0.08 7 30 1440–10 080 0–700 m2 g−1 21
MEDA, DA4, DA6, DA8, DA10 SiCat 1 6.8 30 1440–10 080 400–700 m2 g−1 22
Poly(ethylene amine), propylamine SiCat 1 6.8 30 1440 0–650 m2 g−1 23
TETA, TEPA, PEHA Na2SiO3·5H2O 1 7 30 5 12.8–15.6 m2 g−1 19
DETA, TETA, TEPA, PEHA Na2SiO3·5H2O 1 7 30 2 19–37 m2 g−1 28
PEHA Na2SiO3·5H2O 2 7 30 5 45 m2 g−1 12
PEHA Na2SiO3·5H2O 1 2–7 30 5 30–300 m2 g−1 29
PEI TMOS n/ac n/ac 2.3 40 71 m2 g−1 26

a PVA-238 = poly(vinyl amine) 238 units, PVA-1100 = poly(vinyl amine) 1100 units, PEHA = pentaethylenehexamine, PEI = poly(ethylene imine),
PDPA23–PDMA68 = poly(2-(diisopropyl-amino)ethyl methacrylate)-block-2-(dimethylamino)ethyl methacrylate, TETA = triethylenetetramine, DETA
= diethylenetriamine, MEDA = monoethylenediamine, SPDN = spermidine, SPN = spermine, TEPA = tetraethylenepentamine, DA4 =
1,4-diaminobutane, DA6 = 1,6-diaminohexane, DA8 = 1,8-diaminooctane, DA10 = 1,10-diaminodecane, propylamines = N,N′-(bis-3-
diaminopropyl)-1,3-diaminopropanes. b Na2SiO3·9H2O = sodium metasilicate nonahydrate, TMOS = tetramethyl orthosilicate, Na2SiO3·5H2O =
sodium metasilicate pentahydrate, SiCat = dipotassium tris(1,2-benzenediolato-O,O′)silicate. c Not available or could not be calculated from the
data provided.
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the experiments. More realistic models could have made use
of actual factor levels instead.

Another important strategy to identify and optimise key
factors is through a sensitivity analysis, which characterises
the relationship between the model's inputs and outputs.39

Sensitivity analysis can be split into three key approaches:
screening,40,41 local sensitivity analysis42,43 and global
sensitivity analysis (GSA).44,45 Specifically, GSA is powerful
because it quantifies the variation of the model output, fully
exploring the input space within the entire parameter
domain. The most popular GSA method is a variance-based
decomposition analysis that calculates Sobol' sensitivity
indices.44–47 However, the calculations require a significant
number of data points evaluations to ensure convergence of
integrals to a satisfactory precision level. Therefore, in a wide
range of disciplines, surrogate models are used to reduce the
number of evaluations by directly interrogating the model.
For example, polynomial chaos expansion was used for CO2

pipeline safety,48 artificial neural networks studied
combustion kinetics,49 and Gaussian processes (GPs)
analysed lithium ion battery safety.50 However, their
application in materials chemistry is rarely reported.

As can be seen, efforts for a systematic optimisation of
bioinspired silica properties, such as the silica yield and BET
surface area, have been unfruitful so far. Given the lack of
clarity over the factor–response relationship, the tailored
synthesis of silica towards ideal process parameters and
desired material attributes has been held back, which in turn
has been a barrier to its commercialisation, despite its
potential to provide sustainable manufacturing of high-value
porous nanomaterials. As shown in the literature above, DoE
has been employed for similar silica syntheses, but most
studies conducted a single standalone type of design and
rarely combined multiple ones in an integrated strategic
approach.

As a result of these limitations, this work aims to, for the
first time, quantitatively model the multivariate input–output
relationship between the factors (pH, Si : N, [Si]) and the
responses (silica yield, silica BET surface area) for the
bioinspired silica synthesis. A novel methodical sequential
strategy was devised consisting of pre-screening, screening,
and optimisation experiments shown in Fig. 2, with the aim
of not only synthesising a sustainable silica material, but also
of rendering the material's product development pathway
more resource-efficient. Further, we also apply the GSA
methodology for the first time to bioinspired silica in order
to explore its suitability and compare the results with the
DoE outcomes for complementation and cross-validation.
While there may be other techniques for multi-dimensional
modelling, they can generally be described as statistical
methods (e.g. multivariate or Bayesian approaches) and/or
machine learning approaches (e.g. artificial neural networks,
GPs).51 The combined use of DoE with GSA was reported for
the identification of significant parameters in in silico
simulation of cell growth in batch reactors,52 in silico
modelling of metabolic networks,53 and for

biopharmaceuticals freeze-drying,54 leaving a research gap in
its application to materials synthesis. Indeed, the integrated
employment of specifically DoE and machine learning tools,
harnessing the capabilities of both techniques, has been
identified as a research frontier for inorganic materials
synthesis.55 This review also mentions that, owing to more
input variables such as synthesis and process history, and
more output variables including structure and texture,
materials synthesis generally faces more complexity than
small molecules preparation. As such, the application of a
novel sequential strategy in combination with a machine
learning approach to bioinspired silica is of significant
novelty.

2. Materials and methods
2.1 Design of experiments methodology

Fig. 2 shows a unique methodical DoE strategy developed,
which was divided into three experiments:

1. A pre-screening experiment to locate a feasible design
space (Fig. 3a),

Fig. 2 Holistic design of experiments strategy for the bioinspired silica
synthesis. Each of the three consecutive experiments (pre-screening,
screening and optimisation) were conducted in four consecutive steps:
design selection according to the algorithm partly adapted from ref.
56, experimental design, bioinspired silica synthesis, and statistical
analysis. The designs are detailed further in Fig. 3 and the text. The
“Decision” involved identifying if there is a curvature to the responses
and if there were any unimportant factors, see text for details.
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2. a screening experiment using a full factorial design
(FFD) to identify the significant synthesis factors (Fig. 3b),
and

3. an optimisation experiment for regression modelling
using a central composite design (CCD), Fig. 3c and d.

Each of the three experiments was conducted in four
consecutive steps: first the type of design was chosen based
on the DoE algorithm partly adapted from ref. 56. Secondly,
the experimental design was constructed, then bioinspired
silica (BIS) was synthesised and characterised according to
the treatments prescribed by the design and according to the
method described in section 2.2, and finally the measured
observations were statistically analysed using methods
appropriate for the purpose of each experiment. These four
steps were completed for one experiment (e.g. pre-screening)
before the next experiment was commenced (e.g. screening).

At the initial stage, the pre-screening experiment (shown in
a red box in Fig. 2) used a semi-systematic approach using two
additives to visually identify under which conditions of the Si :
N and [Si] factors the synthesis produced bioinspired silica
(also shown in Fig. 3a and Table S1 in the ESI†). For the
subsequent screening experiment, a 23 full factorial design (3
factors each at 2 levels) was selected with the additional factor
pH at levels pH 6 and 8, resulting in the blue cube in Fig. 2
(also shown in Fig. 3b). The combination of factors and levels
is also tabulated in Table 2 and runs were carried out randomly
to avoid bias. After synthesis, for segregation of the significant
from the insignificant factors for both responses, evidence was
drawn from an effects analysis, an analysis of variance
(ANOVA), and a residual analysis as described below.

After this point, the algorithm contained a decision gate,
and because the screening experiment revealed interacting
factors causing curvature in the silica yield and BET surface
area responses, a subsequent optimization experiment was
justified. The benefit of sequential experimentation became

apparent here. As described in the discussion below (section
3.2), the [Si] factor was identified to be an unimportant factor
and was hence removed, allowing the central composite design
to be run with one less factor. For the optimisation design, the
distance between the centre and the outer point was α = 1.414,
hence superimposing the CCD onto the FFD at the high level
of [Si] was possible. This enabled the reuse of four treatments
from the previous experiments, as can also be seen from
Fig. 3c and Table 2. If a CCD had been chosen to run
immediately without a preceding FFD, 15 treatments would
have been required, whereas sequential experimentation and
design concatenation required only 13 treatments to screen
and optimise the silica synthesis. Experimental efficiency of
this methodical strategy could be expected to increase with an
increasing number of factors investigated.

In order to mathematically relate the significant factors to
the responses, second-order linear regression models were
constructed of the form

y = β0 +
P

βixi +
P

βijxixj +
P

βiix
2
i (1)

where y is the response, β0 is the intercept of the regression
plane with the y axis, βi are the regression coefficients of the
main factors, βii are the regression coefficients of the
quadratic main factors, βij are the regression coefficients of
the factor interactions, and xi and xj are the regressor
variables of the factors or factor interactions.57 Model
selection of the 31 possible regression models per response
was performed with the all possible or best subsets regression
technique.58 Finally, with use of response surfaces and
overlaid contour plots, the bioinspired silica synthesis could
be optimized towards maximum yield or porosity individually,
or towards a best compromise between the two responses.

2.2 Experimental methods

2.2.1 Chemicals. Sodium metasilicate pentahydrate (Na2-
SiO3·5H2O, ≥95%), sulfuric acid (97%), ammonium molybdate
tetrahydrate (99.98%), hydrochloric acid (37%), sodium
hydroxide pellets (NaOH, ≥98%), and branched poly(ethylene
imine) (PEI, Mw = ∼25000, Mw/Mn = ∼2.5; Mw: weight-average
molecular weight, Mn: number-average molecular weight) were
purchased from Sigma Aldrich; tetraethylenepentamine (TEPA,
≥95%), and anhydrous oxalic acid (98%) from Acros; and
hydrochloric acid solution (1 M), 4-methylaminophenol sulfate
(metol, 99%), and anhydrous sodium sulfite (98%) from Fisher.
All chemicals were used as received without further
purification. Water was purified to 15 MΩ in-house.

2.2.2 Synthesis and characterisation. For each of the pre-
screening, screening, and optimization experiment the
complete four-step synthesis of bioinspired silica was carried
out as shown in the strategy (Fig. 2) and described
elsewhere.10,11 Sodium silicate and amine were weighted out
and dissolved in water to meet their levels prescribed by the
design (designed levels). Upon thoroughly mixing them using a
magnetic bar, a pre-determined amount of 1 M hydrochloric

Fig. 3 Graphical representations of the experimental designs. (a) Pre-
screening experiment, (b) full factorial design of the screening
experiment, (c) concatenated screening and optimisation design, and
(d) central composite design of the optimisation experiment.
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acid was dosed in a single aliquot with an autotitrator (902
Titrando, Metrohm, 3-point calibrated) under constant stirring
to make up a final reaction volume of 150 mL. pH after 5
minutes from the point of addition of acid was recorded. As
the statistical analysis used herein can account for minor
experimental deviations from the designed factor levels, all
measurements of reagent masses, liquid volumes and final pH
were recorded so that actual levels of Si : N, pH and [Si] were re-
calculated for more realistic data analysis. The white particle
suspension at the end of the reaction (after 5 min) was
centrifuged for 15 min at 5000 rpm (Sorvall ST16, Thermo
Fisher Scientific). After the first centrifugation, supernatant
was collected for determination of the silica yield and
precipitated silica was washed with fresh water and centrifuged
a total of three times before being dried at 60 °C for 1 week.

The silica yield was evaluated using an adaptation of the
silicomolybdic acid spectrophotometric method.24 The
molybdate reagent was prepared by dissolving 1 g of
ammonium molybdate tetrahydrate with 6 mL 37%
hydrochloric acid and making up to 100 mL with water. The
reducing agent was prepared by dissolving 10 g oxalic acid,
3.35 g metol, 2 g anhydrous sodium sulfite and 50 mL
sulfuric acid with the balance water to make 500 mL of
solution. For determination of unreacted monomeric silicic
acid at the end of the reaction, 10 μL of supernatant was
added to 3 mL water and 0.3 mL molybdate reagent. After
exactly 15 minutes, 1.6 mL reducing agent was added and the
assay left to develop overnight, before absorbance
measurement at 810 nm against a linear calibration curve.
For the determination of oligomeric and precipitated

Table 2 Treatments, silica yield and BET surface area from the synthesis of bioinspired silica with TEPA. When concatenating the designs, the last four
treatments of the FFD were used for the CCD together with the remaining five treatments

Treatment

Factors Responses

pH (−) Si : N (mol mol−1)
[Si]
(mM)

Silica
yield
(mol%)

Silica
BET
surface
area
(m2 g−1)

Design
level

Actual
levela

Design
level

Actual
levela

Full factorial design
(Treatments 1–9)

1 6 — 0.5 — 30 54 46
6 — 0.5 — 30 54 52

2 8 — 0.5 — 30 72 15
8 — 0.5 — 30 58 13

3 6 — 2 — 30 12 118
6 — 2 — 30 24 184

4 8 — 2 — 30 70 18
8 — 2 — 30 70 14

5 6 5.82 0.5 0.50 60 40 105 Central composite design
(Treatments 5–13)6 5.72 0.5 0.50 60 35 98

6 8 8.01 0.5 0.50 60 90 31
8 8.02 0.5 0.50 60 89 30

7 6 5.95 2 2.00 60 19 264
6 5.98 2 2.00 60 24 397

8 8 8.04 2 2.00 60 86 16
8 8.00 2 2.00 60 87 17

9 5.59 5.58 1.25 1.25 60 31 182
5.59 5.58 1.25 1.25 60 23 217

10 8.41 8.45 1.25 1.25 60 88 22
8.41 8.45 1.25 1.25 60 87 20

11 7 6.87 0.19 0.19 60 90 33
7 6.84 0.19 0.19 60 90 33

12 7 7.05 2.31 2.31 60 80 46
7 7.00 2.31 2.31 60 74 47

13 7 7.01 1.25 1.25 60 80 46
7 7.00 1.25 1.25 60 81 56

a Actual factor levels replaced with a dash (—) were irrelevant since the full factorial design assumed factor levels to be fixed.
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“polymeric” silica, supernatant or the precipitate were first
depolymerised to monomeric silicic acid by heating for 1
hour at 80 °C with an equal volume of 2 M NaOH before
being subjected to the same silicomolybdic acid
spectrophotometric method. The BET surface area of the dry
silica samples was determined by nitrogen adsorption
analysis at 77 K (TriStar II 3020, Micromeritics), after
overnight degassing at 105 °C. In alignment with the relevant
standards, the BET isotherm was applied to the relative
pressure range 0.05 ≤ p/p0 ≤ 0.3 where completion of the
monolayer was expected.59,60

2.3 Global sensitivity analysis methodology

This work utilises a GP surrogate model to calculate the
Sobol' indices as a variance-based GSA technique. Sobol'
indices describe how much of the variance of an output can
be decomposed into terms that are dependent on the input
factors.61 Each input factor has different levels of Sobol'
indices corresponding to the amount of inputs that the
variance is expressed by. The first-order Sobol' index (Si)
corresponds to the amount of variance solely attributable to a
factor xi. Whereas total Sobol' index (STi ) expresses the whole
effect of xi including its interactions with all other input
factors. Thus, the effect due to interactions with the
remaining input factors is calculated by the difference
between STi and Si.

The calculation of Sobol' indices is performed through a
decomposition method presented by Sobol'62 which evaluates
each term through multidimensional integrals that require a
large sampling cost.63 Therefore, this work encapsulated the
experimental data from Tables 2 and S1† using a machine
learning technique to produce a model that captures the
behaviour in a cheaper, simpler framework. GP regression
predicts the model response (silica yield or silica BET surface
area) by taking a (1 × 3) row vector of input factors x (pH, Si :
N, [Si]) and returns a Gaussian random variable y, through
calculations using the predictive equations presented by
Yeardley et al.64 Within the predictive equation, the
automatic relevance determination (ARD) kernel function
expresses the correlation between responses to input
samples65 as follows:

k x′; xð Þ :¼σ2f exp − x − x′ð ÞΛ − 2 x − x′ð ÞT
2

� �
(2)

where Λ is a (3 × 3) diagonal positive definite length-scale
matrix. The GP surrogate model uses the experimental data
to learn the mapping from training inputs X to the observed
response y. Regression uses the learned model to make
predictions and so requires the optimisation of 3 + 2
hyperparameters, constituting of Λ, σf and σe, through the
maximum marginal likelihood p[y|X] using the ROMCOMMA
software library.66 The mean of the conditional GP is then
used to calculate the Sobol' indices resulting in semi-analytic
Sobol' indices as shown by the mathematical details
described elsewhere.50

3. Results and discussion
3.1 Pre-screening experiment

The aim of the stepwise strategy was to first find a suitable
range of factors that were commonly employed and to
identify the best performing additive, before employing other
factors in the study. Therefore, initially a pre-screening
campaign with 56 experiments was performed using two
additives – poly(ethylene imine) (PEI) and tetraethylenepenta-
mine (TEPA), see Table S1† and Fig. 3a. The syntheses were
performed by varying the silica precursor concentrations
between 2 and 193 mM and the Si : N ratio from 16 to 1/16,
while keeping the pH at 7 according to previous
methods.11,17 As polymers and small molecules exhibit
different mechanisms in the formation of bioinspired silica
due to the effects from polymeric chain conformation,
dynamic cooperative assembly between additive and silicates,
and increased density of cationic charge,67,68 here we discuss
qualitatively the results obtained from PEI and TEPA
separately. These results feed into the DoE by identifying
areas in the reaction space (not) to focus on. With the use of
PEI (Fig. 4a), yields of up to 100% were observed with highest
surface area reaching ∼440 m2 g−1. Two scenarios were
clearly identified where no precipitation occurred. They
include low Si : N ratios (<0.09 or <1/11), i.e. high additive
concentrations and low precursor concentration ([Si] ≈ 2
mM). This finding is supported by the literature where high
concentration of additive has resulted in stabilisation of
silica oligomers, leading to reduced or no precipitation even
after centrifugation.21 While it is known that precursor
concentrations much lower than 20 mM does not lead to
significant precipitation within the 15 min synthesis

Fig. 4 Yield and surface areas obtained from samples listed in Table
S1† using (a) PEI or (b) TEPA as the additive. Samples 17 and 45 show
results from identical repeats (samples 17–28 and 45–56 respectively
for PEI and TEPA as show in Table S1†).
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timescales used herein,69 2 mM is close to equilibrium
solubility of silica and hence lack of precipitation at this
concentration is expected.70 In order to assess the experimental
errors associated with the synthesis and characterisation,
samples 17–28 were prepared with identical conditions. The
results show that while the average yield of 93 mol% was highly
reproducible (with a low standard deviation of 4 mol%), the
average surface area of 158 m2 g−1 was spread wider (standard
deviation = 58 m2 g−1). Although a similar systematic study has
not been reported before, previous experience suggests that
variation in surface areas of bioinspired silica obtained from
polymeric additives is not surprising due to the effects from
polymeric solubility, conformation and assembly, which are
not yet fully understood.

In the case where TEPA was used as the additive, most
samples produced silica precipitate except for very low [Si]
(sample no. 41 and 42 in Table S1†) or very high Si :N (sample
no. 39 and 40). Although high yields were obtained with TEPA,
they did not reach 100% as observed for PEI (Fig. 4b). This
supports the literature findings that generally, cationic
polymers are more effective in flocculating and precipitating
silica when compared to smaller amines.67,71 Further, samples
obtained using TEPA were generally low in surface area, again
consistent with the literature.21 Sample no. 45–56 were
identical and used for measuring the experimental errors.
Unlike the case of PEI, when TEPA was used, the
reproducibility was much higher (average yield = 80 ± 6 mol%
and average surface area 35 ± 4 m2 g−1). Based on these
findings of the pre-screening study, prior knowledge of the
system described in the literature above, and a profitability
analysis described elsewhere,12 a narrow feasible screening
region was constructed, which is depicted with a blue box in
Fig. 3a, which is bound by the levels of 0.5 and 2 mol mol−1 for
the Si :N factor, and 30 and 60 mM for the [Si] factor.

3.2 Screening experiment

Moving from the pre-screening campaign, as described in the
methods section above, a novel DoE approach was developed
using a full factorial design (FFD) followed by a central
composite design (CCD), leading to 13 “treatments” in total
(see Table 2), each run in duplicate. This was followed with
optimisation (described in section 3.3). These stages are also
shown in Fig. 3b–d, indicating the reaction space mapped
herein. Briefly, in addition to [Si] and Si : N, pH as a third
factor was also included. pH is known to affect silica
synthesis,24 however, it has not been systematically varied
before in the context of bioinspired silica. Each factor was
investigated at two levels. Due to the variability observed
when using PEI, the screening study was focussed on TEPA.
The responses observed for each treatment are tabulated in
Table 2, which were first visualised in Fig. 5 and then used in
a detailed statistical analysis described below.

Fig. 5 depicts the experimental results for the treatments
of the screening and optimisation experiment for the yield
and surface area responses. Fig. 5a shows the distribution of

silica species – the monomer, oligomers and the polymer (or
the precipitate). Of these, only the polymeric silica precipitate

Fig. 5 Experimental observations of the screening and optimisation
experiments. (a) Distribution of silicate species, (b) the BET surface
areas for each treatment, and (c) the yield and surface area data from
part (a) and (b) plotted together.
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was used as the silica yield response. These results indicate
that generally a low pH leads to low yield, either due to poor
conversion of monomers (e.g. treatments 1 and 3) or
stabilisation of oligomers (e.g. treatments 5, 7 and 9). The
precipitates collected were dried and then analysed using N2

adsorption followed by BET analysis to obtain specific surface
areas. A typical nitrogen adsorption–desorption isotherm
obtained for bioinspired silica is shown in Fig. S1.† The
general shape of the isotherm and the hysteresis over the
entire relative pressure range suggests a product with
heterogeneous texture and a mixture of micro-, meso- and
macropores. The BET surface areas calculated for each
treatment are shown in Fig. 5b. When the yields and surface
areas are superimposed in a single graph (Fig. 5c), it becomes
clear that there is a tension between these two responses (e.g.
see treatment 6 vs. 7). We will return to this point in the
optimisation section below.

In order to identify which of the synthesis factors and
their interactions caused a statistically significant change in
the yield and surface area, an effects analysis, an analysis of
variance, and a residual analysis were performed. In
Fig. 6a and d, the “main effects” of factors relative to each
other were compared in an effects plot, which is customarily
constructed as a set of straight lines where the slope of the
line is a direct indication of the importance of the factor.57 A
“main effect” is the difference between the average
observations at the high and low level of a factor. For
example, the value of the main effect of pH on silica yield
was 32.8 mol% at low pH and 77.8 mol% at high pH. Fig. 6a
evidences that the pH had the largest effect on the silica
yield, which increased positively with increasing pH. The Si :

N ratio impacted the yield in the opposite direction, but to a
lesser extent, while the almost negligible variation of the
yield with a change in [Si] suggests that this factor could be
insignificant within the range of the reaction space
considered herein. Similarly, the BET surface area (Fig. 6d)
was most heavily impacted by the pH, but the trend was in
opposite direction to the yield. This highlighted again the
tension between the two desired outcomes and hence the
need to find an optimum between yield and surface area.
Both Si : N and [Si] positively influenced the surface area, i.e.
increasing these factors increased the surface area. However,
the effects were indiscernible from each other by visual
inspection, which is a drawback of main effects plots and
hence further analysis was performed with interaction plots
and half-normal probability plots (Fig. 6b, c, e and f).

In the interaction effects plots (Fig. 6b and e), lines
representing two factors that are severely not parallel or
even intersecting (although the latter is not a requirement)
indicate opposing or synergistic effects between two factors.
The greater the difference between their slopes, the higher
the intensity of their interactions. When two lines are
parallel or almost parallel, then the interaction of two
factors is insignificant. The less the difference between their
slopes, the less the intensity of their interactions. For the
silica yield (Fig. 6b), the Si : N × pH and the pH × [Si]
interactions were found to be important, given the
differences in the slopes of the lines shown, while the Si : N
× [Si] interaction was insignificant. A similar pattern
emerged for the surface area (Fig. 6e), but it was unclear
whether the pH × [Si] interaction was significant. In order
to confirm the important factors and their interactions, the

Fig. 6 Effects plots for the silica yield (a–c) and BET surface area (d–f). (a and d) Main effects plot, (b and e) interaction effects plot, and (c and f)
half-normal probability plot.
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effects analysis was concluded by half-normal probability
plots (Fig. 6c and f). In such analysis, factors and their
interactions with negligible effects (shown in blue) are
normally distributed and lie on a straight line, whereas
significant factors (shown in red) are non-normally
distributed and lie far apart from the normal distribution
line. Again, for both the silica yield and surface area, pH
stood out as an important factor. However, a more
quantitative method in addition to this qualitative graphical
analysis is required to objectively assign statistical
significance to the other factors and their coupled effects.

To complement the visual effects analysis shown in Fig. 6,
an ANOVA (Table 3) was conducted for both responses. The
basis of the ANOVA was an F-test, which compared the
amount of variability present between and within treatments,
analogously to a signal-to-noise ratio, and which is
summarised in the p-value. In order to be 99% confident that
a given factor or interaction is statistically significant, the
level of confidence was set to α = 0.01. Thus, a factor or
interaction was deemed significant if p < 0.01. As the
F-distribution was based on a normal distribution, normality
of the experimental observations was checked with normal
probability plots of residual (Fig. S2 and S3†). Since no gross
departure from normality was detected, the ANOVA was
considered a valid and applicable technique.

From the ANOVA of the yield and surface area, the Si : N,
pH, and Si : N × pH factors were found to be significant. This
also confirmed that the change in silica yield resulting from
the intentional variation of Si : N and pH was more
significant than any random experimental error. The only
difference is that for silica yield, the pH × [Si] interaction
emerged as an additional significant effect, although the [Si]
factor was not important on its own (p = 0.021 > 0.01).
According to non-hierarchy, it is indeed possible that a factor
exhibits no significant main effect but is involved in a large
factor interaction.72,73 On the other hand, for surface area,
the [Si] factor was marginally significant on its own (p = 0.01

0.01), and certainly not significant when in an interaction.
This statistical analysis of systematically designed
experimental campaign identified statistically significant
effects and further helped to reduce the number of synthesis

factors for further optimisation. As such, based on the effects
analysis, ANOVA, and non-hierarchy principle, the Si : N ratio
and pH were selected for the consecutive optimisation
experiment discussed below.

3.3 Optimisation experiment

The objective of the optimisation experiment was to obtain a
mathematical model of appropriate complexity for the
purpose of predicting and optimising both the yield and
surface area. The statistical analysis employed linear
regression modelling and a best subsets regression model
selection to find the most suitable relationship between a
given response (yield or surface area), and the factors
identified earlier to be statistically relevant (Si : N and pH).
The [Si] factor was found unimportant during the screening
experiment and was therefore held constant during
optimisation. For both responses, the 31 possible regression
models of different complexity were calculated in the form of
eqn (1), using the observations from Table 2 as input. We

Table 3 ANOVA for identification of significant synthesis factors for the silica yield and silica BET surface area responses based on α = 0.01

Factor

Yield (mol%) Surface area (m2 g−1)

SSa DFb MSc F-Value p-Value Significant? SSa DFb MSc F-Value p-Value Significant?

Si : N 616 1 616 25.37 0.001 Yes 25 418 1 25 418 18.44 0.003 Yes
pH 8158 1 8158 336.06 0.000 Yes 77 038 1 77 038 55.90 0.000 Yes
[Si] 199 1 199 8.18 0.021 No 15 509 1 15 509 11.25 0.010 No
Si : N × pH 729 1 729 30.01 0.001 Yes 29 331 1 29 331 21.28 0.002 Yes
Si : N × [Si] 39 1 39 1.60 0.242 No 3131 1 3131 2.27 0.170 No
pH × [Si] 735 1 735 30.27 0.001 Yes 11 575 1 11 575 8.40 0.020 No
Si : N × pH × [Si] 196 1 196 8.09 0.022 No 5171 1 5171 3.75 0.089 No
Error 194 8 24 8 1378
Total 10 866 15 15

a Sum of squares. b Degrees of freedom. c Mean square.

Fig. 7 Selection of the linear regression model for the silica yield (a)
and surface area (b) by employing the best subsets regression method.
Parity plots of the selected regression models are shown for (c) the
silica yield and (d) the silica BET surface area responses.

MSDEPaper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
M

ar
ch

 2
02

1.
 D

ow
nl

oa
de

d 
on

 7
/1

9/
20

25
 1

0:
09

:5
2 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0me00167h


Mol. Syst. Des. Eng., 2021, 6, 293–307 | 303This journal is © The Royal Society of Chemistry and IChemE 2021

used the actual factor levels as input instead of the design
factor levels as they allowed the construction of more realistic
regression models. This approach is rarely reported for DoE-
based experimentation. However, the benefits from using our
approach are clear from the fact that results from the
modelling between design and actual differed by up to 50%
even though the input values did not differ greatly, and
sometimes the actual level was identical to the designed level.

The selection of the most appropriate regression model
was then performed graphically using the best subsets
regression method for the yield (Fig. 7a) and the BET surface
area (Fig. 7b). The plots show the maxima of three
coefficients of multiple determination for models containing
2 to 6 terms. R2 always increases with additional model
terms, thus models with the peak R2 values might be too
complex. Instead, the adjusted R2 (R2adj) accounts for
statistically significant terms and decreases in value if
redundant terms are present in the model. Similarly, the
prediction R2 (R2pred) evaluates how well a given model
predicts a response by removing a particular observation,
fitting a model to the remaining observations and testing
how precisely the model predicts that missing observation. It
is also highest for the model with the greatest predicting
capabilities, which does not necessitate to be the most
complex correlation.57

Given the fact that models left of the peak R2adj and R2pred
are generally underfitting, and models right of these values
tend to overfit the experimental data, the most appropriate
models were chosen to be the models with 5 terms, which
yielded the following correlations:

Yield (mol%) = −701.6 − 59.8 × Si : N + 211.8 × pH + 7.3 × Si : N
× pH − 14.1 × pH2 (3)

BET surface area (m2 g−1) = 1556.3 + 631.0 × Si : N − 471.7
× pH − 84.1 × Si : N × pH + 35.7
× pH2 (4)

For the silica yield model, all types of R2 statistics were above
0.93, giving great confidence in the appropriateness of the
selected equation, whereas for the silica BET surface area,
the three R2 values were between 0.70 and 0.85, indicating
that 70 to 85% of the trend in porosity was explained by the
model. The validity of the regression models was checked
with parity plots shown in Fig. 7c and d, which depict the
experimental observations against the observations predicted
by the chosen model. The general proximity of the data points
to the x = y parity line suggested that the models were robust
for the bioinspired silica system over the range studied.

Three-dimensional representation of regression models
allowed direct visualization of the trend in silica yield (Fig. 8a)
and BET surface area (Fig. 8b) and of the close fit between
experimental observations (black spheres) and the response
surface. Further, literature values were also plotted, which
compared very well with the models. This robust prediction of
the effect of synthesis factors on product characteristics and

Fig. 8 Three-dimensional response surfaces of the selected
regression models for (a) the silica yield and (b) the BET surface area.
Black spheres represent the data collected herein while other points
show additional literature values obtained from (i) ref. 16, (ii) ref. 11, (iii)
ref. 19 and (iv) ref. 29. (c) Overlaid contour plot of the model for silica
yield (blue) and silica BET surface area (red) for optimisation of both
responses simultaneously. The grey region enables to synthesise silica
with the constraints that the yield should exceed 60 mol% and the BET
surface area should exceed 100 m2 g−1.
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optimisation of the bioinspired silica system was only
possible with this holistic model accounting for multiple
factors over a large experimental range. The only literature
exception was the red points in Fig. 8a where the yields from
continuous flow tubular reactors16 exceeded the predictions.
As continuous processes generally show better yields, this
underestimation of yield using our models developed from
small scale batch experiments is not unexpected.

Fig. 8a and the model shown in eqn (3), in alignment with
the earlier analysis, shows that the silica yield was most
drastically affected by the pH and increased from 20 mol% at
pH 5.5 to 80 mol% at pH 8.5. The impact caused by the Si : N
factor was less pronounced and the yield increased only
slightly with decreasing Si : N. The surface area plateaued at
about 50 m2 g−1 and increased steeply with decreasing pH
and increasing Si : N. Although these observations are
consistent with the literature,1,8,9 this study incorporated
both factors simultaneously and hence was able to explain
the trend in greater detail accounting for interactions
between factors. For example, the strong curvature of the
model towards the top right-hand corner for surface area
(Fig. 8b) was indicative of a strong Si : N × pH interaction.
From a mechanistic perspective, eqn (3) and (4), and
Fig. 8a and b show a strong influence of pH on both
responses. There are three factors that are likely to contribute
to this pH dependency. Firstly, the rate of silica formation
decreases with the pH below ∼pH 8 (i.e. the reaction is slow
at low pH), while it is maximum at around pH 7–8 (p177 of
ref. 24). We have shown this mechanism is also valid for
bioinspired silica,69 while in the present work, we have
discovered the quantitative relationships. Secondly, silica
particle growth follows distinct pathways at acidic and basic
pH (p174 and p519 of ref. 24). At acidic pH, formation of a
network of primary particles leads to higher surface areas. At
higher pH, individual particles grow without forming a
network, thereby forming low surface area particles. Finally,
as bioinspired silica synthesis is driven by the protonation
and deprotonation of the additives, eqn (3) and Fig. 8a show
a significant role of pH in controlling the yield. At higher pH,
the silicates are highly negatively charged, leading to stronger
interactions with the additive (positively charged amines). At
low pH, these interactions diminish due to the protonation
of ≡Si–O− ions to ≡Si–OH. These interactions between the
pH and amine (Si : N) are clearly identified by the models
(eqn (3) and (4)).

This multidimensional study visualised the interplay
between factors, which traditional experimentation techniques
failed to achieve. As a result, unlike any previous studies, the
maximum economic viability of the process could be obtained
with the maximum silica yield of 90 mol%, achieved at Si : N =
0.5 mol mol−1 and pH = 7.6. Such direct prediction of process
chemistry was not available prior to this work. The maximum
surface area of 300–400 m2 g−1 was achieved for silica
synthesised at Si : N = 2molmol−1 and pH = 5.5.

From comparison of the two response surface plots, it was
observed that the silica yield and surface area increased in

opposite directions, that is, the silica yield had its maximum
in the top left-hand corner, while the BET surface area was
highest in the top right-hand corner. Although in some
circumstances maximization of individual responses is
required, for which the optimum conditions have been
stated, frequently an optimum compromise between
responses is required for profitable operations at the same
time as meeting customer demands. An overlaid contour plot
was constructed in Fig. 8c for a typical scenario, where
manufacturing bioinspired silica becomes economically
viable at yields >60 mol%,12 with surface area >100 m2 g−1.
The intersection of these two criteria is shown as the grey
shaded region. Due to the two models' high precision, this
response library enables the prediction of the optimised
synthesis conditions required to produce silica with desired
attributes, which in the present case would be for example
Si : N = 2 and pH = 6.75.

3.4 Global sensitivity analysis using machine learning

As described in section 2.3, a machine learning technique
was used to efficiently conduct a GSA to support the DoE
study in decision making of the relevant synthesis factors.
Therefore, the GP surrogate model was validated using leave-
one-out cross-validation ensuring inaccuracies were not
carried through to the Sobol' indices.

A criterion for the calculated Sobol' indices has been set
to assign a qualitative level of importance for each factor and
its interactions. A total Sobol' index value STi was calculated
for each factor. A maximum value of STi = 1 shows i
corresponds to 100 % of the response's variance. Whereas a
minimum value of STi = 0 shows i has a negligible impact on
the response. For the factor i, the importance of itself and

Fig. 9 The Sobol' indices for the factors and their interactions with
respect to the yield (red) and the surface area (blue). Indices over the
dashed line (at 0.2) are considered important, those below the dotted
line (at 0.02) are unimportant and those in between are considered as
marginally important.
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each interaction is known by splitting the factors STi into i's
first-order Sobol' index value Si, plus its interactions with j Sij
and k Sik, plus the interactions between all three factors Sijk
as shown below in eqn (5):

STi = Si + Sij + Sik + Sijk (5)

Therefore, a factor or its interaction was considered very
important if its corresponding Sobol' index value is greater
than 0.20. Whereas it was considered not important if the
Sobol' index value was below 0.02. Anything in between was
considered marginally important. For example, if Sij = 0.09
then the interaction between i and j is considered marginally
important. The GSA results for each factor with respect to the
yield and surface area are shown in Fig. 9 and Table 4 with
comparisons to the DoE results.

From Fig. 9 (red bars), it can be seen that the yield is
strongly dependent on the Si : N ratio and the interactions Si :
N × pH and Si : N × [Si]. GSA also predicted that pH and [Si]
could be marginally important, however, their Sobol' indices
were very close to the “low” cut-off (0.02). Further, GSA
identified the three factor interactions as somewhat
important for the silica yield. When considering the surface
area, GSA analysis suggests that only Si : N × pH and the three
factor interactions are important, while other factors were
found not to be important at all or marginally important
(Fig. 9, blue bars). When comparing the GSA results with the
DoE outcomes (Table 4), there are good agreements. For
example, both methods identified Si : N × pH interaction as a
key factor for controlling both the silica yield and the surface
area. This is a valuable outcome as it provides a single factor
that can be used in experimental optimisation of two key
properties of silica. There are some factors where a weak
disagreement between DoE and GSA results is seen. For
example, while the DoE analysis suggested that pH × [Si] is
important for the silica yield, the Sobol' index identified this
interaction as not important. Similarly, for the surface area,
the three-parameter interaction was not considered to be
important based on DoE analysis, while it had one of the
highest Sobol' index. Such differences between these two

methods are expected as they employ fundamentally different
mathematical analyses (classical regression and machine
learning). Further, the different approaches in defining
significance or non-significance using p-values or Sobol'
indices and their respective thresholds could add to the
discrepancies (p = 0.01 for DoE, Si = 0.02 and 0.2 for GSA).

While the methodologies developed herein have been
successfully applied for green nanomaterials for the first
time, it is clear that further refinements will be beneficial. A
wider range of input factor levels with more treatment
replicates would enable to cover a wider design space while
gaining a better estimate of the variance. Additionally, not all
potentially relevant synthesis factors could be investigated in
this study, such as reaction time, temperature, and mixing
regime. For the GSA, it would be beneficial to extend this to
wider ranges of key factors and use more data which has a
normal distribution. Given the similarity of the DoE
approach to a nested quadrature (Clenshaw–Curtis) method,
in future studies, it may be possible to calculate the Sobol'
indices directly without needing a GP. Optimisation of the
DoE directly with a GP approach could likely be beneficial
such that experiments could be focussed to where it is
statistically ‘optimal’ for producing a GP representation.74

A comparison of DoE and GSA is novel for nanomaterials. As
a consequence of this comparison, we have identified interesting
aspects and they need future work. There is little literature
comparing the application of DoE ANOVA with GSA.55 This is
likely because the two techniques appeal to different
communities, and the focus has been either on the practicalities
of implementation (i.e. when should one method be used over
the other75) or application of DoE to improve GSA (largely
ignoring other ANOVAs).76 Given that the two techniques are
now in quite widespread, but largely non-overlapping, use across
a range of applications, a direct comparison from the application
of both techniques to the same problem is highly fruitful. To the
authors' knowledge the only occurrence of machine learning for
silica production was by Paulson et al. (published a few months
ago).76 However, they optimised a single response (particle size)
for the flame spray pyrolysis (not using green synthesis) using a
GP surrogate model. This, in combination with the findings
from a recent review,55 highlight the novelty of our approach
using machine learning for sensitivity analysis with the
sequential DoE strategy. This comparison may lead to a
potentially significant area of future research (not least to the
disparate communities employing the two techniques), which
our findings aim to point toward and initiate.

Although the potential for improvement has been
identified, the present findings are transferable beyond this
work. Future research in the area of bioinspired silica
synthesis will benefit from identification of the significant
synthesis factors and the nonlinear trends in pH and Si : N,
as identified by both the DoE and GSA method. In addition,
these results provide a foundation to explore larger scale
and/or various reactor geometries in order to enable scale-up
of this sustainable synthesis. Applications of bioinspired
silica will value the accurate mapping of the factor-response

Table 4 Summary of results from both methods used herein. A traffic
light system is used, indicating which parameters/interactions were
important for each the yield and the surface area: green = very important,
amber = marginally important and red = not important
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relationship at different scales to guide research towards an
optimum direction. The combined use of DoE and GSA for
inorganic materials synthesis is a research frontier, aiming to
tackle the complexity inherent to materials design. Having
highlighted above the benefits and difficulties of a combined
method, this work thus acts as one of the earliest case
studies at the interface of DoE and GSA for inorganic
materials synthesis that has wider applicability.

4. Conclusion

This study aimed at establishing robust factor-response
relationships to optimise and predict two properties of
bioinspired silica (yield and surface area) as a function of
three synthesis parameters (silicon-to-nitrogen concentration
ratio Si : N, pH, and precursor concentration [Si]). This study
confirmed that solid polymeric bioinspired silica only
precipitates out of the reaction suspension within a certain
Si : N and [Si] range, beyond which no precipitate forms. In
order to minimise the number of required experiments, a
sequential design of experiments strategy was developed with
a pre-screening, a screening, and an optimisation
experiment. In addition, global sensitivity analysis (GSA)
using Sobol' index was successfully applied to this case of
green nanomaterials for the first time. The main new
findings from this work are as follows:

• The 23 full factorial design and subsequent statistical
analysis efficiently identified that, within the design space
investigated, only the Si : N and pH factor were significant for
the responses (as summarised in Table 3).

• Expanding the factorial design to a central composite
design and employing multivariate analysis enabled to
construct reliable empirical regression models for each
response with good predictability (R2 = 96% for yield, R2 =
85% for surface area).

• 3D response surface and overlaid contour plot
visualizations identified the synthesis conditions for
maximum yield or surface area individually, or for both
responses simultaneously towards an optimum.

• GSA-based method was shown to rapidly provide
insights in a wide parameter space and supported the
extensive DoE campaign.

• Specifically, GSA identified key parameters and
interactions between factors that control the physicochemical
properties of nanomaterials, thus demonstrating a strong
potential of GSA in green chemistry and engineering in
conjunction with classical statistics.

We believe this work is the starting point in holistically
modelling the complex multidimensional synthesis of
bioinspired silica to complement sustainable and resource-
efficient product and process optimisation and development
of this nanomaterial.
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